Correlations between Ratings and Technical Measurements in Hand-Intensive Work
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Participants
2.2. Experimental Protocol
2.3. Composite Questionnaire and Clinical Examination
2.4. Technical Measurements
2.4.1. Movement Velocity and Muscular Activity
2.4.2. IMU and EMG Sensor Location, Preparation, and Attachment
2.4.3. EMG Normalization
2.4.4. Data Processing and Analyses
2.5. Video Recording of the Work Task
2.6. Workers’ Ratings of Hand Activity and Force
2.7. Observers’ Ratings of Hand Activity and Force
2.8. Statistical Analysis
3. Results
3.1. Description of the Workers
3.2. Self- and Observer-Ratings
3.3. Wrist Velocity and Muscular Activity
3.4. Hand Activity and Wrist Angular Velocity
3.5. Hand Force and Muscular Activity
3.6. Missing Values
4. Discussion
4.1. Hand Activity and Technical Measures
4.2. Hand Force and EMG
4.3. Comparing Ratings and Technical Measures
4.4. Strengths
4.5. Limitations
4.6. Practical Applications and Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Employment by Major Occupational Group: U.S. Bureau of Labor Statistics. Available online: https://www.bls.gov/emp/tables/emp-by-major-occupational-group.htm#top (accessed on 15 March 2023).
- Employed Population by Sector and Occupation. Available online: https://www.cedefop.europa.eu/en/tools/skills-intelligence/employed-population-sector-and-occupation (accessed on 15 March 2023).
- Nordander, C.; Ohlsson, K.; Balogh, I.; Hansson, G.-Å.; Axmon, A.; Persson, R.; Skerfving, S. Gender Differences in Workers with Identical Repetitive Industrial Tasks: Exposure and Musculoskeletal Disorders. Int. Arch. Occup. Environ. Health 2008, 81, 939–947. [Google Scholar] [CrossRef]
- Nordander, C.; Ohlsson, K.; Åkesson, I.; Arvidsson, I.; Balogh, I.; Hansson, G.-Å.; Strömberg, U.; Rittner, R.; Skerfving, S. Risk of Musculoskeletal Disorders among Females and Males in Repetitive/Constrained Work. Ergonomics 2009, 52, 1226–1239. [Google Scholar] [CrossRef] [PubMed]
- Keir, P.J.; Farias Zuniga, A.; Mulla, D.M.; Somasundram, K.G. Relationships and Mechanisms Between Occupational Risk Factors and Distal Upper Extremity Disorders. Hum. Factors 2021, 63, 5–31. [Google Scholar] [CrossRef] [PubMed]
- Frost, P.; Andersen, J.H.; Nielsen, V.K. Occurrence of Carpal Tunnel Syndrome among Slaughterhouse Workers. Scand. J. Work Environ. Health 1998, 24, 285–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rijn, R.M.; Huisstede, B.M.A.; Koes, B.W.; Burdorf, A. Associations between Work-Related Factors and the Carpal Tunnel Syndrome—A Systematic Review. Scand. J. Work Environ. Health 2009, 35, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Balogh, I.; Arvidsson, I.; Bjork, J.; Hansson, G.-A.; Ohlsson, K.; Skerfving, S.; Nordander, C. Work-Related Neck and Upper Limb Disorders—Quantitative Exposure-Response Relationships Adjusted for Personal Characteristics and Psychosocial Conditions. BMC Musculoskelet. Disord. 2019, 20, 139. [Google Scholar] [CrossRef] [Green Version]
