Development of an Anisotropic Hyperelastic Material Model for Porcine Colorectal Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Collection and Preparation
2.2. Testing Apparatus and Tensile Testing
Tissue Orientation | Circumferential Direction | Longitudinal Direction |
---|---|---|
Number of Specimens Tested | 20 | 18 |
Gauge Length 1, mm | 20 | 20 |
Average Width (Std. Dev.), mm | 10.1 (1.7) | 8. 6 (1.6) |
Average Thickness (Std. Dev.), mm | 1.0 (0.2) | 1.1 (0.3) |
Average Weight (Std. Dev.), g | 1.2 (0.2) | 1.2 (0.4) |
2.3. Data Processing
2.4. Proposed Constitutive Model
3. Results
3.1. Experimental Results
3.2. Constitutive Model Results
3.3. Finite Element Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Colon Tissue Structure
References
- Luglio, G.; Corcione, F. Stapled versus Handsewn Methods for Ileocolic Anastomoses. Tech. Coloproctol. 2019, 23, 1093–1095. [Google Scholar] [CrossRef]
- Kang, C.Y.; Halabi, W.J.; Chaudhry, O.O.; Nguyen, V.; Pigazzi, A.; Carmichael, J.C.; Mills, S.; Stamos, M.J. Risk Factors for Anastomotic Leakage after Anterior Resection for Rectal Cancer. Arch. Surg. 2013, 148, 65–71. [Google Scholar] [CrossRef]
- Ho, Y.H.; Ashour, M.A.T. Techniques for Colorectal Anastomosis. World J. Gastroenterol. 2010, 16, 1610–1621. [Google Scholar] [CrossRef]
- Blumetti, J. Management of Low Colorectal Anastomotic Leak: Preserving the Anastomosis. World J. Gastrointest. Surg. 2015, 7, 378. [Google Scholar] [CrossRef] [PubMed]
- Brisinda, G.; Vanella, S.; Cadeddu, F.; Civello, I.M.; Brandara, F.; Nigro, C.; Mazzeo, P.; Marniga, G.; Maria, G. End-to-End versus End-to-Side Stapled Anastomoses after Anterior Resection for Rectal Cancer. J. Surg. Oncol. 2009, 99, 75–79. [Google Scholar] [CrossRef]
- Hammond, J.; Lim, S.; Wan, Y.; Gao, X.; Patkar, A. The Burden of Gastrointestinal Anastomotic Leaks: An Evaluation of Clinical and Economic Outcomes. J. Gastrointest. Surg. 2014, 18, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- An, V.; Chandra, R.; Lawrence, M. Anastomotic Failure in Colorectal Surgery: Where Are We At? Indian J. Surg. 2018, 80, 163–170. [Google Scholar] [CrossRef]
- Nováček, V.; Trn, T.N.; Klinge, U.; Tolba, R.H.; Staat, M.; Bronson, D.G.; Miesse, A.M.; Whiffen, J.; Turquier, F. Finite Element Modelling of Stapled Colorectal End-to-End Anastomosis: Advantages of Variable Height Stapler Design. J. Biomech. 2012, 45, 2693–2697. [Google Scholar] [CrossRef]
- Ai, L.Y.; Ge, S.C.; Xu, J.J.; Li, M.Y.; Mao, L.; Song, C.L. Finite Element Analysis and Experiment on Large Intestine End-to-End Anastomosis. In Proceedings of the 2018 Design of Medical Devices Conference, Minneapolis, MN, USA, 9–12 April 2018. [Google Scholar] [CrossRef]
- Guachi, R.; Bini, F.; Bici, M.; Campana, F.; Marinozzi, F.; Guachi, L. Finite Element Analysis in Colorectal Surgery: Non-Linear Effects Induced by Material Model and Geometry. In Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization; Taylor & Francis: Abingdon, UK, 2018; pp. 219–230. [Google Scholar]
- Guachi, R. Nonlinear Effects in Finite Elements Analysis of Colorectal Surgical Clamping. Ph.D. Thesis, Secretary of Higher Education, Science, Technology and Innovation, Azogues, Ecuador, 2018. [Google Scholar]
- Kanani, Z.; Rouhi, G.; Khoorjestan, S.M. Investigating the Effects of Various Suturing Parameters on the Leakage from the Intestinal Anastomosis Site: Finite Element Analyses. Biocybern. Biomed. Eng. 2019, 39, 983–991. [Google Scholar] [CrossRef]
