Carrot Discard as a Promising Feedstock to Produce 2,3-Butanediol by Fermentation with P. polymyxa DSM 365
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Enzymatic Hydrolysate of Carrot Discard
2.3. Microorganism and Inoculum
2.4. Fermentation Assays
2.4.1. Semi-Defined Fermentation Media
2.4.2. Carrot Discard (CD) Enzymatic Hydrolysate-Based Fermentation Medium
2.5. Analytical Methods
2.6. Data Analysis
3. Results and Discussion
3.1. BDO Production from Semi-Defined Media: Influence of Pre-Culture and Substrate
3.1.1. Tolerance of P. polymyxa to Simple Sugars
3.1.2. Influence of Mixed Sugars in 2,3-Butanediol Production
3.2. BDO Production from Enzymatic Hydrolysate of Carrot Discard
3.2.1. Influence of Stirring
3.2.2. Influence of the Presence of Tryptone
3.3. By-Product Formation: Ethanol and Acetoin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Okonkwo, C.C.; Ujor, V.; Ezeji, T.C. Production of 2,3-Butanediol from non-detoxified wheat straw hydrolysate: Impact of microbial inhibitors on Paenibacillus polymyxa DSM 365. Ind. Crops Prod. 2021, 159, 113047. [Google Scholar] [CrossRef]
- Hong, E.; Kim, D.; Kim, J.; Kim, J.; Yoon, S.; Rhie, S.; Ha, S.; Ryu, Y. Optimization of alkaline pretreatment on corn stover for enhanced production of 1.3-propanediol and 2,3-butanediol by Klebsiella pneumoniae AJ4. Biomass Bioenergy 2015, 77, 177–185. [Google Scholar] [CrossRef]
- Xie, S.; Li, Z.; Zhu, G.; Song, W.; Yi, C. Cleaner production and downstream processing of bio-based 2,3-butanediol: A review. J. Clean. Prod. 2022, 343, 131033. [Google Scholar] [CrossRef]
- Hazeena, S.H.; Nair Salini, C.; Sindhu, R.; Pandey, A.; Binod, P. Simultaneous saccharification and fermentation of oil palm front for the production of 2,3-butanediol. Bioresour. Technol. 2019, 278, 145–149. [Google Scholar] [CrossRef]
- Maina, S.; Prabhu, A.A.; Vivek, N.; Vlysidis, A.; Koutinas, A.; Kumar, V. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnol. Adv. 2022, 54, 107783. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Zhang, Y.; Cao, M.; Zhang, W.; Lü, C.; Yang, C.; Gao, C.; Xu, P.; Ma, C. Efficient 2,3-butanediol production from whey powder using metabolically engineered Klebsiella oxytoca. Microb. Cell Fact. 2020, 19, 162. [Google Scholar] [CrossRef]
- Jeevitha, P.; Ranjitha, J.; Anand, M.; Mahboob, S.; Vijayalakshmi, S. Production of 2-3-butanediol from various microorganisms, in Valorization of Biomass and Bioproducts. Org. Acids Biofuels 2023, 12, 223–239. [Google Scholar] [CrossRef]
- Jiang, L.-Q.; Fang, Z.; Zhao, Z.-L.; He, F.; Li, H.-B. 2,3-butanediol and acetoin production from enzymatic hydrolysate of ionic liquid-pretreated cellulose by Paenibacillus polymyxa. BioResources 2015, 10, 1318–1329. [Google Scholar] [CrossRef]
- Hakizimana, O.; Matabaro, E.; Lee, B.H. The current strategies and parameters for the enhanced microbial production of 2,3-butanediol. Biotechnol. Reports 2020, 25, e00397. [Google Scholar] [CrossRef]
- Kanno, M.; Carroll, A.L.; Atsumi, S. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat. Commun. 2017, 8, 14724. [Google Scholar] [CrossRef]