- Giersiepen, K.; Spallek, M. Carpal Tunnel Syndrome as an Occupational Disease. Dtsch. Ärzteblatt Int. 2011, 108, 238–242. [Google Scholar] [CrossRef]
- Aavang Petersen, J.; Brauer, C.; Thygesen, L.C.; Flachs, E.M.; Lund, C.B.; Thomsen, J.F. Repetitive and Forceful Movements of the Hand as Predictors of Treatment for Pain in the Distal Upper Extremities. Occup. Environ. Med. 2022, 79, 55–62. [Google Scholar] [CrossRef]
- Barcenilla, A.; March, L.M.; Chen, J.S.; Sambrook, P.N. Carpal Tunnel Syndrome and Its Relationship to Occupation: A Meta-Analysis. Rheumatology 2012, 51, 250–261. [Google Scholar] [CrossRef] [Green Version]
- You, D.; Smith, A.H.; Rempel, D. Meta-Analysis: Association between Wrist Posture and Carpal Tunnel Syndrome among Workers. Saf. Health Work 2014, 5, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Hagberg, M.; Morgenstern, H.; Kelsh, M. Impact of Occupations and Job Tasks on the Prevalence of Carpal Tunnel Syndrome. Scand. J. Work Environ. Health 1992, 18, 337–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, K.T.; Harris, E.C.; Coggon, D. Carpal Tunnel Syndrome and Its Relation to Occupation: A Systematic Literature Review. Occup. Med. 2007, 57, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathiassen, S.E.; Sandén, H.; Sverke, M.; Wahlström, J. Arbetsmiljöns Betydelse för Besvär och Sjukdom i Nacke, Axlar, Armar och Händer. Available online: https://www.sbu.se/sv/publikationer/SBU-utvarderar/arbetsmiljons-betydelse-for-besvar-och-sjukdom-i-nacke-axlar-armar-och-hander/ (accessed on 19 March 2023).
- Linde, F.; Rydberg, M.; Zimmerman, M. Surgically Treated Carpal Tunnel Syndrome and Ulnar Nerve Entrapment at the Elbow in Different Occupations and Their Effect on Surgical Outcome. J. Occup. Environ. Med. 2022, 64, e369–e373. [Google Scholar] [CrossRef]
- van der Beek, A.J.; Frings-Dresen, M.H. Assessment of Mechanical Exposure in Ergonomic Epidemiology. Occup. Environ. Med. 1998, 55, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Eppes, Susan. Washington State Ergonomics Tool: Predictive Validity in the Waste Industry. Available online: https://core.ac.uk/download/pdf/4268433.pdf (accessed on 14 June 2023).
- Koppelaar, E.; Wells, R. Comparison of Measurement Methods for Quantifying Hand Force. Ergonomics 2005, 48, 983–1007. [Google Scholar] [CrossRef] [PubMed]
- Takala, E.-P.; Pehkonen, I.; Forsman, M.; Hansson, G.-Å.; Mathiassen, S.E.; Neumann, W.P.; Sjøgaard, G.; Veiersted, K.B.; Westgaard, R.H.; Winkel, J. Systematic Evaluation of Observational Methods Assessing Biomechanical Exposures at Work. Scand. J. Work Environ. Health 2010, 36, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Latko, W.A.; Armstrong, T.J.; Foulke, J.A.; Herrin, G.D.; Rabourn, R.A.; Ulin, S.S. Development and Evaluation of an Observational Method for Assessing Repetition in Hand Tasks. Am. Ind. Hyg. Assoc. J. 1997, 58, 278–285. [Google Scholar] [CrossRef]
- ACGIH, The American Conference of Governmental Industrial Hygienists. Available online: https://www.acgih.org/ (accessed on 11 October 2022).
