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Abstract: Furcation defects pose a significant challenge in the diagnosis and treatment planning of
periodontal diseases. The accurate detection of furcation involvements (FI) on periapical radiographs
(PAs) is crucial for the success of periodontal therapy. This research proposes a deep learning-based
approach to furcation defect detection using convolutional neural networks (CNN) with an accu-
racy rate of 95%. This research has undergone a rigorous review by the Institutional Review Board
(IRB) and has received accreditation under number 202002030B0C505. A dataset of 300 periapical
radiographs of teeth with and without FI were collected and preprocessed to enhance the quality
of the images. The efficient and innovative image masking technique used in this research better
enhances the contrast between FI symptoms and other areas. Moreover, this technology highlights
the region of interest (ROI) for the subsequent CNN models training with a combination of transfer
learning and fine-tuning techniques. The proposed segmentation algorithm demonstrates exceptional
performance with an overall accuracy up to 94.97%, surpassing other conventional methods. More-
over, in comparison with existing CNN technology for identifying dental problems, this research
proposes an improved adaptive threshold preprocessing technique that produces clearer distinctions
between teeth and interdental molars. The proposed model achieves impressive results in detecting
FI with identification rates ranging from 92.96% to a remarkable 94.97%. These findings suggest that
our deep learning approach holds significant potential for improving the accuracy and efficiency
of dental diagnosis. Such AI-assisted dental diagnosis has the potential to improve periodontal
diagnosis, treatment planning, and patient outcomes. This research demonstrates the feasibility
and effectiveness of using deep learning algorithms for furcation defect detection on periapical
radiographs and highlights the potential for AI-assisted dental diagnosis. With the improvement
of dental abnormality detection, earlier intervention could be enabled and could ultimately lead to
improved patient outcomes.

Keywords: deep learning; periapical radiograph; furcation involvement; image segmentation; Gaus-
sian high-pass filtering; image preprocessing; CNN
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1. Introduction

With the increasing emphasis on health awareness, people are paying more and more
attention to health matters. Seeing a doctor or undergoing health check-ups has become
part of daily life. However, this has also led to a shortage of medical resources due to
the high demand. This research focuses on one of the most high-demand reasons for
check-ups, periodontitis. Periodontitis is a type of periodontal disease [1]. The symptoms
of periodontitis can be further classified based on the furcation involvements occurring at
the bifurcation or trifurcation of the roots of molars. Traditionally, dentists rely on repeated
X-ray examinations, palpation, and mobility tests to confirm the presence of furcation
involvements (FI) and take appropriate measures [2,3]. Therefore, the purpose of this
research is to train a convolutional neural network (CNN) model to accurately identify FI
on PAs. This helps dentists to quickly distinguish and compare the severity of the disease,
thereby reducing the consumption of medical resources.

The motivation behind this project is to delegate the task of identifying dental symp-
toms to artificial intelligence (AI). With the rapid development of AI technology, there
have been numerous AI applications in recent years, such as vehicle counting [4], financial
field applications [5], medical education [6], chip design field [7], and foreign language
teaching [8]. In the current standard process of dental diagnosis and treatment, the use
of X-rays can reduce the probability of misjudgment by assisting in the identification of
symptoms that are difficult to detect with the naked eye. However, there is still a possibility
of misjudgment due to differences in lighting or shooting angles. Additionally, dentists
spend a significant amount of time interpreting dental lesions before treating each patient,
which accumulates into significant time and physical costs for the practitioner. Therefore, a
well-trained model from this project could significantly assist dentists in diagnosis. Dentists
can use AI-classified images for pre-screening and comparison and then perform further de-
tailed invasive examinations [9]. The goal of this research is to construct a CNN model [10]
that can identify the presence or absence of FI [11] through transfer learning. This disease
frequently occurs at the root bifurcation of multi-rooted teeth, particularly in upper and
lower molars. The key difference between multi-rooted teeth and single-rooted teeth is the
number of roots, with multi-rooted teeth resembling a forked root system where the gap
between roots is referred to as furcation. Under normal circumstances, the furcation is filled
with alveolar bone. However, when periodontal disease occurs, the alveolar bone is lost.
Bacteria can penetrate deeper into the gap, ultimately leading to a decrease in tooth stability
or even tooth loss. The prevalence of periodontal disease today is a common occurrence
that is also associated with an increased incidence of FI [12]. Since FI usually occurs in
narrow and complex-to-clean locations, missing the golden treatment period can quickly
escalate the disease to a point where even surgery cannot restore long-term stability [13].
The early detection and repair of bone augmentation can prevent tooth loss.