- Ma, K.; He, M.; You, H.; Pan, L.; Wang, Z.; Wang, Y.; Hu, G.; Cui, Y.; Maeda, T. Improvement of (R,R)-2,3-butanediol production from corn stover hydrolysate by cell recycling continuous fermentation. Chem. Eng. J. 2018, 332, 361–369. [Google Scholar] [CrossRef]
- Yuan, J.; He, Y.-Z.; Guo, Z.-W.; Gao, H.-F.; Chen, F.-B.; Li, L.-Z.; Li, Y.-Y.; Zhang, L.-Y. Utilization of Sweet Sorghum Juice for Efficient 2,3-Butanediol Production by Serratia marcescens H30. BioResources 2017, 12, 4926–4942. [Google Scholar] [CrossRef]
- Narisetty, V.; Narisetty, S.; Jacob, S.; Kumar, D.; Leeke, G.A.; Chandel, A.K.; Singh, V.; Srivastava, V.C.; Kumar, V. Biological production and recovery of 2,3-butanediol using arabinose from sugar beet pulp by Enterobacter ludwigii. Renew. Energy 2022, 191, 394–404. [Google Scholar] [CrossRef]
- Cortivo, P.R.D.; Machado, J.; Hickert, L.R.; Rossi, D.M.; Ayub, M.A.Z. Production of 2,3-butanediol by Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1 cultivated in acid and enzymatic hydrolysates of soybean hull. Biotechnol. Prog. 2019, 35, e2793. [Google Scholar] [CrossRef] [PubMed]
- Tinôco, D.; de Castro, A.M.; Seldin, L.; Freire, D.M.G. Production of (2R,3R)-butanediol by Paenibacillus polymyxa PM 3605 from crude glycerol supplemented with sugarcane molasses. Process Biochem. 2021, 106, 88–95. [Google Scholar] [CrossRef]
- Hazeena, S.H.; Pandey, A.; Binod, P. Evaluation of oil palm front hydrolysate as a novel substrate for 2,3-butanediol production using a novel isolate Enterobacter cloacae SG1. Renew. Energy 2016, 98, 216–220. [Google Scholar] [CrossRef]
- Sikora, B.; Kubik, C.; Kalinowska, H.; Gromek, E.; Białkowska, A.; Jędrzejczak-Krzepkowska, M.; Schüett, F.; Turkiewicz, M. Application of byproducts from food processing for production of 2,3-butanediol using Bacillus amyloliquefaciens TUL 308. Prep. Biochem. Biotechnol. 2016, 46, 610–619. [Google Scholar] [CrossRef]
- Wong, C.L.; Huang, C.C.; Lu, W.B.; Chen, W.M.; Chang, J.S. Producing 2,3-butanediol from agricultural waste using an indigenous Klebsiella sp. Zmd30 strain. Biochem. Eng. J. 2012, 69, 32–40. [Google Scholar] [CrossRef]
- Liakou, V.; Pateraki, C.; Palaiogeorgou, A.M.; Kopsahelis, N.; Machado de Castro, A.; Guimarães Freire, D.M.; Nychas, G.J.E.; Papanikolaou, S.; Koutinas, A. Valorisation of fruit and vegetable waste from open markets for the production of 2,3-butanediol. Food Bioprod. Process. 2018, 108, 27–36. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and vegetable waste management: Conventional and emerging approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Garita-Cambronero, J.; Paniagua-García, A.I.; Díez-Antolínez, R. Tomato Waste from Processing Industries as a Feedstock for Biofuel Production. Bioenergy Res. 2019, 12, 1000–1011. [Google Scholar] [CrossRef]
- Encalada, A.M.I.; Pérez, C.D.; Flores, S.K.; Rossetti, L.; Fissore, E.N.; Rojas, A.M. Antioxidant pectin enriched fractions obtained from discarded carrots (Daucus carota L.) by ultrasound-enzyme assisted extraction. Food Chem. 2019, 289, 453–460. [Google Scholar] [CrossRef]
- MAPA Ministry of Agriculture, Fisheries and Food. Anuario de Estadística. Available online: www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/default.aspx (accessed on 2 September 2022).