- Yung, M.; Dale, A.M.; Kapellusch, J.; Bao, S.; Harris-Adamson, C.; Meyers, A.R.; Hegmann, K.T.; Rempel, D.; Evanoff, B.A. Modeling the Effect of the 2018 Revised ACGIH® Hand Activity Threshold Limit Value® (TLV) at Reducing Risk for Carpal Tunnel Syndrome. J. Occup. Environ. Hyg. 2019, 16, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Borg, G.A. Psychophysical Bases of Perceived Exertion. Med. Sci. Sport. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- David, G.; Woods, V.; Li, G.; Buckle, P. The Development of the Quick Exposure Check (QEC) for Assessing Exposure to Risk Factors for Work-Related Musculoskeletal Disorders. Appl. Ergon. 2008, 39, 57–69. [Google Scholar] [CrossRef]
- Gallagher, S.; Schall, M.C.; Sesek, R.F.; Huangfu, R. An Upper Extremity Risk Assessment Tool Based on Material Fatigue Failure Theory: The Distal Upper Extremity Tool (DUET). Hum. Factors 2018, 60, 1146–1162. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Moore, J.S.; Kapellusch, J.M. The Revised Strain Index: An Improved Upper Extremity Exposure Assessment Model. Ergonomics 2017, 60, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Burdorf, A.; van Der Beek, A. Exposure Assessment Strategies for Work-Related Risk Factors for Musculoskeletal Disorders. Scand. J. Work Environ. Health 1999, 25, 25–30. [Google Scholar]
- David, G.C. Ergonomic Methods for Assessing Exposure to Risk Factors for Work-Related Musculoskeletal Disorders. Occup. Med. 2005, 55, 190–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, G.-Å.; Balogh, I.; Ohlsson, K.; Granqvist, L.; Nordander, C.; Arvidsson, I.; Åkesson, I.; Unge, J.; Rittner, R.; Strömberg, U.; et al. Physical Workload in Various Types of Work: Part I. Wrist and Forearm. Int. J. Ind. Ergon. 2009, 39, 221–233. [Google Scholar] [CrossRef]
- Lämkull, D.; Örtengren, R.; Malmsköld, L. DHM in Automotive Manufacturing Applications. In Handbook of Digital Human Modeling: Research for Applied Ergonomics and Human Factors Engineering; Duffy, V.G., Ed.; Taylor & Francis, CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-0-8058-5646-0. [Google Scholar]
- Fan, X.; Rhen, I.-M.; Kjellman, M.; Forsman, M. Ergonomic Evaluation of a Prototype Console for Robotic Surgeries via Simulations with Digital Human Manikins. In Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018). IEA 2018, Florence, Italy, 26–30 August 2018; Advances in Intelligent Systems and Computing. Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y., Eds.; Springer: Cham, Switzerland, 2018; Volume 822, pp. 351–363. [Google Scholar] [CrossRef]
- Dahlgren, G.; Liv, P.; Öhberg, F.; Slunga Järvholm, L.; Forsman, M.; Rehn, B. Ratings of Hand Activity and Force Levels among Women and Men Who Perform Identical Hand-Intensive Work Tasks. Int. J. Environ. Res. Public Health 2022, 19, 16706. [Google Scholar] [CrossRef]
- Ilmarinen, J. The Work Ability Index (WAI). Occup. Med. 2007, 57, 160. [Google Scholar] [CrossRef] [Green Version]
- Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A Study of Concurrent and Construct Validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef]
- Jonker, D.; Gustafsson, E.; Rolander, B.; Arvidsson, I.; Nordander, C. Health Surveillance under Adverse Ergonomics Conditions—Validity of a Screening Method Adapted for the Occupational Health Service. Ergonomics 2015, 58, 1519–1528. [Google Scholar] [CrossRef]
- Hubaut, R.; Guichard, R.; Greenfield, J.; Blandeau, M. Validation of an Embedded Motion-Capture and EMG Setup for the Analysis of Musculoskeletal Disorder Risks during Manhole Cover Handling. Sensors 2022, 22, 436. [Google Scholar] [CrossRef]
- Manivasagam, K.; Yang, L. Evaluation of a New Simplified Inertial Sensor Method against Electrogoniometer for Measuring Wrist Motion in Occupational Studies. Sensors 2022, 22, 1690. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Silverstein, B.A.; Fine, L.J.; Armstrong, T.J. Hand Wrist Cumulative Trauma Disorders in Industry. Br. J. Ind. Med. 1986, 43, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Perotto, A.O. Anatomical Guide for the Electromyographer; the Limbs and Trunk, 5th ed.; Ringgold, Inc.: Portland, OR, USA, 2011; Volume 26, ISBN 0887-3763. [Google Scholar]
- Nordander, C. Precision of Measurements of Physical Workload during Standardised Manual Handling. Part I: Surface Electromyography of m. Trapezius, m. Infraspinatus and the Forearm Extensors. J. Electromyogr. Kinesiol. 2004, 14, 443–454. [Google Scholar] [CrossRef]
- Dahlqvist, C.; Enquist, H.; Löfqvist, L.; Nordander, C. The Effect of Two Types of Maximal Voluntary Contraction and Two Electrode Positions in Field Recordings of Forearm Extensor Muscle Activity during Hotel Room Cleaning. Int. J. Occup. Saf. Ergon. 2020, 26, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Trigno Wireless Biofeedback System User’s Guide. Natick, MA, USA, 2021. Available online: https://www.delsys.com/downloads/USERSGUIDE/trigno/wireless-biofeedback-system.pdf (accessed on 14 June 2023).
