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Abstract: A global survey has revealed that genetic syndromes affect approximately 8% of the popu-
lation, but most genetic diagnoses are typically made after birth. Facial deformities are commonly
associated with chromosomal disorders. Prenatal diagnosis through ultrasound imaging is vital
for identifying abnormal fetal facial features. However, this approach faces challenges such as in-
consistent diagnostic criteria and limited coverage. To address this gap, we have developed FGDS,
a three-stage model that utilizes fetal ultrasound images to detect genetic disorders. Our model
was trained on a dataset of 2554 images. Specifically, FGDS employs object detection technology to
extract key regions and integrates disease information from each region through ensemble learning.
Experimental results demonstrate that FGDS accurately recognizes the anatomical structure of the
fetal face, achieving an average precision of 0.988 across all classes. In the internal test set, FGDS
achieves a sensitivity of 0.753 and a specificity of 0.889. Moreover, in the external test set, FGDS
outperforms mainstream deep learning models with a sensitivity of 0.768 and a specificity of 0.837.
This study highlights the potential of our proposed three-stage ensemble learning model for screening
fetal genetic disorders. It showcases the model’s ability to enhance detection rates in clinical practice
and alleviate the burden on medical professionals.

Keywords: fetal genetic disorder; ensemble learning; YOLOv5; CNN; region of interest

1. Introduction

Birth defects are the leading cause of disability and death among neonates and new-
borns, and they are also known as the “silent killers” of various human diseases [1]. The
etiology of birth defects is complex and encompasses a wide range of factors, which are
primarily divided into genetic and environmental causes. Genetic factors directly or in-
directly account for over 80% of the etiology of birth defects [2]. Chromosomal disorders
represent the most common category of genetic disorders and are a focal point in the
prevention of birth defect-related diseases. To date, more than 20,000 types of human
chromosomal abnormalities and structural variations have been identified, along with over
200 chromosomal syndromes [3]. The incidence of these disorders in newborns reaches as
high as 8 in 100 [4]. Chromosomal disorders are classified as severe birth defects, leading
to either death or significant disability, and currently, effective treatment methods are still
lacking [5].
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Chromosomal disorders result from abnormal genetic factors and commonly involve
facial deformities in affected individuals [6]. Children with the same syndrome often
exhibit similarities and specific facial features, such as Down syndrome (T21), Trisomy
18 syndrome (T18), Trisomy 13 syndrome (T13), and Cornelia de Lange syndrome (CdLS).
Prenatal diagnosis plays a crucial role in preventing the birth of severely disabled children.
Current ultrasound diagnostic techniques are indispensable for prenatal diagnosis, enabling
the identification of abnormal fetal structural development and genetic information [7–11].
However, prenatal diagnosis based on ultrasound imaging faces challenges such as incon-
sistent diagnostic criteria, a shortage of medical personnel, a lack of dynamic monitoring
methods, and limited coverage [12,13]. Consequently, genetic disorders have become one
of the significant factors affecting the quality of the global population at birth. For the
well-being of society, the establishment of automated diagnostic and monitoring systems
for genetic disorders has become a crucial issue that the academic community must address,
as it represents a pressing need for society as a whole.

The rapid advancement of deep learning technology has led to the widespread ex-
ploration and development of automatic facial recognition systems. Recent studies have
demonstrated the potential of facial analysis technology to enhance clinicians’ diagnostic
capabilities for genetic syndromes. Gurovich et al. created a genetic disease recognition
system based on children’s facial photos [14]. Consequently, it has garnered significant
attention in the field of clinical genetics. Based on this study, Porras et al. conducted a
comprehensive analysis of facial features in children and utilized the aggregation of facial
regions to identify the probability of developing genetic disorders [15]. This investigation
revealed the significant relevance of specific facial areas, such as the nose, mouth, and
forehead, in the screening of genetic disorders. As of the present, there is limited research
on analyzing fetal facial images and developing artificial intelligence models. Yasunari et al.
developed an artificial intelligence classifier to recognize fetal facial expressions related to
fetal brain development, including blinking, mouth opening, blank expression, frowning,
smiling, sticking out the tongue, and yawning [16]. This study revealed the feasibility of
utilizing ultrasound imaging for the identification of fetal facial images.

We propose FGDS, an innovative three-stage ensemble learning model specifically
designed for the accurate detection of genetic disorders in the prenatal stage. The FGDS
model employs a comprehensive approach, beginning with the extraction of multiple
regions of interest (ROI) from ultrasound images. Subsequently, convolutional neural
networks (CNNs) are utilized to establish the intricate connection between these ROIs
and genetic disorders. Finally, a decision layer fusion method based on XGBoost 1.4.2 is
employed to effectively integrate the correlation between each ROI, thus achieving reliable
and comprehensive screening of genetic disorders. We believe that FGDS leverages multiple
fetal facial regions and can enhance model performance and ensure robustness. It could
help with prenatal ultrasound diagnosis, reduce false-negative results, and compensate for
the lack of medical resources.

