The Current Role and Future Applications of Machine Perfusion in Liver Transplantation
Abstract
:1. Introduction
2. Hypothermic MP
3. Normothermic MP
4. Normothermic Regional Perfusion
5. Viability Assessment during MP
6. Management of IC
7. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Carrel, A.; Lindbergh, C.A. The Culture of Whole Organs. Science 1935, 81, 621–623. [Google Scholar] [CrossRef] [PubMed]
- Starzl, T.E.; Groth, C.G.; Brettschneider, L.; Penn, I.; Fulginiti, V.A.; Moon, J.B.; Blanchard, H.; Martin, A.J., Jr.; Porter, K.A. Orthotopic Homotransplantation of the Human Liver. Ann. Surg. 1968, 168, 392–415. [Google Scholar] [CrossRef] [PubMed]
- Wahlberg, J.A.; Southard, J.H.; Belzer, F.O. Development of a Cold Storage Solution for Pancreas Preservation. Cryobiology 1986, 23, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Belzer, F.O.; Ashby, B.S.; Dunphy, J.E. 24-hour and 72-hour preservation of canine kidneys. Lancet 1967, 290, 536–539. [Google Scholar] [CrossRef]
- Saidi, R.F.; Kenari, S.K.H. Liver Ischemia/Reperfusion Injury: An Overview. J. Investig. Surg. 2014, 27, 366–379. [Google Scholar] [CrossRef]
- Adam, R.; Bismuth, H.; Diamond, T.; Morino, M.; Astarcioglu, I.; Johann, M.; Azoulay, D.; Chiche, L.; Bao, Y.M.; Castaing, D.; et al. Effect of Extended Cold Ischaemia with UW Solution on Graft Function after Liver Transplantation. Lancet 1992, 340, 1373–1376. [Google Scholar] [CrossRef]
- Vogel, T.; Brockmann, J.G.; Coussios, C.; Friend, P.J. The Role of Normothermic Extracorporeal Perfusion in Minimizing Ischemia Reperfusion Injury. Transplant. Rev. 2012, 26, 156–162. [Google Scholar] [CrossRef]
- Shingina, A.; DeWitt, P.E.; Dodge, J.L.; Biggins, S.W.; Gralla, J.; Sprague, D.; Bambha, K. Future Trends in Demand for Liver Transplant: Birth Cohort Effects Among Patients with NASH and HCC. Transplantation 2019, 103, 140–148. [Google Scholar] [CrossRef]
- NHS NHS Blood and Transplant. Organ Donation Activity. 2023. Available online: https://www.odt.nhs.uk/statistics-and-reports/annual-activity-report/ (accessed on 7 March 2023).
- The Lancet Gastroenterology & Hepatology. Obesity: Another Ongoing Pandemic. Lancet Gastroenterol. Hepatol. 2021, 6, 411. [Google Scholar] [CrossRef]
- Orman, E.S.; Barritt IV, A.S.; Wheeler, S.B.; Hayashi, P.H. Declining Liver Utilization for Transplantation in the United States and the Impact of Donation after Cardiac Death. Liver Transplant. 2013, 19, 59–68. [Google Scholar] [CrossRef]
- Elmer, A.; Rohrer, M.-L.; Benden, C.; Krügel, N.; Beyeler, F.; Immer, F.F. Organ Donation after Circulatory Death as Compared with Organ Donation after Brain Death in Switzerland – an Observational Study. Swiss. Med. Wkly. 2022, 152, w30132. [Google Scholar] [CrossRef] [PubMed]
