Time-Series Anomaly Detection Based on Dynamic Temporal Graph Convolutional Network for Epilepsy Diagnosis
Abstract
:1. Introduction
- We propose a dynamic temporal graph convolutional network (DTGCN) model, which is capable of detecting and classifying epilepsy using fine-grained labels and dynamic graphs. The effectiveness and superiority of our approach are substantiated through ablation studies and visualization experiments conducted on the TUSZ dataset.
- We design a seizure attention module that utilizes fine-grained labels to model the distribution and diffusion patterns of epilepsy and incorporates attention scores into the final loss function. This innovative approach encourages the model to concentrate more efficiently on abnormal time steps.
- We devise a strategy for dynamically generating EEG graph structures using predefined graphs, thereby modeling the dynamic connectivity characteristics within brain networks. Furthermore, the rate of change in the graph structure can be modulated via parameters, enabling more flexible adaptation to varying scenarios.
2. Related Work
3. Methods
3.1. Problem Statement
3.2. Framework of the DTGCN Model
3.3. Seizure Attention Module
3.4. Graph Structure Learning Module
3.5. Temporal Graph Convolution Network
4. Results Analysis
4.1. Experimental Dataset
4.2. Experimental Setup
- (1)
- LSTM [10]: A variant of an RNN with gating mechanisms.
- (2)
- Dense-CNN [9]: A previous state-of-the-art CNN for seizure detection.
- (3)
- CNN-LSTM [8]: A CNN and RNN framework enhanced by using external memory modules with trainable neural plasticity.
- (4)
- STS-HGCN-AL [28]: A model that extracts hierarchical graphs via a spectral–temporal convolutional neural network and variant self-gating mechanism and then through the hierarchical graph network to capture the spatiotemporal characteristics of the rhythm.
- (5)
- (6)
- PLV+GCNN and Spatial+GCNN [12]: They represent models that integrate temporal features extracted from individual EEG signals with short- and long-range spatial interdependencies among EEG channels. PLV and Spatial are two variants of graph structures.
4.3. Overall Performance
4.4. Ablation Study
4.5. Effects of Parameters
4.6. Visualization Results and Interpretability
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Epilepsy. Available online: https://www.who.int/news-room/fact-sheets/detail/epilepsyjune201 (accessed on 8 July 2022.).
- Goldenberg, M.M. Overview of drugs used for epilepsy and seizures: Etiology, diagnosis, and treatment. Pharm. Ther. 2010, 35, 392. [Google Scholar]
- Gu, D.Q.; Yu, N. Postictal state and its clinical significance in epilepsy. Chin. J. Neurol. 2022, 55, 65–70. [Google Scholar]
- Tang, S.; Dunnmon, J.A.; Saab, K.; Zhang, X.; Huang, Q.; Dubost, F.; Rubin, D.L.; Lee-Messer, C. Self-supervised graph neural networks for improved electroencephalographic seizure analysis. arXiv 2021, arXiv:2104.08336. [Google Scholar]
- Tao, T.-L.; Guo, L.-H.; He, Q.; Zhang, H.; Xu, L. Seizure detection by brain-connectivity analysis using dynamic graph isomorphism network. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 2302–2305. [Google Scholar]
- Shah, V.; Weltin, E.V.; Lopez, S.; McHugh, J.R.; Veloso, L.; Golmo-Hammadi, M.; Obeid, I.; Picone, J. The temple university hospital seizure detection corpus. Front. Neuroinform. 2018, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Obeid, I.; Picone, J. The temple university hospital eeg data corpus. Front. Neurosci. 2016, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Ahmedt-Aristizabal, D.; Fernando, T.; Denman, S.; Petersson, L.; Aburn, M.J.; Fookes, C. Neural memory networks for seizure type classification. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 569–575. [Google Scholar]