2. Materials and Methods

The present study received ethical approval from the Institutional Review Board of the
Guangzhou Women and Children’s Medical Center (Approval No. 473B01, 2021). Written
informed consent was obtained from all participants prior to their involvement in the study.
All ultrasound examinations were conducted by a team of specialists with over five years
of experience before the commencement of the research. We excluded cases from the initial
list if they lacked genetic results, ultrasound images, or complete clinical data. Only one
ultrasound image is included for each examination. All cases have genetic test results,
which are used as the gold standard for diagnosis [17]. The genetic disorders included in
the study contained four main categories: T21, T18, T13, and other rare genetic disorders.
Other genetic disorders without facial abnormalities were not included in this study.
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2.1. Dataset Collection and Dataset Characteristics

In this study, a total of 2554 pregnant women aged between 23 and 38 years, who
underwent prenatal diagnosis at our center, were included. Ultrasound fetal profile images
were collected from these participants. The dataset consisted of 1493 images from normal
pregnancies and 1061 images representing cases with genetic disorders. The gestational age
of the included cases ranged from 11 to 27 weeks. Table 1 provides detailed information
regarding the composition of the training dataset and testing set.

Table 1. Dataset characteristics.

Retrospective Dataset Prospective Dataset
Training Dataset Internal Test Set External Test Set

All images 1780 410 364
Images of negative results 1094 233 166
Images of positive results 686 177 198

Ultrasound equipment GE Volution E10 GE Voluson E6/E8/E10,
Philips iE33

Ultrasonographer Four ultrasonographers More than 10 ultrasonographers

Table 1 presents an overview of the dataset employed in our research study. The
dataset is divided into two parts: the retrospective dataset and the prospective dataset.
Additionally, it provides information on the training dataset, retrospective test set, and
prospective test set. The retrospective dataset consists of a total of 1780 images, while the
prospective dataset contains 410 images. Within the retrospective dataset, 1094 images
represent negative results, indicating the absence of the target condition, while 686 images
depict positive results, representing the presence of the target condition. In the prospective
dataset, there are 233 images of negative results and 177 images of positive results. The
ultrasound equipment used in the study varied between the datasets. The retrospective
dataset employed GE Volution E10 ultrasound equipment. In contrast, the prospective
dataset involved multiple ultrasound machines, namely the GE Voluson E6, E8, E10, and
Philips iE33. The study included four ultrasonographers who performed the examina-
tions for the retrospective dataset. In the case of the prospective dataset, more than ten
ultrasonographers were involved in the data collection process.

2.2. Data Preprocessing

The standardization of data collected in clinical practice is different from that of
public datasets. Due to various external factors such as equipment, personnel, lighting,
and collection methods, inconsistent image standardization may occur, and the amount
of information contained in the image may be significantly reduced. In this study, the
homomorphic filtering method was used to preprocess ultrasound images [18]; the filtering
results are shown in Supplementary Material S1.

2.3. Determination of Regions of Interest (ROI)

The examination section used in this study is the median sagittal section, which in-
cludes anatomical structures such as NT (nuchal translucency), NB (nasal bone), nasal tip,
jawbone, and cranial crest, which are used in clinical diagnoses of high-risk fetuses [19,20].
Considering that the nasal tip, nasal bone, maxilla, and mandible have positional relation-
ships, this study included them in the same region of interest. In addition, because the
brain contains complex positional information, it is also considered a region of interest.
Although the diencephalon is not related to screening for genetic disorders, it is an impor-
tant anatomical structure in this section. Additionally, our study attempts to extract this
anatomical structure to explore the feasibility of extracting key anatomical structures. In
summary, this section divides the regions of interest that need to be extracted based on
clinical diagnostic experience, and the detailed information is shown in Figure 1.
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2.4. Model Architecture

As shown in Figure 2, FGDS is composed of three interconnected parts. The first
part, referred to as Network A, focuses on the extraction of ROI from the input data.
Following that, the second part, Network B, concentrates on extracting the genetic disorder
information within the identified ROIs. Finally, in the third part, denoted as Network C,
we utilize the XGBoost algorithm to effectively integrate the disease-related information
obtained from multiple regions of interest, enabling the estimation of the genetic disorder
risk. By employing this three-part architecture, FGDS enhances the analysis of fetal facial
features and provides a comprehensive approach to genetic disorder screening. Here is the
mathematical expression for the three-stage ensemble learning model:

Feature extraction in Network A:

R = A(I) (1)

where R = {r1, r2, . . . , rn} represents the set of ROI and n is the number of regions.
Risk estimation Network B:
For each region ri in R, calculate its risk value si:

si = B(ri) (2)

where i denotes the ith region.
Risk aggregation in Network C:

P = C(S) (3)

where S = {s1, s2, . . . , sn} represents the set of risk values for all regions.
In summary, this three-stage ensemble learning model comprises three networks: A

for extracting regions of interest, B for estimating risk values for each region, and C for
aggregating the risk values. The regions of interest are extracted from the input image I
using Network A and represented as the set R. Each region ri is then processed by Network
B to obtain its corresponding risk value si. Finally, Network C combines all the risk values
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S to generate the final prediction P. This ensemble learning model effectively performs
binary classification tasks.
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Figure 2. Model Architecture. The utilization of the FGDS model encompasses three distinct stages,
each serving a specific purpose. In the initial stage, the image undergoes preprocessing through
homomorphic filtering to enhance its quality. The preprocessed image is then fed into Network
A, which focuses on extracting the relevant regions of interest from the image. Moving on to the
second stage, the extracted regions of interest are resized to a standardized dimension of 256 × 256.
These resized regions are subsequently inputted into Network B, which is responsible for extracting
disease-related information from each individual region of interest. Finally, in the third stage, the
low-dimensional vectors obtained from each region of interest are concatenated together. This
concatenated vector is then fed into the XGBoost algorithm, which performs the final classification
task, yielding the predicted outcome for the genetic disorder under consideration. The following
provides a comprehensive and detailed overview of the technical methodologies employed within
each section of the FGDS model.

2.4.1. Network A: ROI Extraction Based on Improved YOLOv5

Network A, a crucial component of the FGDS model, is a target detection network
built upon the improved YOLOv5 architecture, which aims to provide fast and accurate
real-time object detection [21]. To enhance its detection performance, we have incorporated
two advanced techniques: BiFPN (Bi-directional Feature Pyramid Network) and ECA
(Efficient Channel Attention).

Feature Fusion Network Improvement

In YOLOv5, the feature fusion component relies on PANet, but it falls short in detecting
targets with fine-grained details and multi-scale characteristics. To address these limitations,
we introduce the BiFPN network, which offers numerous advantages such as multi-scale
feature fusion, adaptive feature refinement, enhanced spatial context understanding, scale-
aware object representation, and robustness to variations [22]. By integrating BiFPN into
the YOLO network, we achieve improved feature fusion, enhanced spatial context under-
standing, robust handling of scale variations, adaptive feature refinement, and efficient
information flow. BiFPN plays a pivotal role in enabling effective feature fusion across
multiple scales by combining bottom-up and top-down pathways. This integration seam-
lessly integrates high-level and low-level features, facilitating precise localization and
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identification of regions of interest. As a result, our model leverages this hierarchical fusion
process to significantly enhance its capability of capturing intricate facial details.

The weight fusion method employed by BiFPN is fast normalization fusion. The
formula is as follows:

O = ∑ i
wi

ε + ∑ j wj
· Ii (4)

ε = 0.0001; wi greater than or equal to 0 are learnable weight values, with each weight
value ranging from 0 to 1; Ii representing the feature map.

Using the sixth layer of BiFPN structure (Figure 3) to illustrate its fusion approach:

P6 = Conv
(

w1 · F6 + w2 · Resize(F7)

w1 + w2 + ε

)
(5)

N6 = Conv

(
w
′
1 · F6 + w

′
2 · P6 + w

′
3 · Resize(N5)

w′1 + w′2 + w′3 + ε

)
(6)
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Add Attention Mechanism

The attention mechanism is a technique in deep learning that enables models to selec-
tively focus on specific parts of the input data. It assigns different weights or importance
to different elements in the input, allowing the model to pay more attention to relevant
features and ignore irrelevant or less important ones. The addition of an attention mecha-
nism to YOLOv5 improves localization accuracy, enhances discrimination between objects,
enables robust handling of complex scenes, introduces scale-awareness, and enhances gen-
eralization capabilities. These advantages collectively result in more accurate and reliable
object detection performance.

ECA is a very lightweight and convenient attention module that can significantly
improve the performance of networks including ResNets and YOLO, and exhibits better
performance results than its counterpart attention modules [23]. Based on this, this study
adds the ECA module into the YOLO network.

The simplified mathematical expression for the ECA (Efficient Channel Attention)
mechanism is as follows:

M = AvgPool(X) (7)
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W = FC(ReLU(FC(M))) (8)

Y = X�W (9)

Z = Y · γ (10)

Here, AvgPool(·) represents the global average pooling operation, FC(·) represents
the fully connected layer operation, ReLU(·) represents the ReLU activation function; �
represents the element-wise multiplication operation, and γ is a learnable scaling parameter.