- Foley, D.P.; Fernandez, L.A.; Leverson, G.; Chin, L.T.; Krieger, N.; Cooper, J.T.; Shames, B.D.; Becker, Y.T.; Odorico, J.S.; Knechtle, S.J.; et al. Donation After Cardiac Death: The University of Wisconsin Experience with Liver Transplantation. Ann. Surg. 2005, 242, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Otero, A.; Vázquez, M.A.; Suárez, F.; Pértega, S.; Rivas, J.I.; Mosteiro, F.; Gómez, M. Results in Liver Transplantation Using Grafts from Donors after Controlled Circulatory Death: A Single-Center Experience Comparing Donor Grafts Harvested after Controlled Circulatory Death to Those Harvested after Brain Death. Clin. Transplant. 2020, 34, e13763. [Google Scholar] [CrossRef] [PubMed]
- Goldaracena, N.; Cullen, J.M.; Kim, D.-S.; Ekser, B.; Halazun, K.J. Expanding the Donor Pool for Liver Transplantation with Marginal Donors. Int. J. Surg. 2020, 82, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Jakubauskas, M.; Jakubauskiene, L.; Leber, B.; Strupas, K.; Stiegler, P.; Schemmer, P. Machine Perfusion in Liver Transplantation: A Systematic Review and Meta-Analysis. Visc. Med. 2022, 38, 243–254. [Google Scholar] [CrossRef]
- Karangwa, S.; Panayotova, G.; Dutkowski, P.; Porte, R.J.; Guarrera, J.V.; Schlegel, A. Hypothermic Machine Perfusion in Liver Transplantation. Int. J. Surg. 2020, 82, 44–51. [Google Scholar] [CrossRef]
- Watson, C.J.E.; Jochmans, I. From “Gut Feeling” to Objectivity: Machine Preservation of the Liver as a Tool to Assess Organ Viability. Curr. Transplant. Rep. 2018, 5, 72–81. [Google Scholar] [CrossRef]
- Kubal, C.; Roll, G.R.; Ekser, B.; Muiesan, P. Donation after Circulatory Death Liver Transplantation: What Are the Limits for an Acceptable DCD Graft? Int. J. Surg. 2020, 82, 36–43. [Google Scholar] [CrossRef]
- Guarrera, J.V.; Henry, S.D.; Samstein, B.; Odeh-Ramadan, R.; Kinkhabwala, M.; Goldstein, M.J.; Ratner, L.E.; Renz, J.F.; Lee, H.T.; Brown, R.S., Jr.; et al. Hypothermic Machine Preservation in Human Liver Transplantation: The First Clinical Series. Am. J. Transplant. 2010, 10, 372–381. [Google Scholar] [CrossRef]
- Dutkowski, P.; Schlegel, A.; de Oliveira, M.; Müllhaupt, B.; Neff, F.; Clavien, P.-A. HOPE for Human Liver Grafts Obtained from Donors after Cardiac Death. J. Hepatol. 2014, 60, 765–772. [Google Scholar] [CrossRef]
- Dutkowski, P.; Polak, W.G.; Muiesan, P.; Schlegel, A.; Verhoeven, C.J.; Scalera, I.; DeOliveira, M.L.; Kron, P.; Clavien, P.-A. First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants: An International-Matched Case Analysis. Ann. Surg. 2015, 262, 764–770. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, R.; Schurink, I.J.; de Vries, Y.; van den Berg, A.P.; Cortes Cerisuelo, M.; Darwish Murad, S.; Erdmann, J.I.; Gilbo, N.; de Haas, R.J.; Heaton, N.; et al. Hypothermic Machine Perfusion in Liver Transplantation—A Randomized Trial. N. Engl. J. Med. 2021, 384, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Czigany, Z.; Tacke, F.; Lurje, G. Evolving Trends in Machine Liver Perfusion: Comments on Clinical End Points and Selection Criteria. Gastroenterology 2019, 157, 1166–1167. [Google Scholar] [CrossRef] [PubMed]
- Ravaioli, M.; Germinario, G.; Dajti, G.; Sessa, M.; Vasuri, F.; Siniscalchi, A.; Morelli, M.C.; Serenari, M.; Del Gaudio, M.; Zanfi, C.; et al. Hypothermic Oxygenated Perfusion in Extended Criteria Donor Liver Transplantation—A Randomized Clinical Trial. Am. J. Transplant. 2022, 22, 2401–2408. [Google Scholar] [CrossRef]