- Saab, K.; Dunnmon, J.; Re, C.; Rubin, D.; Lee-Messer, C. Weak super-vision as an efficient approach for automated seizure detection in electroen-cephalography. Npj Digit. Med. 2020, 3, 59. [Google Scholar] [CrossRef] [PubMed]
- Tsiouris, K.M.; Pezoulas, V.C.; Zervakis, M.; Konitsiotis, S.; Kout-Souris, D.D.; Fotiadis, D.I. A long short-term memory deep learning network for the prediction of epileptic seizures using eeg signals. Comput. Biol. Med. 2018, 99, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Usman, S.M.; Khalid, S.; Bashir, S. A deep learning based ensemble learning method for epileptic seizure prediction. Comput. Biol. Med. 2021, 136, 104710. [Google Scholar]
- Raeisi, K.; Khazaei, M.; Croce, P.; Tamburro, G.; Comani, S.; Zappasodi, F. A graph convolutional neural network for the automated detection of seizures in the neonatal eeg. Comput. Methods Programs Biomed. 2022, 222, 106950. [Google Scholar] [CrossRef]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. [Google Scholar] [CrossRef]
- Gotman, J. Automatic recognition of epileptic seizures in the eeg. Electroencephalogr. Clin. Neurophysiol. 1982, 54, 530–540. [Google Scholar] [CrossRef]
- Gotman, J.; Flanagan, D.; Zhang, J.; Rosenblatt, B. Automatic seizure detection in the newborn: Methods and initial evaluation. Electroen-Cephalography Clin. Neurophysiol. 1997, 103, 356–362. [Google Scholar] [CrossRef]
- Azami, H.; Fernandez, A.; Escudero, J. Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis. Med. Biol. Eng. Comput. 2017, 55, 2037–2052. [Google Scholar] [CrossRef]
- Temko, A.; Thomas, E.; Marnane, W.; Lightbody, G.; Boylan, G. Eeg-based neonatal seizure detection with support vector machines. Clin. Neurophysiol. 2011, 122, 464–473. [Google Scholar] [CrossRef]
- Thomas, E.; Temko, A.; Lightbody, G.; Marnane, W.; Boylan, G. Gaussian mixture models for classification of neonatal seizures using eeg. Physiol. Meas. 2010, 31, 1047. [Google Scholar] [CrossRef]
- Dhar, P.; Garg, V.K.; Rahman, M.A. Enhanced feature extraction-based cnn approach for epileptic seizure detection from eeg signals. J. Healthc. Eng. 2022, 2022, 9825862. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, J.; Sawan, M. Energy-efficient neural network for epileptic seizure prediction. IEEE Trans. Biomed. Eng. 2021, 69, 401–411. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, X.; Chen, P.; Yang, Y.; Ma, C.; Gao, Z. A gradient-based automatic optimization cnn framework for eeg state recognition. J. Neural Eng. 2022, 19, 016009. [Google Scholar] [CrossRef]
- Shan, X.; Cao, J.; Huo, S.; Chen, L.; Sarrigiannis, P.G.; Zhao, Y. Spatial–temporal graph convolutional network for alzheimer classification based on brain functional connectivity imaging of electroencephalogram. Hum. Brain Mapp. 2022, 43, 5194–5209. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, W.; Xiao, Y.; Xiao, S.; Chen, S.; Chen, S.; Xu, G.; Che, W. Cross-subject seizure detection in eegs using deep transfer learning. Comput. Math. Methods Med. 2020, 2022, 7902072. [Google Scholar] [CrossRef]
- Zhu, Y.; Saqib, M.; Ham, E.; Belhareth, S.; Hoffman, R.; Wang, M.D. Mitigating patient-to-patient variation in eeg seizure detection using meta transfer learning. In Proceedings of the 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Cincinnati, OH, USA, 26–28 October 2020; pp. 548–555. [Google Scholar]