- Watters, D.A.K.; Smith, A.N.; Eastwood, M.A.; Anderson, C.; Elton, R.A.; Mugerwa, J.W. Mechanical Properties of the Colon: Comparison of the Features of the African and European Colon in Vitro. Gut 1985, 26, 384–392. [Google Scholar] [CrossRef]
- Egorov, V.I.; Schastlivtsev, I.V.; Prut, E.V.; Baranov, A.O.; Turusov, R.A. Mechanical Properties of the Human Gastrointestinal Tract. J. Biomech. 2002, 35, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.B.; Oberg, K.; Wolchok, J.C. Tensile Properties of the Rectal and Sigmoid Colon: A Comparative Analysis of Human and Porcine Tissue. SpringerPlus 2015, 4, 142. [Google Scholar] [CrossRef] [PubMed]
- Kararli, T.T.; Searle, G.D. Review Article Comparison of the Gastrointestinal Anatomy, Physiology, and Biochemistry of Humans and Commonly Used Laboratory Animals. Biopharm. Drug Dispos. 1995, 16, 351–380. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Pan, E.; Chakravarthula, S.S.; Han, F.; Liang, J.; Gudlavalleti, S. Measurement of Mechanical Properties of Rectal Wall. J. Mater. Sci. 2005, 16, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Ciarletta, P.; Dario, P.; Tendick, F.; Micera, S. Hyperelastic Model of Anisotropic Fiber Reinforcements within Intestinal Walls for Applications in Medical Robotics. Int. J. Robot. Res. 2009, 28, 1279–1288. [Google Scholar] [CrossRef]
- Carniel, E.L.; Gramigna, V.; Fontanella, C.G.; Stefanini, C.; Natali, A.N. Constitutive Formulations for the Mechanical Investigation of Colonic Tissues. J. Biomed. Mater. Res. Part A 2014, 102, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Carniel, E.L.; Gramigna, V.; Fontanella, C.G.; Frigo, A.; Stefanini, C.; Rubini, A.; Natali, A.N. Characterization of the Anisotropic Mechanical Behaviour of Colonic Tissues: Experimental Activity and Constitutive Formulation. Exp. Physiol. 2014, 99, 759–771. [Google Scholar] [CrossRef]
- Patel, B.; Chen, H.; Ahuja, A.; Krieger, J.F.; Noblet, J.; Chambers, S.; Kassab, G.S. Constitutive Modeling of the Passive Inflation-Extension Behavior of the Swine Colon. J. Mech. Behav. Biomed. Mater. 2018, 77, 176–186. [Google Scholar] [CrossRef]
- Puértolas, S.; Peña, E.; Herrera, A.; Ibarz, E.; Gracia, L. A Comparative Study of Hyperelastic Constitutive Models for Colonic Tissue Fitted to Multiaxial Experimental Testing. J. Mech. Behav. Biomed. Mater. 2020, 102, 103507. [Google Scholar] [CrossRef]
- Zhao, Y.; Siri, S.; Feng, B.; Pierce, D.M. The Macro-and Micro-Mechanics of the Colon and Rectum II: Theoretical and Computational Methods. Bioengineering 2020, 7, 152. [Google Scholar] [CrossRef]
- Bhattarai, A.; May, C.A.; Staat, M.; Kowalczyk, W.; Tran, T.N. Layer-Specific Damage Modeling of Porcine Large Intestine under Biaxial Tension. Bioengineering 2022, 9, 528. [Google Scholar] [CrossRef]
- Bhattarai, A.; Kowalczyk, W.; Tran, T.N. A Literature Review on Large Intestinal Hyperelastic Constitutive Modeling. Clin. Biomech. 2021, 88, 105445. [Google Scholar] [CrossRef]
- Bhattarai, A.; Horbach, A.J.; Staat, M.; Kowalczyk, W.; Tran, T.N. Virgin Passive Colon Biomechanics and a Literature Review of Active Contraction Constitutive Models. Biomechanics 2022, 2, 138–157. [Google Scholar] [CrossRef]
- Komuro, T. The Lattice Arrangement of the Collagen Fibres in the Submucosa of the Rat Small Intestine: Scanning Electron Microscopy. Cell Tissue Res. 1988, 251, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, G.A.; Gasser, T.C.; Ogden, R.W. A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models. J. Elast. 2000, 61, 1–48. [Google Scholar] [CrossRef]