- Rossignol, G.; Muller, X.; Hervieu, V.; Collardeau-Frachon, S.; Breton, A.; Boulanger, N.; Lesurtel, M.; Dubois, R.; Mohkam, K.; Mabrut, J.-Y. Liver Transplantation of Partial Grafts after Ex Situ Splitting during Hypothermic Oxygenated Perfusion—The HOPE–Split Pilot Study. Liver Transplant. 2022, 28, 1576–1587. [Google Scholar] [CrossRef]
- Czigany, Z.; Pratschke, J.; Froněk, J.; Guba, M.; Schöning, W.; Raptis, D.A.; Andrassy, J.; Kramer, M.; Strnad, P.; Tolba, R.H.; et al. Hypothermic Oxygenated Machine Perfusion Reduces Early Allograft Injury and Improves Post-Transplant Outcomes in Extended Criteria Donation Liver Transplantation From Donation After Brain Death: Results From a Multicenter Randomized Controlled Trial (HOPE ECD-DBD). Ann. Surg. 2021, 274, 705–712. [Google Scholar]
- Markmann, J.F.; Abouljoud, M.S.; Ghobrial, R.M.; Bhati, C.S.; Pelletier, S.J.; Lu, A.D.; Ottmann, S.; Klair, T.; Eymard, C.; Roll, G.R.; et al. Impact of Portable Normothermic Blood-Based Machine Perfusion on Outcomes of Liver Transplant: The OCS Liver PROTECT Randomized Clinical Trial. JAMA Surg. 2022, 157, 189–198. [Google Scholar] [CrossRef]
- Nasralla, D.; Coussios, C.C.; Mergental, H.; Akhtar, M.Z.; Butler, A.J.; Ceresa, C.D.L.; Chiocchia, V.; Dutton, S.J.; García-Valdecasas, J.C.; Heaton, N.; et al. A Randomized Trial of Normothermic Preservation in Liver Transplantation. Nature 2018, 557, 50–56. [Google Scholar] [CrossRef]
- Ghinolfi, D.; Rreka, E.; De Tata, V.; Franzini, M.; Pezzati, D.; Fierabracci, V.; Masini, M.; Cacciatoinsilla, A.; Bindi, M.L.; Marselli, L.; et al. Pilot, Open, Randomized, Prospective Trial for Normothermic Machine Perfusion Evaluation in Liver Transplantation From Older Donors. Liver Transplant. 2019, 25, 436–449. [Google Scholar] [CrossRef]
- Ceresa, C.D.L.; Nasralla, D.; Coussios, C.C.; Friend, P.J. The Case for Normothermic Machine Perfusion in Liver Transplantation. Liver Transplant. 2018, 24, 269–275. [Google Scholar] [CrossRef]
- Brockmann, J.; Reddy, S.; Coussios, C.; Pigott, D.; Guirriero, D.; Hughes, D.; Morovat, A.; Roy, D.; Winter, L.; Friend, P.J. Normothermic Perfusion: A New Paradigm for Organ Preservation. Ann. Surg. 2009, 250, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, R.; Jassem, W.; Mergental, H.; Heaton, N.; Mirza, D.; Perera, M.T.P.R.; Quaglia, A.; Holroyd, D.; Vogel, T.; Coussios, C.C.; et al. Liver Transplantation After Ex Vivo Normothermic Machine Preservation: A Phase 1 (First-in-Man) Clinical Trial. Am. J. Transplant. 2016, 16, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Mergental, H.; Laing, R.W.; Kirkham, A.J.; Perera, M.T.P.R.; Boteon, Y.L.; Attard, J.; Barton, D.; Curbishley, S.; Wilkhu, M.; Neil, D.A.H.; et al. Transplantation of Discarded Livers Following Viability Testing with Normothermic Machine Perfusion. Nat. Commun. 2020, 11, 2939. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.J.E.; Gaurav, R.; Fear, C.; Swift, L.; Selves, L.; Ceresa, C.D.L.; Upponi, S.S.; Brais, R.; Allison, M.; Macdonald-Wallis, C.; et al. Predicting Early Allograft Function After Normothermic Machine Perfusion. Transplantation 2022, 106, 2391–2398. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, A.T.; Hofmann, J.; Buch, M.L.; Cardini, B.; Dunzendorfer-Matt, T.; Nardin, F.; Blumer, M.J.; Fodor, M.; Hermann, M.; Zelger, B.; et al. Mitochondrial Respiration during Normothermic Liver Machine Perfusion Predicts Clinical Outcome. eBioMedicine 2022, 85, 104311. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.N.; Lester, E.L.W.; Shapiro, A.M.J.; Eurich, D.T.; Bigam, D.L. Cost-Utility Analysis of Normothermic Machine Perfusion Compared to Static Cold Storage in Liver Transplantation in the Canadian Setting. Am. J. Transplant. 2022, 22, 541–551. [Google Scholar] [CrossRef]
- van Leeuwen, O.B.; de Vries, Y.; Fujiyoshi, M.; Nijsten, M.W.N.; Ubbink, R.; Pelgrim, G.J.; Werner, M.J.M.; Reyntjens, K.M.E.M.; van den Berg, A.P.; de Boer, M.T.; et al. Transplantation of High-Risk Donor Livers After Ex Situ Resuscitation and Assessment Using Combined Hypo- and Normothermic Machine Perfusion: A Prospective Clinical Trial. Ann. Surg. 2019, 270, 906–914. [Google Scholar] [CrossRef]
- van Leeuwen, O.B.; Bodewes, S.B.; Lantinga, V.A.; Haring, M.P.D.; Thorne, A.M.; Brüggenwirth, I.M.A.; van den Berg, A.P.; de Boer, M.T.; de Jong, I.E.M.; de Kleine, R.H.J.; et al. Sequential Hypothermic and Normothermic Machine Perfusion Enables Safe Transplantation of High-Risk Donor Livers. Am. J. Transplant. 2022, 22, 1658–1670. [Google Scholar] [CrossRef]
- Hessheimer, A.J.; Coll, E.; Torres, F.; Ruíz, P.; Gastaca, M.; Rivas, J.I.; Gómez, M.; Sánchez, B.; Santoyo, J.; Ramírez, P.; et al. Normothermic Regional Perfusion vs. Super-Rapid Recovery in Controlled Donation after Circulatory Death Liver Transplantation. J. Hepatol. 2019, 70, 658–665. [Google Scholar] [CrossRef]
- Mohkam, K.; Nasralla, D.; Mergental, H.; Muller, X.; Butler, A.; Jassem, W.; Imber, C.; Monbaliu, D.; Perera, M.T.P.R.; Laing, R.W.; et al. In Situ Normothermic Regional Perfusion versus Ex Situ Normothermic Machine Perfusion in Liver Transplantation from Donation after Circulatory Death. Liver Transplant. 2022, 28, 1716–1725. [Google Scholar] [CrossRef]
- Schurink, I.J.; van de Leemkolk, F.E.M.; Fondevila, C.; De Carlis, R.; Savier, E.; Oniscu, G.C.; Huurman, V.A.L.; de Jonge, J. Donor Eligibility Criteria and Liver Graft Acceptance Criteria during Normothermic Regional Perfusion: A Systematic Review. Liver Transplant. 2022, 28, 1563–1575. [Google Scholar] [CrossRef] [PubMed]
- De Beule, J.; Vandendriessche, K.; Pengel, L.H.M.; Bellini, M.I.; Dark, J.H.; Hessheimer, A.J.; Kimenai, H.J.A.N.; Knight, S.R.; Neyrinck, A.P.; Paredes, D.; et al. A Systematic Review and Meta-Analyses of Regional Perfusion in Donation after Circulatory Death Solid Organ Transplantation. Transpl. Int. 2021, 34, 2046–2060. [Google Scholar] [CrossRef]
