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Abstract: Primary angle closure glaucoma (PACG) is a major cause of visual impairment, particularly
in Asia. Although effective screening tools are necessary, the current gold standard is complex and
time-consuming, requiring extensive expertise. Artificial intelligence has introduced new opportuni-
ties for innovation in ophthalmic imaging. Anterior chamber depth (ACD) is a key risk factor for
angle closure and has been suggested as a quick screening parameter for PACG. This study aims to
develop an AI algorithm to quantitatively predict ACD from anterior segment photographs captured
using a portable smartphone slit-lamp microscope. We retrospectively collected 204,639 frames
from 1586 eyes, with ACD values obtained by anterior-segment OCT. We developed two models,
(Model 1) diagnosable frame extraction and (Model 2) ACD estimation, using SWSL ResNet as the
machine learning model. Model 1 achieved an accuracy of 0.994. Model 2 achieved an MAE of
0.093 ± 0.082 mm, an MSE of 0.123 ± 0.170 mm, and a correlation of R = 0.953. Furthermore, our
model’s estimation of the risk for angle closure showed a sensitivity of 0.943, specificity of 0.902,
and an area under the curve (AUC) of 0.923 (95%CI: 0.878–0.968). We successfully developed a
high-performance ACD estimation model, laying the groundwork for predicting other quantitative
measurements relevant to PACG screening.

Keywords: artificial intelligence; anterior chamber depth; machine learning; slit-lamp images;
anterior-segment optical coherence tomography; Smart Eye Camera; glaucoma; deep learning;
algorithm; telemedicine

1. Introduction

Primary angle closure glaucoma (PACG) significantly contributes to visual impairment,
particularly in Asia, where detection rates are notably low [1]. One of the challenges in
managing PACG is its often asymptomatic nature in the early stages, making early detection
crucial to prevent vision loss [2]. Therefore, the community-based detection and monitoring
of angle closure are essential, especially in regions with high prevalence rates like Asia,
where up to 64.7% of PACG cases are undetected [1].

Despite the necessity for effective screening tools, the current gold standard, go-
nioscopy, presents several limitations. It is a complex, time-consuming procedure requiring
significant technical expertise, access to a slit-lamp biomicroscope, and the application of
local anesthesia [3].

Recent advancements in artificial intelligence (AI) have opened new avenues for
innovation in ophthalmic imaging. AI has been successfully applied in image analysis
for disease screening, receiving regulatory approval for retinal disease screening [4–14].
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Although fewer AI algorithms exist for anterior segment eye diseases, studies indicate
their potential in effectively detecting conditions such as pterygium from anterior segment
optical coherence tomography (AS-OCT) scans [15].

Anterior chamber depth (ACD) is a significant risk factor for angle closure and has
been suggested as a quick screening parameter for primary angle closure disease [16] and
as a tool for PACG screening [16,17]. However, the availability of ocular biometers for ACD
measurements is limited in primary care or community settings because the biometers are
stationary, large, and expensive, restricting their use for widespread screening [16,17].

Given these challenges, this study aims to develop an AI algorithm to predict ACD
quantitatively from anterior segment photographs captured using a portable smartphone-
based slit-lamp microscope similar to our past studies [18–20]. This approach leverages the
portability and accessibility of smartphones, offering a practical solution for community-
based screenings where advanced imaging tools are not readily available. By validating
this algorithm, we aim to establish PACD screening, ultimately enhancing early detection
and intervention efforts in high-risk populations.

2. Materials and Methods
2.1. Ethics Approval

In accordance with the principles of the Declaration of Helsinki, this study was
conducted following the protocols approved by the Institutional Ethics Review Board of
the Minamiaoyama Eye Clinic, Tokyo, Japan (IRB No. 202101). Given the retrospective
nature of the study and the utilization of deidentified data, the need for written informed
consent was exempted.