Radiographic diagnosis is the most widely used and important means of evaluating
teeth in dentistry. The use of new X-ray techniques like cone beam-computed tomography
(CBCT) and magnetic resonance imaging (MRI) has the potential to enhance the accuracy
of diagnosing root canal bifurcations [14]. This means that clinical dentists still mostly
rely on traditional X-ray images. Although these new imaging techniques are indeed
more precise than traditional 2D X-rays in many areas, they are still not widely used in
general clinical practice due to the time and cost required. Additionally, the resources for
these techniques are limited and difficult to distribute equitably to patients. Furthermore,
high-precision images like those provided by CBCT are only helpful in assisting dentists
with initial diagnoses [15,16]. Unless the condition is complex, dentists still rely more
on traditional X-rays such as PA, bitewing, and panoramic films. The main goal of this
research is to address the shortcomings of traditional X-ray images and improve image
quality by reducing noise or improving clarity. Additionally, this research aims to assist or
simplify the clinical workflow for dentists by training a CNN transfer learning model to
automatically detect and identify periapical lesions on PA images. This will save dentists
time and energy in reviewing PA images and reduce the risk of visual fatigue [2,17].
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Moreover, the model will better define FI lesions and eliminate the need for the discussion
or repeated confirmation of suspicious lesions [18–21]. This helps dentists to reduce patient
consultation time and respond more quickly to these elusive conditions. The Innovations
of this research are listed as follows:

1. A CNN-based automated recognition system for FI lesions has been developed in this
research, and the proposed final model can achieve an accuracy of 94%, which is a 5%
increase compared to [19].

2. An adaptive threshold and an adjusted segmentation line operation have been pro-
posed in this research to enhance fault tolerance, which has proven helpful for the
research process and final learning results.

3. The model for distinguishing between single-rooted and double-rooted teeth in this
research has achieved a high recognition accuracy of 97%, which enables the proper
classification of the sample data contained in a single image. Additionally, the pro-
posed model for classifying single and double-rooted teeth can help in the collection
and categorization of samples for medical and AI automation applications in the
future.

The structure of this research is as follows: Section 2 introduces the CNN model
architecture and the automated image data generation methods used for training. Section 3
presents and analyzes the results of various experiments, including comparisons between
different models and an examination of factors that may have impacted the outcomes.
Section 4 discusses the findings obtained from the experiments. Finally, Section 5 concludes
this research and suggests future directions for further explorations.

2. Materials and Methods

In this research, the most important areas are image preprocessing and image mask-
ing, which were the main factors affecting CNN training and validation. In the image
preprocessing step, the noise in the original PA image is removed. In the meantime, the
characteristics of the diseases classified in this research can be enhanced. This step is crucial
to the next PA image classification step as it obtains better recognition accuracy. The overall
flow chart of this research is shown in Figure 1.
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2.1. Image Preprocessing

One of the focuses of this research is to locate FI in the posterior molars from PA
images. However, due to issues such as the angle of the X-ray beam or lighting, distinguish-
ing the three targets in PA images (teeth, gingiva, and background) is often challenging.
Additionally, PA images frequently contain noise and distortion, which make it tedious
and time-consuming for dentists to locate the targets and might cause the possibility of
misdiagnosis. Therefore, the aim of this step is to standardize PA images by eliminating
interfering confounding variables and enabling the clear differentiation of the three targets.
The pre-processing step comprises three parts: gray-level adjustment, Gaussian high-pass
filtering, and adaptive thresholding, as shown in Figure 2.
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2.1.1. Image Grayscale

To improve the image adjustment and the efficiency of CNN training, the original
RGB images are converted to grayscale images. While RGB images have three dimensions,
grayscale images have only two dimensions and are more suitable for image adjustment.
Furthermore, since the colors captured by PA images are grayscale, there is no loss of
information in converting to grayscale [22]. This conversion simplifies the representation
of the image data and allows the pixel coordinates of the image to be more easily displayed.
Grayscaling makes it simpler to detect errors and make adjustments.

2.1.2. Gaussian High-Pass Filtering

The most challenging problems in this research are the image noise on the PA image
and the indistinct contours of the target disease. Cui and Zhang [23] used frequency domain
filtering to sharpen the image in which the edge features are highlighted. Gaussian filtering
is separated into high-pass and low-pass filtering. Low-pass filtering can filter out the noise.
It is concentrated in high frequencies and smooths the image edge, but it can also cause
the image to become too blurry and lose details. On the other hand, high-pass filtering can
suppress the low-frequency parts and focus on highlighting the edge features, effectively
extracting noise and interference. Thus, this research subtracts the filtered noise image from
the original image, as described in [24]. Equation (1) can decrease the noise and interference
on the original image. Figure 3 shows the results of achieving a more pronounced contrast,
displaying different gray levels in different areas and clearer tooth contours.