- Ramos-Andrés, M.; Aguilera-Torre, B.; García-Serna, J. Hydrothermal production of high-molecular weight hemicellulose-pectin, free sugars and residual cellulose pulp from discarded carrots. J. Clean. Prod. 2021, 290, 125179. [Google Scholar] [CrossRef]
- Clementz, A.; Torresi, P.A.; Molli, J.S.; Cardell, D.; Mammarella, E.; Yori, J.C. Novel method for valorization of by-products from carrot discards. LWT 2019, 100, 374–380. [Google Scholar] [CrossRef]
- Häßler, T.; Schieder, D.; Pfaller, R.; Faulstich, M.; Sieber, V. Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour. Technol. 2012, 124, 237–244. [Google Scholar] [CrossRef]
- Okonkwo, C.C.; Ujor, V.C.; Mishra, P.K.; Ezeji, T.C. Process Development for Enhanced 2,3-Butanediol Production by Paenibacillus polymyxa DSM 365. Fermentation 2017, 3, 18. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; Jan, Rep. No. TP-510-42619; National Renewable Energy Laboratory: Golden, CO, USA, 2005. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of ash in biomass. In National Renewable Energy Laboratory; Jan, Rep. No. TP-510-42622; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of structural carbohydrates and lignin in biomass. In National Renewable Energy Laboratory; Jan, Rep. No. TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2011. [Google Scholar]
- Qin, J.; Xiao, Z.; Ma, C.; Xie, N.; Liu, P.; Xu, P. Production of 2,3-Butanediol by Klebsiella Pneumoniae Using Glucose and Ammonium Phosphate. Chin. J. Chem. Eng. 2006, 14, 132–136. [Google Scholar] [CrossRef]
- Sun, L.H.; Wang, X.D.; Dai, J.Y.; Xiu, Z.L. Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 2009, 82, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Erian, A.M.; Freitag, P.; Gibish, M.; Pflügl, S. High rate 2,3-butanediol production with Vibrio natriegens. Bioresour. Technol. 2020, 10, 100408. [Google Scholar] [CrossRef]
- Santos, D.d.A.; Cassan, L.P.; Lucas, S.C.O.; Romão, L.P.C.; Porto, A.L.M. Butanediol production from glycerol and glucose by Serratia marcescens isolated from tropical pat soil. Biocatal. Agric. Biotechnol. 2020, 26, 101615. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Bae, J.-M.; Kim, S.-J. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-BDO dehydrogenase from Klebsiella oxytoca. J. Biotechnol. 2022, 354, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schilling, C.; Ciccone, R.; Sieber, V.; Schmid, J. Engineering of the 2,3-butanediol pathway of Paenibacillus polymyza DSM 365. Metab. Eng. 2020, 61, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Kim, T.; Woo, H.M.; Lee, J.; Kim, Y.; Um, Y. Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase. PLoS ONE 2015, 10, e0138109. [Google Scholar] [CrossRef] [PubMed]