2.2. Study Design

In this retrospective analysis, data were sourced from the Yokohama Keiai Eye Clinic,
a single ophthalmology institution. All videos recorded between July 2020 and December
2021 were collated. The videos were captured using the Smart Eye Camera (SEC; SLM-
i07/SLM-i08SE, OUI Inc., Tokyo, Japan; 13B2X10198030101/13B2X10198030201). The
ophthalmologists consistently employed the standard direct focal illumination method,
using a full-height slit-beam of 0.1 to 0.3 mm (mm) thickness, angled at 40◦. The slit-lamp
videos needed to display a well-focused frame of both the cornea and crystalline lens for a
minimum of five seconds each, as illustrated in Figure 1. The inclusion criteria for the videos
were: (1) eyes in non-mydriatic conditions; (2) a clear focus on the cornea and crystalline
lens, enabling the observation of the anterior chamber depth (ACD); (3) a minimum
video duration of five seconds. Conversely, videos were excluded for reasons such as
difficulty in integration into the study. Specific exclusion criteria for patients encompassed:
(1) corneal ailments impeding ACD assessment (e.g., bullous keratopathy and corneal
opacity); (2) aphakic and pseudophakic eyes or/and mydriasis eyes; (3) videos of subpar
quality, notably those devoid of any crystalline lens frame. Following these criteria, 15 eyes
of 6 cases were excluded, and a dataset of 1586 eyes was curated for the dataset. Parallelly,
ACD measurements were derived to all of the subjects by AS-OCT utilizing the CASIA2
Advance system (Tomey, Nagoya, Japan). All assessments were executed under consistent
lighting conditions in a designated room.

For the development of the ML model, videos and ACD values were collated on a cloud
server and organized into a dataset explicitly designed for this investigation. During the
preprocessing stage, videos were decomposed into static images, resulting in the extraction
of 204,639 anterior segment images from videos encompassing 1586 eyes from 797 cases.
Subsequently, these frames were annotated by ophthalmologists (E.S. and S.S.) to determine
whether they could be classified as “diagnosable,” which accurately recognized ACD, or
“non-diagnosable”, where ACD recognition was inconclusive. A ML algorithm was then
employed to segregate the frames into these categories as an initial step in our analysis.
Following this, all 204,639 frames were reassessed for “diagnosable” or “non-diagnosable”
status, with subsequent steps only incorporating frames deemed “diagnosable” (as detailed



Bioengineering 2024, 11, 1005 3 of 12

in the Datasets and Machine Learning section, Model 1). These selected frames were then
divided into training, validation, and test datasets at proportions of 80%, 10%, and 10%,
respectively, in preparation for the subsequent ML phase and validated the model. In
this second ML phase which estimates ACD (Model 2), training involves the use of ACD
values obtained from AS-OCT in tandem with anterior segment images. Finally, the model
underwent validation and testing phases to assess its performance (Figure 1).
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Figure 1. Study design and model developments. (A) Dataset and preprocessing of study chart.
(B) Diagnosable frame extraction (Model 1). Images classified as diagnosable and non-diagnosable.
(C) Anterior chamber depth annotation and machine learning (Model 2). Dataset is split into training,
validation, and test datasets. (D) Architecture of our machine learning models.

2.3. Portable Recording Slit-Light Microscope

SEC was employed as a diagnostic tool to record slit-light videos. Designed as a
smartphone attachment, the SEC has showcased comparable diagnostic capabilities to
traditional slit-lamp microscopes, as evidenced in animal studies [21] and various clinical
studies [22–25]. It emulates traditional diagnostic techniques such as slit-lamp microscope,
particularly in the diagnosis of ACD in clinical settings [22]. The SEC projects a slit light
with a thickness ranging from 0.1 to 0.3 mm, tailored to visualize the crystalline lens within
both nondilated and dilated pupils at a consistent angle of 40◦ [22]. Given its capacity
to capture anterior segment videos of the eyes, the SEC was selected to maximize video
recordings and subsequently aggregate a substantial dataset of cataract images. The devices
utilized for recording were the iPhone 7 and iPhone SE2 (Apple Inc., Cupertino, CA, USA).
Videos were recorded with resolutions spanning from 720 × 1280 to 1080 × 1920 pixels,
maintaining frame rates of either 30 or 60 frames per second.