2.5. Network B: Disease Information Extraction Based on Improved Residual Neural Network

In Network B, each region of interest extracted by Network A corresponds to a con-
volutional neural network for extracting image features associated with genetic disorders.
Each network is trained separately. Considering the complexity of disease information
in the region of interest, two convolutional neural network models are designed in this
study (CNN A and CNN B), both using the attention mechanism and the residual mod-
ule to improve model performance, enhance accuracy and avoid overfitting. Due to the
non-uniform image size of the ROI region obtained based on object detection, this study
used the letterbox method to unify the image size before inputting it into the Network B,
unifying the size of all images to 256 × 256.

The CNN A is obtained by adding the CBAM (Convolutional Block Attention Module)
attention mechanism to the 34-layer residual network. It is used for disease information
extraction on complex regions of interest, such as the chin, nose, jaw, etc. CNN B is ob-
tained by adding an attention mechanism to the 8-layer residual neural network, which
is used to extract some simple disease information, such as NT thickness and morphol-
ogy of the cranial vault. The detailed structures of CNN A and CNN B are shown in
Supplementary Material S2.

2.5.1. Residuals Module

The residual module was proposed by Kaiming He in the paper titled “Deep Residual
Learning for Image Recognition” [24]. It addresses the vanishing gradient problem, facili-
tates optimization, enables the construction of deeper networks, and promotes gradient
flow and feature reuse.

Given an input feature map X, the mathematical expression for a residual module can
be represented as:

Y = X + F(X) (11)

Here, F(·) represents the residual function, which can be a combination of one or
multiple convolution operations and nonlinear activation functions.

2.5.2. CBAM Attention Mechanism

By selectively attending to informative channels and spatial locations, the CBAM
attention mechanism, consisting of the Channel Attention Module (CAM) and the Spatial
Attention Module (SAM), enhances the representational power of CNNs. [25]. This im-
proves feature representation, adaptability to complex patterns, and overall performance
in various computer vision tasks.

Given an input feature map X, CBAM consists of two attention mechanisms: CAM
and SAM.

CAM:
Ac = σ(FC(AvgPool(X))) (12)

Xc = Ac � X (13)
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SAM:
As = σ(FC(MaxPool(Xc))) (14)

Z = As � Xc (15)

Here, σ(·) represents the sigmoid activation function, FC(·) denotes fully connected
layers, � represents element-wise multiplication, and Xc represents the feature map after
applying channel attention. The resulting feature map Z contains enhanced representations
that are more discriminative for downstream tasks.

2.6. Network C: Disease Risk Estimation Based on XGBoost Algorithm

Each network undergoes separate training, and the output from the last neural network
layer of each network is selected to represent the probability of the genetic disorder. These
outputs are then concatenated to form multidimensional features. In our ensemble learning
approach, we utilize XGBoost as the stacking model for the sub-networks. XGBoost
combines the disease probabilities from sub-networks to estimate the overall probability of
a patient having a genetic disorder or not [26].

The training of Networks A, B, and C involved three stages. Initially, Network A was
utilized to extract the ROI. Subsequently, CNN A and CNN B were employed to predict the
disease probability for each ROI. Finally, the predictions from each network were combined
using XGBoost to achieve an overall classification performance.

2.7. Data Augmentation

Medical data collected in clinical scenarios exhibits characteristics such as small sam-
ples and long-tailed distributions, which are not suitable for training deep learning models.
In this study, the data augmentation strategy of Trivial Augment is used to augment the
extracted regions of interest and change the sample distribution. Trivial Augment is a
simple yet effective data augmentation technique that enhances machine learning models’
performance by generating variations of the original training data [27]. By applying trivial
transformations to the text, the method introduces subtle changes that improve the model’s
ability to generalize and handle different inputs. The image with data augmentation is
shown in Supplementary Material S3.

2.8. Performance Evaluation

In order to thoroughly assess the remarkable performance of our FGDS model, we
conducted training experiments with various alternative models, including well-established
CNN architectures such as ResNet [24], VGG [28], and DenseNet [29]. Additionally, to
provide a comprehensive analysis of our approach, we compared its performance against
other state-of-the-art deep learning models, namely InceptionV3 [30], EfficientNet [22], and
Xception [31].

In the statistical analysis, we employed several evaluating indicators to evaluate the
screening performance. These indicators include accuracy, sensitivity, specificity, mPA
(mean average precision), recall, precision, and F1 score. Moreover, we utilized the receiver
operating characteristic (ROC) curve and the area under the ROC curve (AUC) to compare
the screening performance across different models and networks.