- Maina, S.; Schneider, R.; Alexandri, M.; Papapostolou, H.; Nychas, G.J.; Koutinas, A.; Venus, J. Volumetric oxygen transfer coefficient as fermentation control parameter to manipulate the production of either acetoin or D-2,3-butanediol using bakery waste. Bioresour. Technol. 2021, 335, 125155. [Google Scholar] [CrossRef]
- Park, J.M.; Song, H.; Lee, H.J.; Seung, D. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production. J. Ind. Microbiol. Biotechnol. 2013, 40, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chu, H.; Gao, C.; Tao, F.; Zhou, Z.; Li, K.; Li, L.; Ma, C.; Xu, P. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab. Eng. 2014, 23, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.J.; Huang, H.; Du, J.; Zhu, J.G.; Ren, L.J.; Hu, N.; Li, S. Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour. Technol. 2009, 100, 3410–3414. [Google Scholar] [CrossRef]
- Chan, S.; Jantama, S.S.; Kanchanatawee, S.; Jantama, K. Process Optimization on Micro-Aeration Supply for High Production Yield of 2,3-Butanediol from Maltodextrin by Metabolically-Engineered Klebsiella oxytoca. PLoS ONE 2016, 11, e0161503. [Google Scholar] [CrossRef]
- Białkowska, A.M.; Jędrzejczak-Krzepkowska, M.; Gromek, E.; Krysiak, J.; Sikora, B.; Kalinowska, H.; Kubik, C.; Schütt, F.; Turkiewicz, M. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis. Appl. Microbiol. Biotechnol. 2016, 100, 2663–2676. [Google Scholar] [CrossRef]
- Rehman, S.; Khairul Islam, M.; Khalid Khanzada, N.; Kyoungjin An, A.; Chaiprapat, S.; Leu, S.Y. Whole sugar 2,3-butanediol fermentation for oil palm empty fruit bunches biorefinery by a newly isolated Klebsiella pneumoniae PM2. Bioresour. Technol. 2021, 333, 125206. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Islam, M.K.; Khanzada, N.K.; Zhuang, H.; Wang, H.; Chaiprapat, S.; Leu, S.Y. Sustainability index accounting food and carbon benefits on circular 2,3-butanediol biorefinery with oil palm empty fruit bunches. Appl. Energy 2021, 303, 117667. [Google Scholar] [CrossRef]
- OHair, J.; Jin, Q.; Yu, D.; Wu, J.; Wang, H.; Zhou, S.; Huang, H. Non-sterile fermentation of food waste using thermophilic and alkaliphilic Bacillus licheniformis YNP5-TSU for 2,3-butanediol production. Waste Manag. 2021, 120, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Amiri, H. Recent innovations for reviving the ABE fermentation for production of butanol as a drop-in liquid biofuel. Biofuel Res. J. 2020, 7, 1256–1266. [Google Scholar] [CrossRef]
- Blomqvist, K.; Nikkola, M.; Lehtovaara, P.; Suihko, M.L.; Airaksinen, U.; Straby, K.B.; Knowles, J.K.C.; Penttila, M.E. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J. Bacteriol. 1993, 175, 1392–1404. [Google Scholar] [CrossRef]