- Hamzah, M.N.; Nima, M.S. Hyperelastic Constitutive Modelling for Fiber-Reinforced Rubber Materials Hyperelastic Constitutive Modelling for Fiber-Reinforced Rubber Materials. In Proceedings of the International Conference on Engineering Science Applications, Kerbala, Iraq, 24–25 December 2014. [Google Scholar]
- Yeoh, C. Some Forms of the Strain Energy Function for Rubber. Rubber Chem. Technol. 1993, 66, 754–771. [Google Scholar] [CrossRef]
- Bonet, J.; Wood, R. Nonlinear Continuum Mechanics for Finite Element Analysis; Cambridge University Press: New York, NY, USA, 1997. [Google Scholar]
- Siri, S.; Zhao, Y.; Maier, F.; Pierce, D.M.; Feng, B. The Macro-and Micro-Mechanics of the Colon and Rectum I: Experimental Evidence. Bioengineering 2020, 7, 130. [Google Scholar] [CrossRef]
Tissue Orientation | Circumferential Direction | Longitudinal Direction |
---|---|---|
Number of Specimens Tested | 20 | 18 |
Length (Std. Dev.), mm | 29.0 (2.6) | 29.8 (2.2) |
Average Width (Std. Dev.), mm | 8.9 (2.0) | 8.0 (2.1) |
(Pa) | (Pa) | (Pa) | |
1.400 × 105 | −9.585 × 103 | −1.976 × 103 | |
(Pa) | (Pa) | (Pa) | (Degrees) |
4.929 × 105 | −2.981 × 105 | 6.553 × 103 | 0.790 |
(Pa) | (Pa) | (Pa) | (Degrees) |
3.0146 × 104 | −2.9556 × 104 | −739.324 | 90.100 |
Proposed Constitutive Model | 0.0011 | 0.0212 |
FEM | 0.0048 | 0.0061 |
Source | Qualitative Description | Maximum Reported Engineering Strain and Stress (Pa) | Engineering Stress around 0.2 Strain (Pa) | |
---|---|---|---|---|
[15] | Circumferential | Nonlinear until 0.05 strain, followed by a linear rise | 1.06, 5.1 × 105 | – |
Longitudinal | 1.20, 6.3 × 105 | – | ||
[17] | Circumferential | Nonlinear until 0.25 strain, followed by a linear rise | 0.90, 1.2 × 105 | 1.0 × 104 |
Longitudinal | Nonlinear | 0.90, 3.3 × 105 | 3.0 × 103 | |
[18] | Circumferential | Nonlinear | 0.84, 3.2 × 105 | 2.5 × 104 |
Longitudinal | Linear until about 0.08 strain, followed by a linear rise | 0.23, 8.8 × 103 | 8.5 × 103 | |
[20] | Circumferential | Nonlinear | 0.40, 3.20 × 105 | 1.0 × 105 |
Longitudinal | Linear | 0.40, 7.5 × 104 | 3.5 × 104 | |
[22] | Circumferential | Nonlinear | 0.08, 6.0 × 105 | – |
Longitudinal | Nonlinear | 0.03, 4.0 × 105 | – | |
[23] | Circumferential | Nonlinear | 0.11, 9.1 × 104 | – |
Longitudinal | Nonlinear | 0.04, 9.6 × 104 | – | |
Current Study | Circumferential | Linear | 0.22, 9.0 × 105 | 8.2 × 105 |
Longitudinal | Nonlinear | 0.18, 1.7 × 105 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahmy, Y.; Trabia, M.B.; Ward, B.; Gallup, L.; Froehlich, M. Development of an Anisotropic Hyperelastic Material Model for Porcine Colorectal Tissues. Bioengineering 2024, 11, 64. https://doi.org/10.3390/bioengineering11010064
Fahmy Y, Trabia MB, Ward B, Gallup L, Froehlich M. Development of an Anisotropic Hyperelastic Material Model for Porcine Colorectal Tissues. Bioengineering. 2024; 11(1):64. https://doi.org/10.3390/bioengineering11010064
Chicago/Turabian StyleFahmy, Youssef, Mohamed B. Trabia, Brian Ward, Lucas Gallup, and Mary Froehlich. 2024. "Development of an Anisotropic Hyperelastic Material Model for Porcine Colorectal Tissues" Bioengineering 11, no. 1: 64. https://doi.org/10.3390/bioengineering11010064
APA StyleFahmy, Y., Trabia, M. B., Ward, B., Gallup, L., & Froehlich, M. (2024). Development of an Anisotropic Hyperelastic Material Model for Porcine Colorectal Tissues. Bioengineering, 11(1), 64. https://doi.org/10.3390/bioengineering11010064