2.9. Heat Map Generation

Grad-CAM is a visualization technique that improves the interpretability of CNN
models by incorporating a visualization layer [32]. It utilizes gradients associated with
the target concept to produce a localization map, which emphasizes crucial regions in the
image responsible for concept prediction. Regions with higher intensity colors indicate
more significant predictions.
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3. Results
3.1. Performance of Region of Interest Extraction (Network A)

In Network A, the BiFPN feature fusion network and ECA attention mechanism are
used to improve the YOLOv5 network, named YOLOv5 + BiFPN + ECA. After discussion
with physicians and reference to clinical data, seven regions of interest in the ultrasound
images were extracted, and they were named Chin, head1, head2, D, NA + NB, max + mand
and NT.

As shown in Figures 4 and 5 and Table 2, Yolov5 with the enhancements of BiFPN
and ECA achieved improved performance compared to the baseline Yolov5. The results
for mAP, recall, and precision are as follows: In the “Chin” class, the mAP remained at
0.996, while the recall showed improvement to 0.800 and the precision slightly decreased
to 0.702. Similarly, for the “head1” class, the mAP remained at 0.996, with an improved
recall of 0.830 and a consistent precision of 0.800. In the case of the “head2” class, the
mAP remained at 0.996, with an increased recall of 0.890 and a slightly lower precision
of 0.781. For the “D” class, the mAP remained at 0.996, the recall improved to 0.860, and
the precision decreased to 0.610. The “NA + NB” class maintained a mAP of 0.992, with
unchanged recall and precision values of 0.990 and 0.980, respectively. Likewise, the “max
+ mand” class maintained a mAP of 0.996, with a consistent recall of 0.990 and a slightly
decreased precision of 0.712. The “NT” class showed an improved mAP of 0.950, while
recall and precision remained at 0.980. Lastly, for all classes combined, the mAP remained
at 0.986, with a steady precision of 0.988.
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Table 2. Object detection performance of Network A.

Yolov5 YOLOv5 + BiFPN + ECA(Network A)

mAP Recall Precision mAP Recall Precision

Chin 0.996 0.740 0.771 0.995 0.800 0.702
head1 0.996 0.660 0.680 0.995 0.830 0.800
head2 0.996 0.980 0.883 0.995 0.890 0.781

D 0.996 0.850 0.552 0.995 0.860 0.610
NA + NB 0.992 0.990 0.980 0.993 0.990 0.990

max + mand 0.996 0.990 0.723 0.995 0.890 0.712
NT 0.932 0.950 0.969 0.9500 0.980 0.980

all classes 0.986 0.988

3.2. Performance of Disease Information Extraction (Network B)

In Network B, our research establishes associations between diseases and anatomical
structures by matching regions of interest with disease labels, obtaining risk values for each
region of interest. In this paper, the performance of Network B was tested in a retrospective
dataset, and the contribution of each region of interest to screening for genetic disorders
was as follows:

The Table 3 and Figure 6 represents the screening performance of different ROI areas
for genetic disorder detection. The metrics evaluated include AUC, sensitivity, specificity,
accuracy, and F1 score. For the “chin” ROI, the AUC is 0.833, indicating a reasonably good
performance. The sensitivity is 0.594, suggesting that it correctly identifies positive cases
around 59.4% of the time. The specificity is high at 0.930, implying a low false-positive
rate. The accuracy is 0.786, representing the overall correctness of the predictions. The
F1 score, which combines precision and recall, is 0.704. Similarly, for other ROIs, such as
“head1,” “head2,” “max + mand,” “NA + NB,” and “NT,” the corresponding metrics are
provided. These include AUC, sensitivity, specificity, accuracy, and F1 score. From the table,
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we can observe that different ROIs exhibit varying levels of screening performance. For
instance, “head2” has a relatively higher AUC of 0.764 and sensitivity of 0.576, indicating
better discrimination and a higher ability to correctly identify positive cases compared to
the other ROIs. On the other hand, “max + mand” has a lower AUC of 0.589 and sensitivity
of 0.438, suggesting a comparatively weaker performance in detecting genetic disorders.

Table 3. Network B: Performance of disease information extraction.

ROI Curve Name AUC Sensitivity Specificity Accuracy F1

chin curve1 0.833 0.594
(0.516–0.668)

0.930
(0.886–0.958) 0.786 0.704

head1 curve2 0.700 0.600
(0.522–0.673)

0.711
(0.647–0.767) 0.664 0.600

head2 curve3 0.764 0.576
(0.498–0.651)

0.869
(0.818–0.908) 0.747 0.656

max + mand curve4 0.589 0.438
(0.362–0.516)

0.755
(0.694–0.808) 0.622 0.493

NA + NB curve5 0.772 0.765
(0.692–0.825)

0.628
(0.562–0.690) 0.686 0.672

NT curve6 0.854 0.805
(0.700–0.881)

0.785
(0.707–0.847) 0.792 0.737
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Figure 6. Network B: Performance of disease information extraction. As shown in Figure 3 and Table 3,
curves 1 to 6 represent six regions of interest, namely “chin”, “head1”, “head2”, “max + mand”,
“NA + NB”, and “NT”. The dotted line represents the ROC curve of a completely random classifier.
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Based on these results, it can be inferred that certain ROIs might have a stronger
association with specific genetic disorders, leading to better screening performance. Further
analysis and investigation of these ROIs and their relationship with genetic disorders could
provide valuable insights for disease detection and diagnosis.