Initial Sugar Conc. (g/L) | Fermentation Medium | Time (h) | Sugar Uptake (%) | BDO (g/L) | Ethanol (g/L) | Acetoin (g/L) | Cell (g/L) | YBDO/sugars (g/g) | PBDO (g/L·h) |
---|---|---|---|---|---|---|---|---|---|
30 G | H | 24 | 86.0 (100) | 7.1 ± 0.3 | 0.9 ± 0.0 | 1.6 ± 0.1 | 1.6 ± 0.1 | 0.35 | 0.37 |
O | 48 | 100 (100) | 7.4 ± 0.4 | 1.0 ± 0.0 | 3.5 ± 0.1 | 2.7 ± 0.0 | 0.27 | 0.15 | |
50 G | H | 48 | 100 (100) | 12.5 ± 0.2 | 2.1 ± 0.1 | 2.8 ± 0.2 | 3.7 ± 0.3 | 0.32 | 0.26 |
O | 48 | 78.7 (86.0) | 10.3 ± 0.3 | 1.2 ± 0.1 | 3.5 ± 0.6 | 2.8 ± 0.5 | 0.30 | 0.22 | |
70 G | H | 72 | 93.3 (93.3) | 19.0 ± 0.0 | 2.4 ± 0.0 | 1.9 ± 0.2 | 3.4 ± 0.4 | 0.37 | 0.26 |
O | 48 | 57.5 (57.5) | 12.4 ± 0.3 | 0.7 ± 0.0 | 2.5 ± 0.0 | 3.2 ± 0.1 | 0.35 | 0.26 | |
90 G | H | 48 | 58.3 (63.1) | 16.1 ± 0.3 | 2.2 ± 0.1 | 1.6 ± 0.3 | 2.9 ± 0.4 | 0.39 | 0.34 |
O | 48 | 43.8 (52.7) | 14.1 ± 0.0 | 0.7 ± 0.1 | 1.8 ± 0.5 | 3.1 ± 0.3 | 0.42 | 0.29 | |
110 G | H | 48 | 43.7 (43.7) | 13.9 ± 0.1 | 2.2 ± 0.0 | 1.3 ± 0.1 | 1.6 ± 0.2 | 0.40 | 0.29 |
O | 72 | 29.0 (29.0) | 12.3 ± 0.2 | 0.7 ± 0.1 | 2.0 ± 0.2 | 2.4 ± 0.3 | 0.46 | 0.17 | |
130 G | H | 72 | 33.2 (33.2) | 13.2 ± 0.2 | 1.3 ± 0.1 | 1.3 ± 0.0 | 4.3 ± 0.3 | 0.42 | 0.18 |
O | 72 | 22.3 (22.3) | 9.1 ± 0.1 | 0.4 ± 0.0 | 2.5 ± 0.1 | 2.8 ± 0.2 | 0.38 | 0.13 | |
30 F | H | 48 | 100 (100) | 4.1 ± 0.1 | 1.9 ± 0.0 | 3.4 ± 0.1 | 1.9 ± 0.1 | 0.18 | 0.09 |
O | 24 | 70.1 (100) | 6.3 ± 0.1 | 1.4 ± 0.0 | 1.8 ± 0.1 | 1.2 ± 0.0 | 0.36 | 0.26 | |
50 F | H | 48 | 93.2 (100) | 10.5 ± 0.2 | 4.0 ± 0.1 | 2.2 ± 0.2 | 3.3 ± 0.2 | 0.29 | 0.22 |
O | 24 | 41.3 (70.9) | 5.9 ± 0.1 | 1.0 ± 0.0 | 1.8 ± 0.1 | 0.8 ± 0.0 | 0.33 | 0.25 | |
70 F | H | 48 | 77.2 (86.9) | 14.9 ± 0.4 | 4.3 ± 0.2 | 0.6 ± 0.0 | 2.2 ± 0.1 | 0.36 | 0.31 |
O | 48 | 48.1 (64.8) | 6.7 ± 0.1 | 1.9 ± 0.1 | 4.5 ± 0.3 | 2.3 ± 0.1 | 0.24 | 0.14 | |
90 F | H | 48 | 57.1 (64.3) | 14.5 ± 0.1 | 3.6 ± 0.1 | 0.6 ± 0.1 | 2.5 ± 0.3 | 0.38 | 0.30 |
O | 144 | 52.5 (52.5) | 8.0 ± 0.3 | 0.6 ± 0.0 | 8.1 ± 0.4 | 3.9 ± 0.2 | 0.21 | 0.06 | |
110 F | H | 48 | 40.3 (53.1) | 10.0 ± 0.0 | 3.1 ± 0.1 | 1.0 ± 0.1 | 1.9 ± 0.1 | 0.30 | 0.21 |
O | 72 | 44.8 (44.8) | 9.8 ± 0.2 | 1.0 ± 0.1 | 8.6 ± 0.3 | 2.5 ± 0.3 | 0.24 | 0.14 | |
30 Ga | H | 24 | 64.2 (100) | 4.8 ± 0.2 | 1.3 ± 0.2 | 1.4 ± 0.2 | 1.5 ± 0.1 | 0.32 | 0.20 |
O | 48 | 100 (100) | 8.9 ± 0.2 | 0.8 ± 0.0 | 2.6 ± 0.2 | 1.7 ± 0.0 | 0.34 | 0.19 | |
50 Ga | H | 48 | 100 (100) | 11.4 ± 0.4 | 2.6 ± 0.2 | 1.9 ± 0.1 | 2.7 ± 0.1 | 0.30 | 0.24 |
O | 48 | 90.0 (90.0) | 15.3 ± 0.4 | 0.8 ± 0.1 | 1.9 ± 0.0 | 2.0 ± 0.3 | 0.38 | 0.32 | |