- Liew, B.; Nasralla, D.; Iype, S.; Pollok, J.-M.; Davidson, B.; Raptis, D.A. Liver Transplant Outcomes after Ex Vivo Machine Perfusion: A Meta-Analysis. Br. J. Surg. 2021, 108, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.N.; Rizzari, M.D.; Ghinolfi, D.; Jochmans, I.; Attia, M.; Jalan, R.; Friend, P.J. ILTS Special Interest Group “DCD, P. and M.P. Design, Analysis, and Pitfalls of Clinical Trials Using Ex Situ Liver Machine Perfusion: The International Liver Transplantation Society Consensus Guidelines. Transplantation 2021, 105, 796–815. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, C.D.L.; Nasralla, D.; Pollok, J.-M.; Friend, P.J. Machine Perfusion of the Liver: Applications in Transplantation and Beyond. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Greenwood, J.; Maniakin, N.; Bhattacharjya, S.; Zilvetti, M.; Brockmann, J.; James, T.; Pigott, D.; Friend, P. Non-Heart-Beating Donor Porcine Livers: The Adverse Effect of Cooling. Liver Transplant. 2005, 11, 35–38. [Google Scholar] [CrossRef]
- Matton, A.P.M.; de Vries, Y.; Burlage, L.C.; van Rijn, R.; Fujiyoshi, M.; de Meijer, V.E.; de Boer, M.T.; de Kleine, R.H.J.; Verkade, H.J.; Gouw, A.S.H.; et al. Biliary Bicarbonate, PH, and Glucose Are Suitable Biomarkers of Biliary Viability During Ex Situ Normothermic Machine Perfusion of Human Donor Livers. Transplantation 2019, 103, 1405–1413. [Google Scholar] [CrossRef]
- Watson, C.J.E.; Kosmoliaptsis, V.; Pley, C.; Randle, L.; Fear, C.; Crick, K.; Gimson, A.E.; Allison, M.; Upponi, S.; Brais, R.; et al. Observations on the Ex Situ Perfusion of Livers for Transplantation. Am. J. Transplant. 2018, 18, 2005–2020. [Google Scholar] [CrossRef]
- Liu, Q.; Vekemans, K.; Iania, L.; Komuta, M.; Parkkinen, J.; Heedfeld, V.; Wylin, T.; Monbaliu, D.; Pirenne, J.; van Pelt, J. Assessing Warm Ischemic Injury of Pig Livers at Hypothermic Machine Perfusion. J. Surg. Res. 2014, 186, 379–389. [Google Scholar] [CrossRef]
- Patrono, D.; Roggio, D.; Mazzeo, A.T.; Catalano, G.; Mazza, E.; Rizza, G.; Gambella, A.; Rigo, F.; Leone, N.; Elia, V.; et al. Clinical Assessment of Liver Metabolism during Hypothermic Oxygenated Machine Perfusion Using Microdialysis. Artif. Organs 2022, 46, 281–295. [Google Scholar] [CrossRef]
- Muller, X.; Schlegel, A.; Kron, P.; Eshmuminov, D.; Würdinger, M.; Meierhofer, D.; Clavien, P.-A.; Dutkowski, P. Novel Real-Time Prediction of Liver Graft Function During Hypothermic Oxygenated Machine Perfusion Before Liver Transplantation. Ann. Surg. 2019, 270, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; Muller, X.; Mueller, M.; Stepanova, A.; Kron, P.; de Rougemont, O.; Muiesan, P.; Clavien, P.-A.; Galkin, A.; Meierhofer, D.; et al. Hypothermic Oxygenated Perfusion Protects from Mitochondrial Injury before Liver Transplantation. eBioMedicine 2020, 60, 103014. [Google Scholar] [CrossRef] [PubMed]