3.3. Performance of Genetic Disorder Prediction in the FGDS Model (Internal Test Set)

The Table 4 and Figure 7a presents the performance metrics of different models, where
FGDS represents a genetic disorder screening model developed in the research, while the
remaining models serve as baselines.

Table 4. Screening performance of the FGDS in internal test sets.

Model AUC Sensitivity Specificity F1

FGDS 0.903 0.753 (0.680–0.814) 0.889 (0.839–0.924) 0.790
DenseNet-201 0.845 0.763 (0.692–0.822) 0.807 (0.749–0.854) 0.756

ResNet-34 0.827 0.655 (0.580–0.724) 0.888 (0.839–0.924) 0.727
VGG-16 0.786 0.633 (0.557–0.703) 0.833 (0.777–0.877) 0.683

InceptionV3 0.853 0.712 (0.638–0.776) 0.867 (0.815–0.906) 0.754
EfficientNetB1 0.738 0.497 (0.422–0.573) 0.914 (0.869–0.945) 0.617

Xception 0.834 0.638 (0.563–0.708) 0.953 (0.915–0.975) 0.751
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In terms of performance, FGDS achieves an AUC of 0.903, indicating excellent dis-
crimination ability. It demonstrates a sensitivity of 0.753, which suggests that it correctly
identifies 75.3% of positive cases. The specificity of FGDS is 0.889, indicating a relatively
low false-positive rate. Furthermore, the F1 score of 0.790 reflects a balanced precision and
recall. DenseNet-201 achieves an AUC of 0.845 with a sensitivity of 0.763. It maintains a
relatively high specificity of 0.807, resulting in a balanced performance with an F1 score
of 0.756; ResNet-34 shows an AUC of 0.827, a sensitivity of 0.655, and a high specificity of
0.888. However, the F1 score is slightly lower at 0.727 compared to the previous models;
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VGG-16 achieves an AUC of 0.786 with a sensitivity of 0.633. The specificity is 0.833,
indicating a relatively low false-positive rate. The F1 score is 0.683, reflecting a trade-off
between precision and recall; InceptionV3 demonstrates an AUC of 0.853 and a sensitivity
of 0.712. It maintains a specificity of 0.867, resulting in an F1 score of 0.754; EfficientNetB1
exhibits the lowest AUC of 0.738 and a sensitivity of 0.497. However, it demonstrates a
high specificity of 0.914, resulting in an F1 score of 0.617; Xception achieves an AUC of
0.834 with a sensitivity of 0.638. It shows a high specificity of 0.953, resulting in an F1 score
of 0.751.

From the table, it can be observed that FGDS has the highest AUC and relatively
balanced sensitivity and specificity, indicating its strong overall performance in disease
detection. Other models, such as DenseNet-201 and InceptionV3, also exhibit a favor-
able performance.

3.4. Performance of Genetic Disorder Prediction in the FGDS Model (External Test Set)

In deep learning model performance testing, the use of an external test dataset plays a
crucial role in evaluating the model’s generalization and robustness. In this experiment,
we prospectively collected an external test set to evaluate the model’s performance.

As shown in Figure 7b and Table 5, In the prospective test set, FGDS achieves an AUC
of 0.844, indicating a good discriminative ability in distinguishing between positive and
negative cases. It exhibits a sensitivity of 0.768, meaning it correctly identifies 76.8% of
positive cases. The specificity of FGDS is 0.837, suggesting a relatively low false-positive
rate. Furthermore, the F1 score of 0.806 reflects a balanced precision and recall. In com-
parison, DenseNet-201 achieves an AUC of 0.717, a sensitivity of 0.556, a specificity of
0.759, and an F1 score of 0.632. InceptionV3 shows an AUC of 0.733, a sensitivity of 0.778,
a specificity of 0.590, and an F1 score of 0.733. Based on these results, it is evident that
the FGDS model outperforms DenseNet-201 and InceptionV3 in terms of AUC, specificity,
and F1 score. FGDS exhibits higher discriminative ability, correctly identifies a larger
proportion of positive cases, and maintains a more balanced precision and recall trade-off.
Moreover, FGDS achieves a higher specificity compared to InceptionV3, indicating a lower
false-positive rate.

Table 5. Screening performance of the FGDS in external test sets.