2.4. Anterior Segment Optical Coherence Tomography

AS-OCT measurements were conducted using the CASIA2 Advance system. Certified
optometrists examined all participants, ensuring the acquisition of a minimum of two sets
of high-quality images. All OCT scans were pupil-centered and taken along the vertical axis,
capturing the superior and inferior angles at 90◦ and 270◦, respectively, in alignment with
the CASIA system’s standard anterior-segment scanning protocol [22]. ACD was quantified
as the vertical distance between the posterior corneal margin’s apex (specifically, the corneal
endothelium) and the apex of the crystalline lens, as delineated by AS-OCT [22]. To ensure
data quality, certified optometrist and a medical doctor (H.N., and R.J.K) meticulously
reviewed the AS-OCT data to secure two sets of pristine images per patient. This step
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ensured the automated software’s proficiency in digitizing and identifying the corneal and
lens surfaces, aligning with the study’s objective criteria.

2.5. Datasets and Machine Learning (ML)

Initially, data stored on our cloud server was migrated to a local server to facilitate
ML analysis. The videos were decomposed into static images, with each frame being
classified by multiple ophthalmologists (E.S. and S.S.) as either “diagnosable” or “non-
diagnosable”. “Diagnosable” frames were identified as those providing a clear view of
the anterior chamber, including the cornea, anterior chamber, and crystalline lens, suitable
for estimating ACD. Conversely, “non-diagnosable” frames were defined as those not
meeting the specified criteria for diagnosable images. In this first ML phase (Model 1), an
ML algorithm was utilized to automatically categorize anterior segment images using the
SWSL ResNet model [26]. Following this, all 204,639 frames were evaluated and labeled
as either “diagnosable” or “non-diagnosable”, with the latter being excluded from further
analysis. The remaining diagnosable frames were then randomly allocated into training,
validation, and test datasets. Specifically, 1252 eyes, corresponding to 29,397 frames, were
assigned to the training dataset. Meanwhile, 159 eyes with 3855 frames, and 175 eyes
with 4027 frames were allocated to the validation and test datasets, respectively. Machine
learning processing was exclusively applied to the training dataset, with the other datasets
reserved for validation purposes. To determine ACD values through our ML model, a deep
learning algorithm was trained to predict ACDs using normalized images of the anterior
segment as input (Model 2). The SWSL ResNet model was applied to the training data
for this purpose [26]. For the visualization of class activation mapping, we implemented
the gradient-weighted class activation mapping (Grad-CAM) method [27–29]. Grad-CAM
is a sophisticated post hoc visual explanation technique that highlights the areas within
an image that are pivotal for a deep neural network’s predictions by visualizing the
gradient of the class score as it relates to the input image. The computational setup for this
experiment included a CPU of Intel® Core i9-13900H (Intel Corporation, Santa Clara, CA,
USA) with 20 cores, paired with a GPU of NVIDIA® GeForce RTX™ 4090 Laptop (NVIDIA
Corporation, Santa Clara, CA, USA).

2.6. Statistical Analysis

Given that this is a pioneering study, determining an ideal sample size was challenging.
As such, we enrolled as many cases as possible to ensure robust results. Significance tests
were conducted based on their respective confidence intervals. To assess the performance
of the machine learning-based ACD estimation model, we utilized two metrics, the mean
absolute error (MAE) and mean squared error (MSE), which measure the accuracy of a
model’s predictions. We calculated the MAE and MSE based on both individual frame
inputs and the cumulative input from entire video sequences for each eye. Spearman’s
correlation coefficients were determined for the correlation analysis between values by
the AI algorithm and values of AS-OCT. The accuracy, sensitivity, specificity, and area
under the receiver operating characteristic curve (AUC) were calculated based on the ACD
values. The values were classified as deep or shallow using cutoff ratios of 2.400 mm or
3.000 mm. A 2 × 2 contingency table was then created to compute these metrics. All
statistical analyses were performed using SPSS (ver. 29; International Business Machines
Corporation, Armonk, NY, USA).