H(u, v) = 1 − e
−D2(u, v)

2D2
0 (1)
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2.1.3. Adaptive Threshold

After filtering out the noise and highlighting the contours of PA images, the adaptive
thresholding is performed. The main goal of this step was to find a suitable threshold for
the image to perform binarization, dividing the image into two parts: teeth and gums,
background and diseases, and alveolar bone. The accuracy of this step affected the determi-
nation of the target object in the later steps. This research tested the fixed threshold using
the Otsu algorithm, as mentioned in [25]; the iterative algorithm, as mentioned in [26];
and the adaptive threshold, as mentioned in [27]. However, for the molars’ PA, the pixel
brightness was a significant factor, which is different from the PA of a single tooth. The
variation in the molar area makes it even more challenging to find a pattern. Therefore, this
research developed a newly defined adaptive algorithm to find the optimal threshold.

To address the issue of possible extreme values in the images, Chen et al. adjusted
the grayscale image to avoid this problem [28]. Based on that, this research improved the
process by redistributing extremely bright areas (grayscale > 170) to lower grayscale. After
the adjustment, the subsequent algorithms were not affected by external lighting factors
during the image capture process. The result is shown in Figure 4.
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After solving the extreme value variations, adaptive threshold values could be calcu-
lated. First, the minimum value (Zmin) in the grayscale range of 60 to 120, the maximum
value (Lmax) in the grayscale range of 30 to 90, and the maximum value (Rmax) in the
grayscale range of 91 to 170 was identified from the preprocessed grayscale image. Second,
the midpoint gray value (Zmid) was calculated using Equation (2) and used as the initial
binary threshold value (T0). In the next step, the total number of pixels in the image
(Ztotal) and the total number of pixels from T0 to 170 (Zcheck) was calculated to obtain all
parameters. Finally, three verification methods, namely checking whether the X-distance
between two pairs of values (Zmin, Zmid) was less than 15, Equation (3), and Equation (4),
were utilized to validate the results. If any of these tests failed, the process entered into an
iterative calculation, either by changing the first step to find the second lowest value or by
adjusting the threshold value to meet the restrictions.

Zmid =
Lmax + Rmax

2
(2)

Zcheck ≤ Ztotal ×
5
6

(3)

Zcheck ≥ Ztotal ×
2
3

(4)

Two situations require the re-finding of the threshold. The first is when multiple T0
values meet the above constraints, and the other is when the suitable threshold within the
grayscale range of 80–95 cannot be found. These two situations may cause multiple unsat-
isfactory segmenting results in the image cropping stage. Therefore, the ideal threshold
value is continuously re-found through an iterative method. The ideal threshold value is
used for binary thresholding where the pixel value greater than the threshold value is set to
1 (white) and the other pixel values are set to 0 (black). The binary image result was tested
to ensure that the total mean of all pixels is greater than 0.6 and less than 0.85. The binary
result is shown in Figure 5.
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2.2. Image Segmentation

The purpose of this step is to separate each tooth in PA image and create a database of
images for each tooth. This step can effectively improve the target object recognition and
reduce the interference from non-target objects before CNN training.

This research tested the segmentation method proposed in previous research [27]. The
result showed that it worked well for front teeth but had difficulty with back teeth due
to lighting or imaging conditions. Therefore, this research modified the method based
on the other research [29] to automatically locate the segmenting line for back teeth. The
masking technique for CNN training was also adjusted. The details of these modifications
are described in the following sections.
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2.2.1. Vertical Projection

Neighboring teeth segmenting lines inevitably lie on the interdental space, which is
black (pixel value 0) in the binary image of PA. In addition, a PA image can have up to
five teeth, so this research calculated the vertical pixel sum of each row. According to the
algorithm conditions, neighboring interdental spaces must be divided by at least one tooth
distance. The result is shown in Figure 6.
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2.2.2. Rote Tangent