- Han, S.; Woo, S.S. Learning sparse latent graph representations for anomaly detection in multivariate time series. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 2977–2986. [Google Scholar]
- Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. Lstm-based encoder-decoder for multi-sensor anomaly detection. arXiv 2016, arXiv:1607.00148. [Google Scholar]
- Deng, A.; Hooi, B. Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 4027–4035. [Google Scholar]
- Li, Y.; Liu, Y.; Guo, Y.-Z.; Liao, X.-F.; Hu, B.; Yu, T. Spatio-temporal-spectral hierarchical graph convolutional network with semisupervised active learning for patient-specific seizure prediction. IEEE Trans. Cybern. 2021, 52, 12189–12204. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017, arXiv:1707.01926. [Google Scholar]
- Burns, S.P.; Santaniello, S.; Yaffe, R.B.; Jouny, C.C.; Crone, N.E.; Bergey, G.K.; Anderson, W.S.; Sarma, S.V. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc. Natl. Acad. Sci. USA 2014, 111, E5321–E5330. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Zhang, K.; Sun, Y.; Wang, Y.; Miao, A.; Xiang, J.; Wang, X. Frequency-dependent dynamics of functional connectivity networks during seizure termination in childhood absence epilepsy: A magnetoencephalography study. Front. Neurol. 2021, 12, 744749. [Google Scholar] [CrossRef]
EEG Files | Patients | Total Duration | CF Seizures | GN Seizures | AB Seizures | CT Seizures | |
---|---|---|---|---|---|---|---|
(% Seizure) | (% Seizure) | (% Seizure) | (% Seizure) | (Patients) | (Patients) | (Patients) | |
Train Set | 4599 (18.9%) | 592 (34.1%) | 45,174.72 min (6.3%) | 1868 (148) | 409 (68) | 50 (7) | 48 (11) |
Test Set | 900 (25.6%) | 45 (77.8%) | 9031.58 min (9.8%) | 297 (24) | 114 (11) | 49 (5) | 61 (4) |
Model | Seizure Detection AUCROC | Seizure Classification Weighted F1-Score | ||
---|---|---|---|---|
12 s | 60 s | 12 s | 60 s | |
LSTM | 0.629 | 0.586 | 0.576 | 0.601 |
Dense-CNN | 0.786 | 0.715 | 0.652 | 0.679 |
CNN-LSTM | 0.749 | 0.682 | 0.641 | 0.666 |
STS-HGCN-AL | 0.809 | 0.772 | 0.707 | 0.714 |
Corr-DCRNN | 0.856 | 0.843 | 0.723 | 0.741 |
Dist-DCRNN | 0.861 | 0.875 | 0.747 | 0.750 |
PLV + GCNN | 0.867 | 0.871 | 0.728 | 0.734 |
Spatial + GCNN | 0.852 | 0.850 | 0.724 | 0.727 |
DTGCN(ours) | 0.873 | 0.889 | 0.742 | 0.759 |
Model | Seizure Detection AUC/STD | Seizure Classification Weighted F1/STD | ||
---|---|---|---|---|
12-s | 60-s | 12-s | 60-s | |
DTGCN | 0.873/12.45 | 0.889/11.41 | 0.742/15.59 | 0.759/12.48 |
DTGCN w/o sz-atten | 0.869/10.85 | 0.883/8.23 | 0.726/12.17 | 0.732/9.93 |
TGCN w Dist-graph | 0.861/9.94 | 0.856/9.20 | 0.737/9.72 | 0.729/8.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Yu, K.; Zhou, H.; Wu, X.; Su, S. Time-Series Anomaly Detection Based on Dynamic Temporal Graph Convolutional Network for Epilepsy Diagnosis. Bioengineering 2024, 11, 53. https://doi.org/10.3390/bioengineering11010053
Wu G, Yu K, Zhou H, Wu X, Su S. Time-Series Anomaly Detection Based on Dynamic Temporal Graph Convolutional Network for Epilepsy Diagnosis. Bioengineering. 2024; 11(1):53. https://doi.org/10.3390/bioengineering11010053
Chicago/Turabian StyleWu, Guanlin, Ke Yu, Hao Zhou, Xiaofei Wu, and Sixi Su. 2024. "Time-Series Anomaly Detection Based on Dynamic Temporal Graph Convolutional Network for Epilepsy Diagnosis" Bioengineering 11, no. 1: 53. https://doi.org/10.3390/bioengineering11010053
APA StyleWu, G., Yu, K., Zhou, H., Wu, X., & Su, S. (2024). Time-Series Anomaly Detection Based on Dynamic Temporal Graph Convolutional Network for Epilepsy Diagnosis. Bioengineering, 11(1), 53. https://doi.org/10.3390/bioengineering11010053