3. Results
3.1. Demographics of the Datasets

In our study, we used a dataset consisting of 204,639 frames obtained from 1586 eyes of
797 cases from the dataset included individuals aged between 18 and 97 years. Additionally,
the dataset encompassed a single ethnic composition, including Asian populations (Figure 1).
These frames were pivotal for the training, validation, and testing of our machine learning
models. Regarding the distribution of ACD within the dataset: 16 eyes had an ACD of
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less than 2.000 mm, 158 eyes fell within the ACD range of 2.000–2.500 mm, 538 eyes in the
2.500–3.000 mm range, 712 eyes in the 3.000–3.500 mm range, 176 eyes in the 3.500–4.000 mm
range, and only 1 eye exhibited an ACD of over 4.000 mm (range: 1.070–5.030 mm; average
± standard deviation [SD]: 3.018 ± 0.385 mm; measured by AS-OCT, as shown in Figure 2).
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Figure 2. Distribution of anterior chamber depth (ACD) in our study. The x-axis represents the ACD
in millimeters (mm), ranging from 1.800 mm to 4.000 mm, divided into 0.100 mm increments. The
y-axis indicates the number of eyes corresponding to each ACD measurement range. The average
ACD across the study population is 3.018 ± 0.385 mm.

3.2. Performance of the Diagnosable Frame Extraction Model (Result of Model 1)

Model 1 was developed with the dual functionality of extracting a diagnostically rele-
vant frame representing the ACD from the video data and determining whether the frame
pertains to the left eye or right eye. This model demonstrated exceptional performance
metrics in its operational capacity, achieving an accuracy of 0.994, a precision of 0.995, and a
recall of 0.995 (Figure 3A). Furthermore, when specifically assessing the model’s capability
to accurately classify frames as either pertaining to the left eye or right eye, it attained an
accuracy of 0.939 (Figure 3A).
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Figure 3. Performance metrics for diagnosable frame extraction (Model 1) and anterior chamber
depth (ACD) estimation (Model 2). Figure 3 presents the performance metrics for the two models
used in the study. Model 1 focuses on extracting diagnosable frames. Model 2 evaluates the accuracy
of ACD estimation.
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3.3. Performance of the ACD Estimation Model (Result of Model 2)

Model 2 is an AI model designed to estimate the ACD from the diagnosable frames
extracted by Model 1. Our AI algorithm demonstrated capability in estimating the ACD with
a MAE of 0.118 ± 0.099 mm and a MSE of 0.154 ± 0.200 mm on a per-frame basis. Figure 4B).
Additionally, upon evaluation across individual eyes, the estimation accuracy of the AI
algorithm improved, yielding an MAE of 0.064 ± 0.071 mm and an MSE of 0.096 ± 0.148 mm,
further illustrating the model‘s enhanced precision in ACD estimation on a per-eye basis
(Figure 3B). Moreover, the performance of Model 2 achieved an MAE of 0.093 ± 0.082 mm
and an MSE of 0.123 ± 0.170 mm on a per-case (Figure 3B).
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Figure 4. Correlation between AS-OCT anterior chamber depth (ACD) values and AI-estimated
ACD measurements. Figure 4 illustrates the correlation between AS-OCT-measured ACD and the
AI-estimated ACD from both individual frames and eyes.

3.4. Correlation of the Estimated Values versus AS-OCT Values

Within the scope of our investigation, the analysis of the relationship between the
actual ACD measurements obtained via AS-OCT and the estimations provided by our
predictive model for individual frames demonstrated a statistically significant strong corre-
lation (R = 0.928, 95% confidence interval [CI] [0.924–0.932], Spearman’s rank correlation,
as shown in Figure 4A). Similarly, the evaluation of this correlation across all eyes revealed
a comparably significant strong association between AS-OCT-measured ACD values and
those estimated by our model (R = 0.963, 95% CI [0.951–0.972], Spearman’s rank correlation
coefficient, as shown in Figure 4B). Moreover, a similarly strong correlation was observed
between the AS-OCT-measured ACD values and those estimated by our model (R = 0.953,
95% CI [0.912–0.961], Spearman’s rank correlation coefficient; Figure 4C).