- Fasullo, M.; Patel, M.; Khanna, L.; Shah, T. Post-Transplant Biliary Complications: Advances in Pathophysiology, Diagnosis, and Treatment. BMJ Open Gastro 2022, 9, e000778. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.J.E.; Hunt, F.; Messer, S.; Currie, I.; Large, S.; Sutherland, A.; Crick, K.; Wigmore, S.J.; Fear, C.; Cornateanu, S.; et al. In Situ Normothermic Perfusion of Livers in Controlled Circulatory Death Donation May Prevent Ischemic Cholangiopathy and Improve Graft Survival. Am. J. Transplant. 2019, 19, 1745–1758. [Google Scholar] [CrossRef] [PubMed]
- Antoine, C.; Jasseron, C.; Dondero, F.; Savier, E.; French National Steering Committee of Donors after Circulatory Death. Liver Transplantation From Controlled Donors after Circulatory Death Using Normothermic Regional Perfusion: An Initial French Experience. Liver Transplant. 2020, 26, 1516–1521. [Google Scholar] [CrossRef]
- Schlegel, A.; Muller, X.; Kalisvaart, M.; Muellhaupt, B.; Perera, M.T.P.R.; Isaac, J.R.; Clavien, P.-A.; Muiesan, P.; Dutkowski, P. Outcomes of DCD Liver Transplantation Using Organs Treated by Hypothermic Oxygenated Perfusion before Implantation. J. Hepatol. 2019, 70, 50–57. [Google Scholar] [CrossRef]
- Muller, X.; Mohkam, K.; Mueller, M.; Schlegel, A.; Dondero, F.; Sepulveda, A.; Savier, E.; Scatton, O.; Bucur, P.; Salame, E.; et al. Hypothermic Oxygenated Perfusion Versus Normothermic Regional Perfusion in Liver Transplantation From Controlled Donation After Circulatory Death: First International Comparative Study. Ann. Surg. 2020, 272, 751–758. [Google Scholar] [CrossRef]
- Ceresa, C.D.L.; Nasralla, D.; Watson, C.J.E.; Butler, A.J.; Coussios, C.C.; Crick, K.; Hodson, L.; Imber, C.; Jassem, W.; Knight, S.R.; et al. Transient Cold Storage Prior to Normothermic Liver Perfusion May Facilitate Adoption of a Novel Technology. Liver Transplant. 2019, 25, 1503–1513. [Google Scholar] [CrossRef]
- Gaurav, R.; Butler, A.J.; Kosmoliaptsis, V.; Mumford, L.; Fear, C.; Swift, L.; Fedotovs, A.; Upponi, S.; Khwaja, S.; Richards, J.; et al. Liver Transplantation Outcomes From Controlled Circulatory Death Donors: SCS vs in Situ NRP vs. Ex Situ NMP. Ann. Surg. 2022, 275, 1156–1164. [Google Scholar] [CrossRef]
- Dengu, F.; Abbas, S.H.; Ebeling, G.; Nasralla, D. Normothermic Machine Perfusion (NMP) of the Liver as a Platform for Therapeutic Interventions during Ex-Vivo Liver Preservation: A Review. J. Clin. Med. 2020, 9, 1046. [Google Scholar] [CrossRef]
- Koneru, B.; Dikdan, G. Hepatic steatosis and liver transplantation current clinical and experimental perspectives. Transplantation 2002, 73, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, A.L.; Lao, O.B.; Dick, A.A.S.; Bakthavatsalam, R.; Halldorson, J.B.; Yeh, M.M.; Upton, M.P.; Reyes, J.D.; Perkins, J.D. The Biopsied Donor Liver: Incorporating Macrosteatosis into High-Risk Donor Assessment. Liver Transplant. 2010, 16, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, R.W.; Zilvetti, M.; Roy, D.; Hughes, D.; Morovat, A.; Coussios, C.C.; Friend, P.J. Hepatic Steatosis and Normothermic Perfusion—Preliminary Experiments in a Porcine Model. Transplantation 2011, 92, 289–295. [Google Scholar] [CrossRef]