Unlike the rotation algorithm in other research [29], instead of rotating the image,
this research moves the vertical coordinates to rotate the segmenting line and create the
marked positions. The positions of the five smallest pixel values are marked from left to
right. This operation can avoid encountering complex rotation functions and converting the
image coordinate system to or from the original coordinate system. It makes the automated
program simpler, more efficient, and more error-tolerant. The segmentation result is shown
in Figure 7. After locating the optimal rotation for the segmentation line, the coordinates
of the two endpoints of the segmentation line are obtained. Comparing the distances
between the two endpoints and the target tooth, the endpoint which is further away from
the target tooth is considered to be on the outer side of the tooth. Then, a vertical trimming
is performed on the X-coordinate to ensure that the target tooth is included without cutting
through the tooth root. Bad segmentation would cause the loss of features. Previous
research [27] has proposed using grayscale for segmentation. However, for posterior
periapical radiographs (PA), which are sensitive to lighting conditions, the high grayscale
values of gingiva can be similar to or even higher than those of the tooth roots. This can
lead to misjudgment during the subsequent rotation and segmentation steps, indirectly
confirming the importance of the pre-processing step mentioned.
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Figure 7. The result image of segmenting lines. (a) Original image. (b) After rotating segmentation
lines. Corrected tangents are shown as green lines.

2.3. Image Mask

After determining the optimal rotation angle and segmentation lines, automated
masking was applied to the areas outside the two segmentation lines. This isolates the
target object of interest (a single tooth) from external factors that may affect the accuracy of
CNN recognition and can improve the learning effectiveness of CNN in recognizing the
target object.

This research proposes a method expanding each cutting line outward by 1/30th
of the original image width to avoid damaging the target while the misplacement of the
segmentation lines occurs. This step provides some error tolerance to the process. In
addition, the extended area provides surrounding information of the target object that
would help with CNN training. The segmentation result is shown in Figure 8.
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Figure 8. The results of the masking image. (a) Original segmentation. (b) Retouched segmentation
and masking.

2.4. Image Identification

To validate the effectiveness and reliability of the proposed model, this study selected
128 lesion images and 140 normal teeth images from the database, as listed in Table 1.
The images are augmented through horizontal, vertical, and reverse flipping to increase
the number of images. Based on transfer learning theory, the database was divided into
training and validation sets in a ratio of approximately 7:3 and was classified into the
database, as shown in Table 2.
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Table 1. Data classification of original periapical image from clinical.

The Number of Original Images from Clinical

Tooth Lesion Normal total

Quantity 128 140 368

Table 2. Data classification of periapical image after preprocessing.

Training Set Validation Set Total

Lesion 271 (Expanded) 41 312

Normal 245 (Expanded) 106 351

2.4.1. CNN Model

The experimental environment used in this proposal includes hardware and software
specifications as shown in Table 3. Several famous transfer learning models in Matlab
namely GoogLeNet, AlexNet, Inception v3, and Vgg19 are used for comparison. Taking
GoogLeNet, which was performed best in this experiment as an example, the architecture
is shown in Table 4. GoogLeNet is composed of Inception modules [30], which allow
GoogLeNet to obtain the kernels of different scales during training and learn multiple
features. Additionally, the inclusion of 1 × 1 convolutional layers prevents an excessive
number of kernels and increases the non-linearity of the neural network with more compre-
hensive learning. Moreover, GoogLeNet eliminates connected layers. It reduces the number
of parameters by nearly nine times compared to AlexNet [31]. Despite achieving similar
or even higher accuracy than other models, the significant reduction in parameters makes
GoogLeNet much lighter compared to other models. The remaining two models used for
the experiment are Vgg19 [32] and Inception v3 [33]. These two models have shown better
performance than other image recognition models in detecting image patterns.

Table 3. The hardware and software detailed specifications.

Hardware Platform Version

CPU AMD R5-5600X

GPU GeForce GTX 1660 SUPER

DRAM DDR4 3200 32 GB

OS Windows 10

Software platform Version

MATLAB R2022b

Table 4. The input and output of GoogLeNet model.

Layer Type Activation

1 Data 224 × 224 × 3

2 Convolution 112 × 112 × 64

3 Max Pool 56 × 56 × 64

4 Convolution 56 × 56 × 192

5 Max Pool 28 × 28 × 192

6 Inception (3a) 28 × 28 × 256
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Table 4. Cont.

Layer Type Activation

7 Inception (3b) 28 × 28 × 480

8 Max Pool 14 × 14 × 480

9 Inception (4a) 14 × 14× 512

10 Inception (4b) 14 × 14 × 512

11 Inception (4c) 14 × 14 × 512

12 Inception (4d) 14 × 14 × 528

13 Inception (4e) 14 × 14 × 832

14 Max Pool 7 × 7 × 832

15 Inception (5a) 7 × 7 × 832

16 Inception (5b) 7 × 7 × 1024

17 Avg Pool 1 × 1 × 1024

18 Dropout (40%) 1 × 1 × 1024

19 Linear 1 × 1 × 1000

20 Softmax 1 × 1 × 1000

The randomly selected validation dataset is tested for the proposed model after the
transfer learning is accomplished. The validation accuracy is then calculated and evaluated.
The confusion matrix can be calculated to evaluate the quality of the trained model.