3.5. Estimation of the Risk for Angle Closure Glaucoma

In estimating the risk of angle closure glaucoma, our model demonstrated high accu-
racy, sensitivity, specificity, and AUC with an ACD cut-off value of 2.400 mm (accuracy:
0.983, 95% CI [0.960–0.983]; sensitivity: 1.000, 95% CI [0.987–1.000]; specificity: 0.727, 95%
CI [0.533–0.727]; AUC: 0.729, 95% CI [0.596–0.863]; Figure 5A). Conversely, when the ACD
cut-off value was set to 3.000 mm, the model exhibited high accuracy, sensitivity, specificity,
and AUC (accuracy: 0.922, 95% CI [0.874–0.951]; sensitivity: 0.943, 95% CI [0.894–0.972];
specificity: 0.902, 95% CI [0.855–0.930]; AUC: 0.923, 95% CI [0.878–0.968]; Figure 5B).
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Figure 5. Diagnostic performance of anterior chamber depth (ACD) cut-off values for angle closure
glaucoma. Figure 5 highlights the comparison of diagnostic performance metrics for different ACD
cut-off values in terms of sensitivity, specificity, accuracy, and area under the curve (AUC).

3.6. Visualization

In the Grad-CAM visualization, the overlaid heatmap on the input images indicates
that the area with the highest intensity corresponds to the middle of the anterior chamber
(Figure 6).
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Figure 6. Visualizations of anterior chamber depth (ACD) estimation model. These visualizations
provide insights into the areas of the eye that are most influential in the model’s ACD estimation
process using gradient-weighted class activation mapping (Grad-CAM) method. It shows that the
heatmap images pointing out where the anterior chamber is.

4. Discussion

This study evaluated the capability of our machine learning model to estimate the
ACD from videos recorded using SEC. ACD measurements obtained via AS-OCT were used
as the gold standard. The model‘s efficacy was quantified using MAE, MSE, correlation,
and the estimated risk of angle closure based on ACD. The ACD distribution in our cohort
was first assessed for diversity and representativeness. Previous studies report mean
ACD values ranging from 2.79 mm to 3.26 mm [30,31]. A histogram of our cohort‘s ACD
distribution closely resembled that of a larger cohort of approximately 5000 individuals [32],
supporting the representativeness of our sample.

To assess the sufficiency of our developed model compared to past studies, it is im-
portant to note that limited research has been carried out previously. Soh, Z.D. et al. used
2311 pairs of anterior segment photos and ocular biometer data from AS-OCT, achieving
an MAE of 0.18 ± 0.14 mm in open angles and 0.19 ± 0.14 mm in angle closure, with
an R² of 0.63 in validation data [33]. Chen, D. et al. used a portable slit-lamp prototype
with smartphone-corrected images from 66 eyes, achieving an R2 of 0.73 [34]. Qian, C.
et al. utilized 4157 smartphone-based anterior segment photos, achieving an MAE of
0.16 ± 0.13 mm and an R2 of 0.40 [35]. In our current study, we achieved higher perfor-
mance with an MAE of 0.093 ± 0.082 mm, an MSE of 0.123 ± 0.170 mm, and an R of
0.953 between predicted and measured ACD (Figures 3 and 4). Regarding angle closure
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risk assessment using AI, Qian, Z. et al. achieved 80% sensitivity, 79% specificity, and an
AUC of 0.86 with 3753 anterior segment photos [36]. Our model achieved a sensitivity
of 0.943 and a specificity of 0.902 with an ACD cutoff of 3.000 mm, and a sensitivity of
1.000, specificity of 0.727, and AUC of 0.991 with an ACD cutoff of 2.400 mm (Figure 5),
demonstrating better performance with both 3.000 mm and 2.400 mm cutoff compared
to previous studies. The success of our model can be attributed to (1) the larger dataset
size (total 37,279 frames) [37], (2) the use of a single type of portable slit-lamp device (SEC)
for consistent image correction, (3) the application of video recording to increase dataset
numbers [18–20], and (4) the fixed slit angle of 40 degrees in the SEC, which may contribute
to image stabilization [18,19]. These factors contribute to the higher performance of our
model compared to previous studies.