70 Ga | H | 48 | 61.6 (75.0) | 10.4 ± 0.2 | 2.5 ± 0.3 | 1.3 ± 0.0 | 2.5 ± 0.2 | 0.32 | 0.22 |
O | 48 | 54.8 (54.8) | 11.7 ± 0.3 | 2.2 ± 0.2 | 2.7 ± 0.2 | 1.6 ± 0.1 | 0.34 | 0.24 | |
90 Ga | H | 48 | 33.6 (48.6) | 7.0 ± 0.1 | 1.4 ± 0.0 | 1.3 ± 0.1 | 1.5 ± 0.1 | 0.31 | 0.15 |
O | 48 | 39.1 (44.1) | 10.9 ± 0.2 | 1.1 ± 0.1 | 1.4 ± 0.1 | 2.5 ± 0.3 | 0.37 | 0.23 | |
G + F (40 + 20) | H | 72 | 98.7 (100) | 13.7 ± 0.1 | 2.0 ± 0.1 | 6.0 ± 0.5 | 2.7 ± 0.1 | 0.30 | 0.19 |
G + Ga (40 + 20) | H | 48 | 82.5 (94.6) | 11.5 ± 0.1 | 2.6 ± 0.1 | 3.7 ± 0.3 | 2.9 ± 0.3 | 0.30 | 0.24 |
Initial Sugar Conc. (g/L) | Fermentation Medium | Time (h) | Sugar Uptake (%) | BDO (g/L) | Ethanol (g/L) | Acetoin (g/L) | Cell (g/L) | YBDO/sugars (g/g) | PBDO (g/L·h) |
---|---|---|---|---|---|---|---|---|---|
Study of Stirring/Aeration | |||||||||
100 rpm | H | 72 | 92.2 (92.2) | 18.8 ± 0.7 | 2.5 ± 0.1 | 2.1 ± 0.0 | 2.0 ± 0.3 | 0.43 | 0.26 |
200 rpm | H | 48 | 88.9 (100) | 16.9 ± 0.0 | 1.8 ± 0.0 | 2.7 ± 0.2 | 2.3 ± 0.1 | 0.41 | 0.35 |
300 rpm | H | 24 | 89.0 (100) | 16.3 ± 0.3 | 1.5 ± 0.2 | 4.2 ± 0.0 | 0.7 ± 0.2 | 0.39 | 0.68 |
Study of Tryptone Use in Fermentation Medium | |||||||||
0 T | H | 48 | 88.9 (100) | 16.9 ± 0.0 | 1.8 ± 0.0 | 2.7 ± 0.2 | 2.3 ± 0.1 | 0.41 | 0.35 |
1 T | H | 48 | 90.0 (98.8) | 15.9 ± 0.1 | 1.3 ± 0.0 | 5.3 ± 0.3 | 2.5 ± 0.6 | 0.37 | 0.33 |
2.5 T | H | 48 | 90.2 (93.7) | 14.6 ± 0.0 | 1.3 ± 0.0 | 5.4 ± 0.0 | 3.0 ± 0.6 | 0.33 | 0.30 |
5 T | H | 48 | 90.1 (93.2) | 14.9 ± 0.2 | 1.2 ± 0.1 | 5.3 ± 0.0 | 3.0 ± 0.2 | 0.34 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Linares, J.C.; Mateo Martínez, A.; Coca, M.; Lucas, S.; García-Cubero, M.T. Carrot Discard as a Promising Feedstock to Produce 2,3-Butanediol by Fermentation with P. polymyxa DSM 365. Bioengineering 2023, 10, 937. https://doi.org/10.3390/bioengineering10080937
López-Linares JC, Mateo Martínez A, Coca M, Lucas S, García-Cubero MT. Carrot Discard as a Promising Feedstock to Produce 2,3-Butanediol by Fermentation with P. polymyxa DSM 365. Bioengineering. 2023; 10(8):937. https://doi.org/10.3390/bioengineering10080937
Chicago/Turabian StyleLópez-Linares, Juan Carlos, Adrián Mateo Martínez, Mónica Coca, Susana Lucas, and María Teresa García-Cubero. 2023. "Carrot Discard as a Promising Feedstock to Produce 2,3-Butanediol by Fermentation with P. polymyxa DSM 365" Bioengineering 10, no. 8: 937. https://doi.org/10.3390/bioengineering10080937
APA StyleLópez-Linares, J. C., Mateo Martínez, A., Coca, M., Lucas, S., & García-Cubero, M. T. (2023). Carrot Discard as a Promising Feedstock to Produce 2,3-Butanediol by Fermentation with P. polymyxa DSM 365. Bioengineering, 10(8), 937. https://doi.org/10.3390/bioengineering10080937