2.4.2. Adjust Hyper-Parameter

The adjustment of hyper-parameters is crucial for deep learning outcomes. The best
combination of parameter settings can be slowly found through the appropriate fine tuning
for each training process. The most frequently adjusted parameters in this experiment are
max epoch, initial learning rate, mini batch size, and learn drop period. The suggested
values of hyper-parameters are shown in Table 5.

Table 5. This study uses hyperparameters in the CNN model.

Hyperparameters Value

Max Epoch 50

Initial Learning Rate 0.0001

Mini Batch Size 32

Learn Drop Period 5

Validation Frequency 3

Learn Rate Drop Factor 0.2000

A. Optimizer

SGDM (stochastic gradient descent with momentum) and Adam (adaptive moment
estimation) are two popular optimization algorithms used in deep learning to train neural
networks. Although Adam is faster than SGDM in terms of training speed, SGDM exhibits
better convergence and more stable training performance. Considering the current number
of images in the training set, the advantage of using Adam’s fast convergence speed is not
significant and may encounter convergence issues.

B. Initial Learning Rate

The rate at which the gradient descends during model training is affected by the initial
learning rate. A small value can cause slow convergence and make the model prone to
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overfitting. Conversely, a large value can cause the model to learn too quickly and fail
to converge, leading to divergence. After several trials, a stable learning rate of 1e-4 was
determined for GoogLeNet.

C. Mini Batch Size

The mini batch size parameter determines how many data points are used to train the
neural network at once. It is essentially a subset of the training set. If the mini batch size
is too large, more data need to be considered for training. This leads to a more accurate
correction direction, but the training process will take longer. On the other hand, if the mini
batch size is too small, the correct direction will be biased because only a small amount
of data are used in each iteration. However, this allows for more frequent corrections.
For example, if the mini batch size is set to 20, this means that only 20 data points are
used for training at a time. The mini batch size and epoch are closely related. If there are
400 data points in total and mini batch size is set to 20, then 20 training instances comprise
one epoch.

3. Results

This section provides an overview of the model performance in this research. To moni-
tor the training progress, a validation set was utilized. Table 6 presents the training process
of GoogLeNet at intervals of five epochs. Additionally, Figures 9 and 10 offer a detailed
representation of the training progress of GoogLeNet, including the final convergence
status. The black line in both figures represents the validation results. Finally, the trained
model was tested using the test set, and the confusion matrix was calculated. The results of
the confusion matrix are presented in Table 7.

Based on the data presented in Table 8, it is evident that using PA images without
excessive noise adjustment as a training database leads to an accuracy of over 80%. How-
ever, this approach also results in significant loss on the validation set. These findings
suggest potential flaws in the database, such as blurred features or excessive noise. The
second column demonstrates the results of training with Gaussian high-pass filtered raw
images. Correcting image size and enhancing features significantly reduces the loss, result-
ing in an accuracy of 87.21%. However, these results fall short of the project’s standards.
Additionally, the loss rebounds after reaching 0.4 during training, indicating the need for
further image preprocessing. The third column of Table 8 showcases the results of this
project, which involve enhancing image features through masking techniques to exclude
non-target regions. This enhancement dramatically improves the model’s performance in
image classification, achieving a validation set accuracy of 94.97% and reducing the loss to
below the threshold of 0.18. Furthermore, Figure 11 illustrates the training process using
different image preprocessing techniques. The three curves represent test accuracy on the
training set. All curves show an increasing trend in accuracy as the number of iterations
increases. The gray curve represents post-training using raw images. The orange curve
represents applying high-precision automatic segmentation to raw images, followed by
a Gaussian high-pass filter. The blue curve incorporates the previous process with an
automatic masking step. The trend of the line graph indicates the significant impact of
image preprocessing on the accuracy, further demonstrating that adding image filters and
masking processing can significantly improve the model’s accuracy, with an improvement
rate as high as 10.8%.