Model AUC Sensitivity Specificity F1

FGDS 0.844 0.768
(0.701–0.823)

0.837
(0.770–0.888) 0.806

DenseNet-201 0.717 0.556
(0.483–0.625)

0.759
(0.685–0.820) 0.632

ResNet-34 0.568 0.308
(0.246–0.378)

0.801
(0.731–0.857) 0.418

VGG-16 0.429 0.924
(0.876–0.955)

0.151
(0.102–0.216) 0.701

InceptionV3 0.733 0.778
(0.712–0.832)

0.590
(0.511–0.665) 0.733

EfficientNetB1 0.378 0.975
(0.939–0.991)

0.030
(0.011–0.072) 0.699

Xception 0.593 0.833
(0.772–0.881)

0.313
(0.245–0.390) 0.692

On the other hand, ResNet-34 exhibits relatively low performance with an AUC
of 0.568, a sensitivity of 0.308, a specificity of 0.801, and an F1 score of 0.418. VGG-16
demonstrates low AUC (0.429), specificity (0.151), and F1 score (0.701), while EfficientNetB1
and Xception also demonstrate limitations in various performance metrics.
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3.5. The Heat Map of the FGDS Model

From Figure 8, it is evident that the forehead, mouth, and nose regions make significant
contributions to the screening of genetic disorders. Additionally, FGDS appears to be highly
sensitive to fetal facial contours, as it focuses on contour information in ROI regions such
as “NA + NB,” “chin,” and “head1.” In the “NT” region of interest, the FGDS model
unsurprisingly pays attention to the thickness information of the nuchal translucency,
which is an important clinical indicator for genetic disorder screening.
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4. Discussion

In this study, we have developed a novel three-stage ensemble model called FGDS
for screening genetic disorders in fetuses. The FGDS model has demonstrated its effec-
tiveness in detecting genetic disorders, surpassing ResNet, DenseNet, InceptionV3, and
other algorithms. Through Network A, we have discovered that the deep learning-based
target detection technique enables the accurate extraction of anatomical structures from
ultrasound images of fetal median sagittal sections. In our comparative analysis of Network
B, we have identified that the model developed using the “Chin” region has achieved the
highest performance. Furthermore, based on our interpretable experiments, we have found
that the mouth, NT, and nose regions play a significant role in the manifestation of genetic
disorders on the face.

Recent genetic studies have established a significant correlation between facial ab-
normalities in individuals with genetic disorders and specific gene mutations [33,34]. For
instance, genes such as 10q25.3, 8q24, VAX1, IRF6, and others are associated with cleft lip
disease and impact the development of the human jaw and maxilla, leading to abnormali-
ties in various facial features such as the nasal wing, cheek, and lips. Certain genetic loci,
including Rs287104 in the KCTD15 gene, Rs9995821 in the DCHS2 gene, Rs2977562 in the
3q21.3 gene, and Rs10176525 in the 2q36.1 gene, are also linked to specific facial traits such
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as the nasal tip and alar morphology, nostril aperture, upper lip thickness, and nasal bridge
height [35–38].

Our study utilizes object detection technology in Network A of FGDS to extract
regions of interest in ultrasound images, eliminating interference caused by irrelevant
information such as noise and artifacts. The decision layer fusion method based on meta
learning for regions of interest not only emphasizes the contribution of a single region of
interest to the disease, but also establishes the interaction relationships between different
regions of interest, effectively improving the robustness of the FGDS model. Due to the
unique imaging method of ultrasound imaging, its imaging quality is greatly influenced
by factors such as instrument type, external environment, and the doctor’s experience.
If the model structure is not customized for specific tasks, it will be difficult to obtain
robust prediction models. This is also why mainstream deep learning models can achieve
significant classification performance in internal test sets, but are poor in external test sets.
Additionally, the data distribution in this study follows a long-tail distribution commonly
observed in medical data, where positive samples are significantly fewer than negative
samples. To address this issue, the study employed data augmentation techniques to
modify the sample distribution in the training set, thereby increasing the complexity of
positive samples and effectively improving the model’s performance.

Deep learning has often been considered a high-risk approach in medical decision-
making due to its lack of interpretability. To address this concern, we utilized the Grad-CAM
to generate heatmaps, highlighting the anatomic structure that significantly contribute
to the model’s classification. These heatmaps effectively pinpointed areas which played
a crucial role in the classification process. Importantly, we also presented the heatmaps
of individual subgraphs within the model, providing a comprehensive understanding
of the evaluation basis from different perspectives. Network A also demonstrates that
FGDS accurately recognizes the anatomical structure of the fetal face, achieving an average
precision of 0.988 across all classes. As illustrated in Figures 7 and 8, the “head2” region
of interest in Network B displayed heightened sensitivity to the middle and lower face,
while the “chin” exhibited a finer depiction of the development of the nasal bone, jaw bone,
and other facial components. “head1”, on the other hand, showed greater sensitivity to the
frontal bone and hindbrain. This interpretable feature holds potential for its integration into
complementary medicine, facilitating a more comprehensive understanding and evaluation
of complex cases.