- Besomi, M.; Hodges, P.W.; Clancy, E.A.; Van Dieën, J.; Hug, F.; Lowery, M.; Merletti, R.; Søgaard, K.; Wrigley, T.; Besier, T.; et al. Consensus for Experimental Design in Electromyography (CEDE) Project: Amplitude Normalization Matrix. J. Electromyogr. Kinesiol. 2020, 53, 102438. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, I.; Dahlqvist, C.; Enquist, H.; Nordander, C. Action Levels for the Prevention of Work-Related Musculoskeletal Disorders in the Neck and Upper Extremities: A Proposal. Ann. Work Expo. Health 2021, 65, 741–747. [Google Scholar] [CrossRef]
- Buchholz, B.; Park, J.-S.; Gold, J.E.; Punnett, L. Subjective Ratings of Upper Extremity Exposures: Inter-Method Agreement with Direct Measurement of Exposures. Ergonomics 2008, 51, 1064–1077. [Google Scholar] [CrossRef]
- Applied Statistics for the Behavioral Sciences (2003 Edition)|Open Library. Available online: https://openlibrary.org/books/OL20715584M/Applied_statistics_for_the_behavioral_sciences (accessed on 18 April 2023).
- Hansson, G.A.; Balogh, I.; Byström, J.U.; Ohlsson, K.; Nordander, C.; Asterland, P.; Sjölander, S.; Rylander, L.; Winkel, J.; Skerfving, S.; et al. Questionnaire versus Direct Technical Measurements in Assessing Postures and Movements of the Head, Upper Back, Arms and Hands. Scand. J. Work Environ. Health 2001, 27, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Spielholz, P.; Silverstein, B.; Morgan, M.; Checkoway, H.; Kaufman, J. Comparison of Self-Report, Video Observation and Direct Measurement Methods for Upper Extremity Musculoskeletal Disorder Physical Risk Factors. Ergonomics 2001, 44, 588–613. [Google Scholar] [CrossRef]
- Sklar, A.Y.; Goldstein, A.; Hassin, R.R. Regression to the Mean Does Not Explain Away Nonconscious Processing. Exp. Psychol. 2021, 68, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Mahadi, M.; Nazmi, N.; Bani, N.A.; Rahman, S.A.S.A.; Noor, N.M.; Zainuddin, S.Z.A.J. Electromyography (EMG) and Hand Gripping Force During Standing and Sitting; IOP Publishing: Bristol, UK, 2021; Volume 1096, pp. 1–10. [Google Scholar] [CrossRef]
- Finneran, A.; O’Sullivan, L. Effects of Grip Type and Wrist Posture on Forearm EMG Activity, Endurance Time and Movement Accuracy. Int. J. Ind. Ergon. 2013, 43, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Korol, G.; Karniel, A.; Melzer, I.; Ronen, A.; Edan, Y.; Stern, H.; Riemer, R. Relation between Perceived Effort and the Electromyographic Signal in Localized Low-Effort Activities. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2014, 58, 1077–1081. [Google Scholar] [CrossRef]
- Dahlqvist, C.; Nordander, C.; Granqvist, L.; Forsman, M.; Hansson, G.-Å. Comparing Two Methods to Record Maximal Voluntary Contractions and Different Electrode Positions in Recordings of Forearm Extensor Muscle Activity: Refining Risk Assessments for Work-Related Wrist Disorders. Work 2018, 59, 231–242. [Google Scholar] [CrossRef]
- de Kok, J.; Vroonhof, P.; Snijders, J.; Roullis, G.; Clarke (Panteia), M.; Peereboom, K.; van Dorst, P.; Isusi, I. Work-Related Musculoskeletal Disorders: Prevalence, Costs and Demographics in the EU; European Risk Observatory Report; European Agency for Safety and Health at Work: Bilbao, Spain, 2019. [Google Scholar] [CrossRef]
- ISO 31000:2018 Risk Management—Guidelines. Available online: https://www.iso.org/standard/65694.html (accessed on 7 July 2023).