Classifying images into molars and non-molar teeth was the first trial in this research,
as illustrated in Figure 12, where the molar tooth on the left was the target, and the
single-rooted non-molar tooth on the right was used as a comparison. A CNN model was
developed for this classification task. The results demonstrated excellent classification
accuracy with an average of over 97.5%, as shown in Table 9.
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Table 6. The training process of GoogLeNet with every five epochs as the unit period.

Epoch Iteration Time Elapsed Mini-Batch
Accuracy

Validation
Accuracy

Mini-Batch
Loss

Validation
Loss

1 1 00:00:02 34.38% 55.28% 1.6001 0.9257

5 60 00:00:37 90.62% 77.89% 0.3410 0.4747

10 130 00:01:15 75.00% 81.91% 0.5390 0.3947

15 200 00:01:53 78.12% 88.44% 0.3817 0.3297

20 280 00:02:40 87.50% 90.45% 0.2633 0.2445

25 350 00:03:17 93.75% 88.94% 0.1366 0.2721

30 420 00:03:55 96.88% 89.95% 0.0668 0.2637

35 480 00:04:28 90.62% 92.46% 0.1284 0.2018

40 550 00:05:07 93.75% 91.96% 0.1689 0.2093

45 620 00:05:44 93.75% 94.47% 0.1187 0.1702
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Table 7. The confusion matrix of the GoogLeNet training result.

Actual Values

Normal Lesion

Predicted
Value

Normal 46.8% 4.3%

Lesion 2.1% 46.8%

Table 8. Compare the impact of various training sets on training results.

Original Images Gaussian High-Pass Filter Gaussian High-Pass Filter
+ Mask

Validation Accuracy 84.16% 87.21% 94.97%

Validation Loss 0.7634 0.4578 0.1822

Model GoogLeNet GoogLeNet GoogLeNet

Image

Bioengineering 2023, 10, x FOR PEER REVIEW 13 of 18 
 

Table 8. Compare the impact of various training sets on training results. 

 Original Images Gaussian High-Pass Filter 
Gaussian High-Pass 

Filter + Mask 

Validation Ac-

curacy 
84.16% 87.21% 94.97% 

Validation 

Loss 
0.7634 0.4578 0.1822 

Model GoogLeNet GoogLeNet GoogLeNet 

Image 

   

 

Figure 11. Accuracy comparison of GoogLeNet training process using only Gaussian high-pass filter 

and additional high-precision masking. 

Classifying images into molars and non-molar teeth was the first trial in this research, 

as illustrated in Figure 12, where the molar tooth on the left was the target, and the single-

rooted non-molar tooth on the right was used as a comparison. A CNN model was devel-

oped for this classification task. The results demonstrated excellent classification accuracy 

with an average of over 97.5%, as shown in Table 9.  

Bioengineering 2023, 10, x FOR PEER REVIEW 13 of 18 
 

Table 8. Compare the impact of various training sets on training results. 

 Original Images Gaussian High-Pass Filter 
Gaussian High-Pass 

Filter + Mask 

Validation Ac-

curacy 
84.16% 87.21% 94.97% 

Validation 

Loss 
0.7634 0.4578 0.1822 

Model GoogLeNet GoogLeNet GoogLeNet 

Image 

   

 

Figure 11. Accuracy comparison of GoogLeNet training process using only Gaussian high-pass filter 

and additional high-precision masking. 

Classifying images into molars and non-molar teeth was the first trial in this research, 

as illustrated in Figure 12, where the molar tooth on the left was the target, and the single-

rooted non-molar tooth on the right was used as a comparison. A CNN model was devel-

oped for this classification task. The results demonstrated excellent classification accuracy 

with an average of over 97.5%, as shown in Table 9.  

Bioengineering 2023, 10, x FOR PEER REVIEW 13 of 18 
 

Table 8. Compare the impact of various training sets on training results. 

 Original Images Gaussian High-Pass Filter 
Gaussian High-Pass 

Filter + Mask 

Validation Ac-

curacy 
84.16% 87.21% 94.97% 

Validation 

Loss 
0.7634 0.4578 0.1822 

Model GoogLeNet GoogLeNet GoogLeNet 

Image 

   

 

Figure 11. Accuracy comparison of GoogLeNet training process using only Gaussian high-pass filter 

and additional high-precision masking. 

Classifying images into molars and non-molar teeth was the first trial in this research, 

as illustrated in Figure 12, where the molar tooth on the left was the target, and the single-

rooted non-molar tooth on the right was used as a comparison. A CNN model was devel-

oped for this classification task. The results demonstrated excellent classification accuracy 

with an average of over 97.5%, as shown in Table 9.  