In the field of clinical medicine, the potential applications of the proposed technology
in the future are multifaceted and hold great promise. Firstly, the development of low-cost
screening software that can be readily packaged and deployed on cloud or server plat-
forms would offer a convenient and cost-effective approach to facilitate early detection of
genetic disorders. This approach has the potential to revolutionize healthcare delivery by
enabling broader accessibility and increasing the reach of screening programs, particularly
in resource-limited settings. By leveraging the power of cloud computing and server in-
frastructure, healthcare professionals would be able to utilize this software to efficiently
analyze large volumes of patient data, facilitating prompt identification of individuals at
risk and enabling timely interventions and treatments. Secondly, the deployment of this
technology in hospitals at all levels can greatly contribute to graded diagnosis and treat-
ment strategies, which are aimed at reducing medical errors and minimizing medical waste.
With its ability to provide accurate and reliable diagnostic insights, the technology can aid
healthcare providers in making informed decisions. This personalized approach can help
optimize patient outcomes and improve the overall efficiency of healthcare systems, ensur-
ing that resources are utilized effectively. With its ability to analyze complex ultrasound
image data and generate interpretable results, it can provide healthcare professionals with
a comprehensive understanding of a patient’s genetic condition, potentially uncovering
critical insights that might have been missed through conventional diagnostic methods.
By incorporating this technology into the diagnostic workflow, doctors can benefit from
its assistance in formulating accurate and timely diagnoses, thereby enhancing the overall
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diagnostic accuracy and clinical decision-making process. Finally, the scalability of the
technology lends itself to large-scale, cross-regional genetic disorder screening initiatives.
By leveraging its computational power and capacity to analyze vast amounts of genetic
data, the technology can facilitate systematic screening programs across diverse popula-
tions and geographical regions. This can enable the identification of population-specific
genetic variations and the early detection of genetic disorders on a broader scale. Such
large-scale screening initiatives can inform public health policies, facilitate the implemen-
tation of targeted prevention strategies, and contribute to the advancement of precision
medicine by enabling the identification of rare genetic disorders that may have previously
gone undetected.

While the current study highlights the potential of our FGDS model, it is important to
acknowledge its limitations. Firstly, the study sample was limited, which may impact the
generalizability of the model, particularly across different racial and ethnic populations
such as African descent, Latinos, Caucasians, etc. To enhance the model’s robustness, our
next study will involve data collection from diverse racial backgrounds, ensuring broader
representation and applicability. Secondly, although this study included various genetic
disorder cases, many rare genetic disorders with distinct facial abnormalities were not
included. Future investigations will entail collaborating with multiple institutions to collect
these rare cases, thus expanding the dataset and capturing a more comprehensive range of
genetic disorders and associated facial features. Furthermore, this study solely employed
a single standard section of ultrasonic images for genetic disorder screening. Subsequent
studies will explore the utilization of other standard sections, thereby enabling a more
comprehensive and multi-dimensional analysis of facial characteristics in the context of
genetic disorders. Additionally, while the current model effectively serves as a screening
tool, it cannot identify genetic disease types. This study is not immediately available
for clinical use and social factors (ethics and morality) need to be considered for clinical
application. Our future focus lies in gathering a larger collection of ultrasonic facial images
for each genetic disorder category and subsequently developing an AI model capable of
providing specific diagnoses. Moreover, this experiment did not include a comparison
between our model and integrated tests or NIPT. To address this gap, we plan to conduct
this experiment in the next research, allowing for a comprehensive evaluation of the
model’s performance and its potential integration with existing diagnostic approaches. In
terms of technology, the ROI extraction performance of Network A needs improvement
for certain categories, particularly “Max + Mand” and “head2”. In future studies, we will
consider using more advanced object detection methods to enhance the performance of
Network A. In Network B, we can utilize some state-of-the-art classification models, such
as Transformer. In future research, we will attempt to experiment with such models and
continuously improve the classification performance of our model.

5. Conclusions

In summary, the current study successfully constructed a novel three-stage ensemble
learning model called FGDS, which facilitates automated screening of genetic disorders
during the prenatal stage and generates informative heat maps. Experimental results
demonstrate that FGDS accurately recognizes fetal facial anatomical structures, such as the
nose, jaw, and forehead. These specific facial features provide crucial diagnostic information
for identifying fetal genetic disorders. By assisting in prenatal ultrasound diagnosis, this
framework has the potential to reduce false-negative results and address the scarcity of
medical resources, thereby enhancing the overall effectiveness of genetic disorder screening
in prenatal settings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering10070873/s1, Supplementary Material S1: Example
of homomorphic filtering results; Supplementary Material S2: The detailed structures of CNN A and
CNN B; Supplementary Material S3: Example of Trivial Augment.
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