- ISO 45001:2018—Occupational Health and Safety Management Systems—A Practical Guide for Small Organizations. Available online: https://www.iso.org/publication/PUB100451.html (accessed on 7 July 2023).
- Michie, S.; van Stralen, M.M.; West, R. The Behaviour Change Wheel: A New Method for Characterising and Designing Behaviour Change Interventions. Implement. Sci. 2011, 6, 42. [Google Scholar] [CrossRef] [Green Version]
Grouped Work Tasks | Workers per Task (n = 59) |
---|---|
1. Mixed mail sorting | |
Manual sorting of mail | 9 |
Manual sorting of direct mail | 4 |
Manual sorting of catalogues | 4 |
2. Warehouse work | |
Ranking of goods | 5 |
Picking, base products, heavier load | 4 |
Picking, fruit, vegetables, lighter load | 3 |
3. Pharmaceutical and food production | |
Manual decontamination of bags | 4 |
Fluid inspections of bottles | 2 |
Steamplicity, manual packaging of food portions | 4 |
4. Laboratory and pharmaceutical work | |
Cassette filling | 4 |
Inspection, labelling, packaging of ampoules | 2 |
Water filtration | 2 |
Manual pipetting | 2 |
5. Industrial assembly work | |
Hose coupling | 2 |
Hose winding | 2 |
Wheeling | 2 |
6. Industrial light work | |
Paternoster picking | 2 |
Small parts picking, scanning | 2 |
Workers | |
---|---|
Demography, anthropometrics, and lifestyle | n = 59 |
Dominant hand | Right n = 55 (93.2%) |
Left n = 4 (6.8%) | |
Body weight, kg | 82.9 (19.2) 1 |
Body height, cm | 176.2 (10.6) 1 |
BMI | 25.5 [23.1, 29.1] 2 |
Diagnoses from the neck and shoulder [29,30] | n = 13 (22.3%) |
Tension neck syndrome n = 2, cervicalgia n = 1, thoracic outletsyndrome n = 1, acromioclavicular syndrome n = 4, biceps tendinitis n = 4 and supraspinatus tendinitis n = 1 | |
Diagnoses from the hand and arm [29,30] | n = 7 (11.9%) |
De Quervain n = 2, overused hand syndrome n = 1, pronator teres syndrome n = 1, carpal tunnel syndrome n = 2 and ulnar nerve entrapment elbow n = 1 | |
Work exposure | |
How many years of working experience do you have with hand-intensive tasks? | 6.8 [2.0, 15.5] 2 |
How many hours per day do you work during a normal day with hand-intensive tasks, repeated movements and exertions? | 5.4 (1.9) 1 |
How many hours per day do you work during an intensive day with hand-intensive tasks, repeated movements, and exertions? | 7.0 [6.0, 8.0] 2 |
Variables | Min | Max | Mean (SD) | Ratings 0–3, n | Ratings 4–6, n | Ratings 7–10, n |
---|---|---|---|---|---|---|
Hand activity self-rated | 1 | 8 | 5.9 (1.5) | 4 | 37 | 18 |