- Nagrath, D.; Xu, H.; Tanimura, Y.; Zuo, R.; Berthiaume, F.; Avila, M.; Yarmush, R.; Yarmush, M.L. Metabolic Preconditioning of Donor Organs: Defatting Fatty Livers by Normothermic Perfusion Ex Vivo. Metab. Eng. 2009, 11, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Banan, B.; Watson, R.; Xu, M.; Lin, Y.; Chapman, W. Development of a Normothermic Extracorporeal Liver Perfusion System toward Improving Viability and Function of Human Extended Criteria Donor Livers. Liver Transplant. 2016, 22, 979–993. [Google Scholar] [CrossRef] [PubMed]
- Boteon, Y.L.; Attard, J.; Boteon, A.P.C.S.; Wallace, L.; Reynolds, G.; Hubscher, S.; Mirza, D.F.; Mergental, H.; Bhogal, R.H.; Afford, S.C. Manipulation of Lipid Metabolism During Normothermic Machine Perfusion: Effect of Defatting Therapies on Donor Liver Functional Recovery. Liver Transplant. 2019, 25, 1007–1022. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, C.D.L.; Nasralla, D. Cornfield T Exploring the Structural and Functional Effects of Normothermic Machine Perfusion and De-Fatting Interventions on Human Steatotic Livers. Hepatology 2018, 68, 1–183. [Google Scholar] [CrossRef]
- Watson, C.J.E.; Brais, R.; Gaurav, R.; Swift, L.; Fear, C.; Foukaneli, T.; Butler, A.J. Peribiliary Intravascular Fibrin Occlusions and Bile Duct Necrosis in DCD Livers During Ex Situ Perfusion: Prevention With Tissue Plasminogen Activator and Fresh Frozen Plasma. Transplantation 2021, 105, e401–e402. [Google Scholar] [CrossRef]
- DiRito, J.R.; Hosgood, S.A.; Reschke, M.; Albert, C.; Bracaglia, L.G.; Ferdinand, J.R.; Stewart, B.J.; Edwards, C.M.; Vaish, A.G.; Thiru, S.; et al. Lysis of Cold-Storage-Induced Microvascular Obstructions for Ex Vivo Revitalization of Marginal Human Kidneys. Am. J. Transplant. 2021, 21, 161–173. [Google Scholar] [CrossRef]
- Watson, C.J.E.; MacDonald, S.; Bridgeman, C.; Brais, R.; Upponi, S.S.; Foukaneli, T.; Swift, L.; Fear, C.; Selves, L.; Kosmoliaptsis, V.; et al. D-Dimer Release From Livers During Ex Situ Normothermic Perfusion and after In Situ Normothermic Regional Perfusion: Evidence for Occult Fibrin Burden Associated With Adverse Transplant Outcomes and Cholangiopathy. Transplantation 2023. [Google Scholar] [CrossRef]
- Eshmuminov, D.; Becker, D.; Bautista Borrego, L.; Hefti, M.; Schuler, M.J.; Hagedorn, C.; Muller, X.; Mueller, M.; Onder, C.; Graf, R.; et al. An Integrated Perfusion Machine Preserves Injured Human Livers for 1 Week. Nat. Biotechnol. 2020, 38, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Lau, N.-S.; Ly, M.; Dennis, C.; Liu, K.; Kench, J.; Crawford, M.; Pulitano, C. Long-Term Normothermic Perfusion of Human Livers for Longer than 12 Days. Artif. Organs 2022, 46, 2504–2510. [Google Scholar] [CrossRef] [PubMed]
Trial Identifier | Study Type | Intervention | Primary End Point | No. of Participants | Location | End Date |
---|---|---|---|---|---|---|
NCT02478151 | Single-arm, prospective | NMP | PNF 90 days; | 40 | Canada | 2023 |
re-transplantation after 90 days; | ||||||
recipient mortality after 90 days | ||||||
NCT04812054 | RCT | HOPE | EAD | 104 | Poland | 2024 |
SCS | ||||||
NCT03456284 | Single-arm, prospective | NMP | PNF and recipient mortality at 90 days | 30 | United States | 2023 |