Bioengineering 2023, 10, x FOR PEER REVIEW 13 of 18 
 

Table 8. Compare the impact of various training sets on training results. 

 Original Images Gaussian High-Pass Filter 
Gaussian High-Pass 

Filter + Mask 

Validation Ac-

curacy 
84.16% 87.21% 94.97% 

Validation 

Loss 
0.7634 0.4578 0.1822 

Model GoogLeNet GoogLeNet GoogLeNet 

Image 

   

 

Figure 11. Accuracy comparison of GoogLeNet training process using only Gaussian high-pass filter 

and additional high-precision masking. 

Classifying images into molars and non-molar teeth was the first trial in this research, 

as illustrated in Figure 12, where the molar tooth on the left was the target, and the single-

rooted non-molar tooth on the right was used as a comparison. A CNN model was devel-

oped for this classification task. The results demonstrated excellent classification accuracy 

with an average of over 97.5%, as shown in Table 9.  

Figure 11. Accuracy comparison of GoogLeNet training process using only Gaussian high-pass filter
and additional high-precision masking.



Bioengineering 2023, 10, 802 14 of 18Bioengineering 2023, 10, x FOR PEER REVIEW 14 of 18 
 

 

Figure 12. Validation example after image cropping in this study. 

Table 9. The clinical data compare to the result. 

Tooth Position in Figure 12 Recognition Accuracy 

Clinical Analysis Molar Single Tooth 

Vgg19 98.01% 97.53% 

Inception v3 97.76% 98.01% 

Google Net 98.51% 98.42% 

AlexNet 98.51% 98.26% 

To enhance the recognition accuracy of the model on PA images for FI, the training 

samples were filtered to focus on the variables that could affect recognition accuracy. This 

approach made CNN more sensitive to the disease, more focused on the target, and re-

sulted in a higher learning effect. In this study, image screening was performed on the 

training samples to improve the recognition accuracy. The results in Table 10 indicate that 

the CNN classification had an impact of 3–4% on the training outcomes. Moreover, in 

order to assess the model’s performance, a set of evaluation metrics was employed, in-

cluding recall, precision, and F1 score. These metrics provide a comprehensive analysis of 

the model’s ability to accurately classify various cases and identify relevant features. Fur-

thermore, alongside evaluating the model’s performance, it is crucial to analyze the com-

putational aspects of the proposed method. This analysis incorporates metrics such as 

computation time and actual operating time. These metrics facilitate a comparison of the 

efficiency and scalability of the proposed methods and aid in understanding the practical 

feasibility and potential computational requirements of the approach. The findings are 

presented in Table 11. 

Table 10. Result of the FI identification accuracy of different models. 

Training Process 
Directly Identify the Dis-

ease 

Identify the Disease after 

Classification 

Vgg19 89.21% 92.96% 

Inception v3 91.58% 94.23% 

Google Net 92.18% 95.48% 

AlexNet 91.58% 94.97% 

Table 11. Model Efficacy Comparison For FI. 

 GoogLeNet Vgg19 AlexNet Inceptionv3 

Accuracy 94.97% 92.96% 94.92% 94.21% 

Recall 95.6% 73.9% 86.9% 86.9% 

Precision 91.6% 68% 80.0% 83.3% 

Figure 12. Validation example after image cropping in this study.

Table 9. The clinical data compare to the result.

Tooth Position in Figure 12 Recognition Accuracy

Clinical Analysis Molar Single Tooth

Vgg19 98.01% 97.53%

Inception v3 97.76% 98.01%

Google Net 98.51% 98.42%

AlexNet 98.51% 98.26%

To enhance the recognition accuracy of the model on PA images for FI, the training
samples were filtered to focus on the variables that could affect recognition accuracy. This
approach made CNN more sensitive to the disease, more focused on the target, and resulted
in a higher learning effect. In this study, image screening was performed on the training
samples to improve the recognition accuracy. The results in Table 10 indicate that the
CNN classification had an impact of 3–4% on the training outcomes. Moreover, in order to
assess the model’s performance, a set of evaluation metrics was employed, including recall,
precision, and F1 score. These metrics provide a comprehensive analysis of the model’s
ability to accurately classify various cases and identify relevant features. Furthermore,
alongside evaluating the model’s performance, it is crucial to analyze the computational
aspects of the proposed method. This analysis incorporates metrics such as computation
time and actual operating time. These metrics facilitate a comparison of the efficiency
and scalability of the proposed methods and aid in understanding the practical feasibility
and potential computational requirements of the approach. The findings are presented in
Table 11.