Force self-rated | 0.5 | 6 | 3.2 (1.3) | 39 | 20 | 0 |
Hand activity observer-rated | 1 | 8 | 5.0 (1.9) | 15 | 25 | 16 |
Force observer-rated | 0.5 | 9 | 3.5 (2.3) | 29 | 22 | 5 |
Variables | Median [Interquartile Range] 1, Mean (SD) 2 |
---|---|
Wrist angular velocity | °/s |
10th percentile | 2.8 [2.0, 3.5] 1 |
50th percentile | 20.3 [14.8, 29.9] 1 |
90th percentile | 81.3 [67.3, 108.5] 1 |
Muscular activity, RMS | % time spent |
Median %MVE FCR | 3.1 [1.8, 5.4] 1 |
Time >10%MVE FCR | 11.96 [4.5, 26.0] 1 |
Time >30%MVE FCR | 0.8 [0.1, 4.0] 1 |
Recovery, proportion of time <5%MVE FCR | 64.1 (22.6) 2 |
Median %MVE ECR | 9.9 [6.5, 14.7] 1 |
Time >10%MVE ECR | 47.6 [31.1, 67.1] 1 |
Time >30%MVE ECR | 6.2 [2.2, 15.7] 1 |
Recovery, proportion of time <5%MVE ECR | 29.4% (19.4) 2 |
10th | 50th | 90th | |
Self-rated hand activity | 0.26 | 0.31 | 0.23 |
p-value | 0.005 | 0.002 | 0.024 |
Observer-rated hand activity | 0.32 | 0.41 | 0.34 |
p-value | <0.001 | <0.001 | <0.001 |
FCR | ECR | |||||||
---|---|---|---|---|---|---|---|---|
50th | >10%MVE | >30%MVE | <5%MVE | 50th | >10%MVE | >30%MVE | <5%MVE | |
Self-rated hand force | 0.00 | 0.05 | 0.09 | 0.005 | –0.10 | –0.08 | 0.02 | 0.01 |
p-value | 0.975 | 0.650 | 0.388 | 0.963 | 0.320 | 0.419 | 0.854 | 0.963 |
Observer-rated hand force | 0.29 | 0.43 | 0.44 | –0.47 | 0.11 | 0.11 | 0.26 | –0.09 |
p-value | 0.004 | <0.001 | <0.001 | <0.001 | 0.264 | 0.267 | 0.010 | <0.537 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlgren, G.; Liv, P.; Öhberg, F.; Slunga Järvholm, L.; Forsman, M.; Rehn, B. Correlations between Ratings and Technical Measurements in Hand-Intensive Work. Bioengineering 2023, 10, 867. https://doi.org/10.3390/bioengineering10070867
Dahlgren G, Liv P, Öhberg F, Slunga Järvholm L, Forsman M, Rehn B. Correlations between Ratings and Technical Measurements in Hand-Intensive Work. Bioengineering. 2023; 10(7):867. https://doi.org/10.3390/bioengineering10070867
Chicago/Turabian StyleDahlgren, Gunilla, Per Liv, Fredrik Öhberg, Lisbeth Slunga Järvholm, Mikael Forsman, and Börje Rehn. 2023. "Correlations between Ratings and Technical Measurements in Hand-Intensive Work" Bioengineering 10, no. 7: 867. https://doi.org/10.3390/bioengineering10070867
APA StyleDahlgren, G., Liv, P., Öhberg, F., Slunga Järvholm, L., Forsman, M., & Rehn, B. (2023). Correlations between Ratings and Technical Measurements in Hand-Intensive Work. Bioengineering, 10(7), 867. https://doi.org/10.3390/bioengineering10070867