NCT04644744 | RCT | HOPE | Postoperative complications (CCI) | 213 | Germany | 2024 |
NMP | ||||||
SCS | ||||||
NCT05045794 | RCT | SCS + HOPE | EAD | 244 | United States | 2024 |
SCS | ||||||
NCT05574361 | Single-arm, prospective | HOPE | EAD | 120 | United States | 2023 |
NCT03484455 | RCT | HOPE | EAD | 142 | United States | 2022 * |
SCS | ||||||
NCT04483102 | Single-arm, prospective | NMP | Graft failure at 6 months, total number of patients treated (declined livers) | 25 | United States | 2023 |
NCT04023773 | Single-arm, prospective | HOPE + NMP | 1-month recipient and graft survival | 15 | United States | 2024 |
NCT02775162 | RCT | NMP | EAD | 267 | United States | 2021 * |
SCS | ||||||
NCT04862156 | Single-arm, prospective | NMP | EAD | 105 | United States | 2024 |
NCT03929523 | RCT | End ischemic HOPE | EAD | 266 | France | 2023 |
ISRCTN14957538 | RCT | NMP | Transplanted livers | 60 | United Kingdom | 2024 |
NMP + defatting | ||||||
ISRCTN11552402 | Prospective, observational | NMP | Transplanted livers | 3264 | United Kingdom, international | 2026 |
ISRCTN36453355 | RCT | NMP | Transcriptome | 250 | United Kingdom | 2025 |
ISRCTN15211703 | Single-arm, prospective | NMP + thrombolytic treatment | Post-reperfusion blood loss | 60 | United Kingdom | 2023 |
Intervention | Primary End Point | Results | No. of Participants | Comments | References |
---|---|---|---|---|---|
HOPE | Non-anastomotic biliary strictures at 6 months | HOPE, 6% strictures; SCS, 18% strictures (RR, 0.36; 95% CI, 0.14–0.94; p = 0.03) | 160 (78; 78), 4 no liver | Post-reperfusion, 12% vs. 27%; EAD, 26% vs. 40% | [23] |
SCS | |||||
HOPE | Peak ALT levels | 47% decrease in serum peak ALT (p = 0.030) | 46 (23, 23) | ECD livers | [27] |
SCS | |||||
Portable NMP | EAD | EAD (27/150 [18%] vs. 44/141 [31%]; p = 0.01) | 293 (151; 142) | [28] | |
SCS | |||||
NMP | Peak ALT | 50% decrease in NMP compared with SCS | (137, 133) | 50% lower discharge rate in NMP | [29] |
SCS | |||||
NMP | Patient and graft survival after 6 months | 1 death in the SCS group | 20 (10,10) | [30] | |
SCS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staubli, S.M.; Ceresa, C.D.L.; Pollok, J.M. The Current Role and Future Applications of Machine Perfusion in Liver Transplantation. Bioengineering 2023, 10, 593. https://doi.org/10.3390/bioengineering10050593
Staubli SM, Ceresa CDL, Pollok JM. The Current Role and Future Applications of Machine Perfusion in Liver Transplantation. Bioengineering. 2023; 10(5):593. https://doi.org/10.3390/bioengineering10050593
Chicago/Turabian StyleStaubli, Sebastian M., Carlo D. L. Ceresa, and Joerg M. Pollok. 2023. "The Current Role and Future Applications of Machine Perfusion in Liver Transplantation" Bioengineering 10, no. 5: 593. https://doi.org/10.3390/bioengineering10050593
APA StyleStaubli, S. M., Ceresa, C. D. L., & Pollok, J. M. (2023). The Current Role and Future Applications of Machine Perfusion in Liver Transplantation. Bioengineering, 10(5), 593. https://doi.org/10.3390/bioengineering10050593