Table 10. Result of the FI identification accuracy of different models.

Training Process Directly Identify the Disease Identify the Disease
after Classification

Vgg19 89.21% 92.96%

Inception v3 91.58% 94.23%

Google Net 92.18% 95.48%

AlexNet 91.58% 94.97%
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Table 11. Model Efficacy Comparison For FI.

GoogLeNet Vgg19 AlexNet Inceptionv3

Accuracy 94.97% 92.96% 94.92% 94.21%

Recall 95.6% 73.9% 86.9% 86.9%

Precision 91.6% 68% 80.0% 83.3%

F1 93.5% 70.8% 83.3% 85.0%

Elapsed time 25 min 30 s 87 min 47 s 29 min 34 s 76 min 50 s

Runtime 2.5981 s 6.4115 s 2.7535 s 4.2417 s

Table 12 indicates that the automated FI detection results in this research exhibit a
significant contrast to the disease identification accuracy obtained using CT images at the
apical region in the literature [34]. The symptom judgment accuracy using Vgg19 was
nearly 93%, while the judgment accuracy of GoogLeNet and AlexNet was nearly 95% in
this research.

Table 12. Comparison results of CNN models in this study and past studies.

Method
in [34]

This Research

GoogLeNet AlexNet Vgg19 Inceptionv3

Accuracy 89% 94.97% 94.92% 92.96% 94.21%

4. Discussion

A preprocessing step for dental images was found to be crucial in the research pro-
cess. Proper preprocessing is essential for training a CNN, as raw PA images may not
provide accurate information without it. However, establishing a standard processing
method applicable to all images is challenging due to interference and external factors
unique to each image. A lack of preprocessing can make subsequent segmentation difficult
and result in lower accuracy due to potential noise in the PA images. In this study, the
accuracy of the trained model was significantly improved by segmenting multiple teeth
in PA images into individual tooth images before training. The adaptive threshold pre-
processing method designed in this study accurately defined the cutting points during
image segmentation, leading to improved segmentation accuracy. Preprocessing techniques
like Gaussian high-pass filtering also reduced the inclusion of non-target regions. These
improvements in segmentation accuracy enhanced symptom enhancement and overall
model accuracy, highlighting the importance of preprocessing in this study. Furthermore,
an automated process was developed to assist dentists in identifying bifurcations in PA
images without causing visual or mental fatigue. During the CNN training phase, several
mainstream image recognition models were tested, all achieving judgment accuracies above
90%. Following preprocessing and initial CNN recognition, the model effectively located
teeth with potential diseases, with accuracy comparable to visual judgment. Specifically,
GoogLeNet and AlexNet achieved judgment accuracies close to 95%. In comparison to the
method proposed in [34], this study improved judgment accuracy by nearly 5%. These
results demonstrate the efficacy of the proposed technique in detecting FI disease and show-
case the success of training a CNN using conventional PA images, surpassing recognition
capabilities based on CT images.

The results indicate that the proposed model exhibits mature and successful problem-
solving capabilities, producing results highly similar to human judgment. However, there
is room for improvement in the model’s ability to further classify FI disease locations
and enhance existing image enhancement techniques. In the future, this research aims to
improve the automated process flow by integrating it within a chip, augmenting databases
and developing a GUI interface. This will allow the automated process flow to be suc-
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cessfully integrated into clinical operations for dentists and result in a reduction in their
workload and a shortening of patients’ treatment time.

5. Conclusions

In general, this research study highlights the importance of preprocessing in improv-
ing the accuracy of a CNN model for detecting furcation involvements (FI) in dental
images. The findings demonstrate that without proper preprocessing, raw PA images
do not provide accurate information for training the model. The study proposes various
preprocessing techniques, such as adaptive thresholding and Gaussian high-pass filtering,
which significantly enhances the segmentation accuracy and the overall performance of the
model. Additionally, an automated process was developed to assist dentists in identifying
FI in PA images, offering a reliable and efficient alternative to visual judgment. The trained
CNN model, particularly utilizing GoogLeNet and AlexNet architectures, achieved high
accuracy in locating teeth with potential diseases, surpassing the performance of previous
methods. Overall, this study provides valuable insights into the significance of preprocess-
ing and the potential of CNN models in dental image analysis. The results contribute to
the development of a high-accuracy medical assistance system, reducing the workload for
dentists and improving the quality of dental care. Further research can build upon these
findings to refine the model and explore additional enhancements for accurate FI detection
and classification.
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