This study has several limitations. First, the dataset is limited, as it includes data
only from a single institute and exclusively from phakic eyes without mydriasis. Phys-
iological changes in ACD after dilation are significant due to the posterior movement
of the crystalline lens caused by the dilated iris–lens diaphragm, leading to changes in
ACD values compared to initial measurements [38]. Additionally, data from eyes with
intraocular lenses (IOL) or aphakic eyes were not collected. ACD in eyes with IOL tends to
be deeper due to the thickness and position of the IOL [39]. Devereux et al. reported that
using a screening cutoff of <2.22 mm could effectively distinguish primary angle closure
from normal eyes [40], and recent studies have reinforced these findings, demonstrating
higher sensitivity and specificity using the same cutoff value, thereby supporting the utility
of ACD measurements in screening for angle closure conditions [1]. Our study used cutoffs
of 2.400 mm and 3.000 mm due to the limited diversity in the collected datasets (Figure 2).
To apply our model in a real clinical setting, it is necessary to collect more diverse data,
including mydriatic eyes, eyes with IOL, aphakic eyes, and a wider range of ACD values
from multiple institutes.

Secondly, we utilized only the SEC for data collection. Previous studies have shown
that images of the anterior segment captured with the SEC are of sufficient quality to
evaluate various anterior segment diseases, including estimating ACD [21,22], not only in
Japanese patients but also in Indian, Indonesian, and Italian populations [23–25]. However,
the quality of anterior segment images can vary depending on the brand of slit-lamp
microscopes used. Therefore, further studies are required to evaluate images taken with
different slit-lamp microscopes, as demonstrated by Ueno, Y. et al. [41]. Moreover, we could
not reproduce conventional diagnosis method such as gonioscopy, so future studies are
needed to gain more precise diagnosis methods.

Thirdly, we employed the SWSL ResNet as our machine learning model based on its
proven efficiency in handling medical imaging data, particularly when annotated data are
limited [26]. SWSL ResNet is a semi-supervised learning (SSL) technique that leverages a
large collection of unlabeled images to enhance the performance of state-of-the-art image
classification methods. In a similar study, Soh, Z.D. et al. utilized ResNet-50, an architecture
that applies residual learning with labeled images [27]. Likewise, Qian Z employed ResNet-
34 as a machine learning model [36]. Other algorithms, such as the estimation of tear
meniscus height from keratography images, have utilized U-net as a central neural network
model, achieving an accuracy of 82.5%, sensitivity of 0.899, precision of 0.911, and F1 score
of 0.901 from 217 images [42]. Elsawy, A et al. developed a deep learning neural network
diagnosis algorithm for three anterior segment diseases using VGG19, achieving an AUC
of 0.94 to 0.99 from AS-OCT images [43]. These previous studies, including those on ACD
estimation and other anterior segment diseases, have predominantly used labeled images
as resources for machine learning. The use of labeled images is common in AI algorithm
development for the anterior segment of the eyes [44]. In contrast, our study applies an SSL
model that utilizes unlabeled images, which may be one of the reasons our model achieves
high performance. However, since most past studies have used labeled images, future
studies will need to explore different machine learning models for further improvement.
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Despite the limitations, our AI algorithm offers a promising tool for estimating ACD
from slit-lamp images. To the best of our knowledge, no other tools currently exist that can
record anterior segment videos and apply an AI algorithm to estimate ACD in a portable
format. Therefore, this tool could be instrumental in risk assessment for acute glaucoma
attacks, particularly in developing countries and rural clinics where access to sophisticated
ophthalmological equipment is limited combined with telemedicine [2,45–49]. Moreover,
including more data about family history, data of intraocular pressure, refraction, and other
parameters, we are able to screen the primary angle closure glaucoma. Future studies are
warranted to validate our model in larger and more diverse populations and to explore its
integration into standard clinical workflows.

5. Patents

E.S. is a founder of OUI Inc. OUI Inc. has the patent for the Smart Eye Camera
(Patent No. JP; 6627071, USA; 16/964822, EU; 19743494.7, China; 201980010174.7, India;
202017033428, VN; 1-2020-04893, and Africa; AP/P2020/012569. Patent pending EU;
2175926.2, US; 17/799043). There are no other relevant declarations relating to this patent.
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