The Diagnostic Value of bpMRI in Prostate Cancer: Benefits and Limitations Compared to mpMRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients’ Selection
2.2. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Interclass Correlation Coefficient and Inter-Rater Agreement (Kappa)
3.3. Comparison of PI-RADS Classifications between mpMRI and bpMRI for Scores of 3 and 4
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Merriel, S.W.D.; Funston, G.; Hamilton, W. Prostate Cancer in Primary Care. Adv. Ther. 2018, 35, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.; Rajcic, B.; Foreman, D.; Moretti, K.; O’Callaghan, M.E. Men Presenting with Prostate-specific Antigen (PSA) Values of over 100 Ng/mL. BJU Int. 2016, 117, 68–75. [Google Scholar] [CrossRef]
- Nepal, A.; Sharma, P.; Bhattarai, S.; Mahajan, Z.; Sharma, A.; Sapkota, A.; Sharma, A. Extremely Elevated Prostate-Specific Antigen in Acute Prostatitis: A Case Report. Cureus 2023, 15, e43730. [Google Scholar] [CrossRef]
- Sarkar, S.; Das, S. A Review of Imaging Methods for Prostate Cancer Detection: Supplementary Issue: Image and Video Acquisition and Processing for Clinical Applications. Biomed. Eng. Comput. Biol. 2016, 7s1, BECB.S34255. [Google Scholar] [CrossRef]
- Tanaka, T.; Yang, M.; Froemming, A.T.; Bryce, A.H.; Inai, R.; Kanazawa, S.; Kawashima, A. Current Imaging Techniques for and Imaging Spectrum of Prostate Cancer Recurrence and Metastasis: A Pictorial Review. RadioGraphics 2020, 40, 709–726. [Google Scholar] [CrossRef]
- Dutruel, S.P.; Jeph, S.; Margolis, D.J.A.; Wehrli, N. PI-RADS: What Is New and How to Use It. Abdom. Radiol. 2020, 45, 3951–3960. [Google Scholar] [CrossRef]
- Lo, K.; Chui, K.; Leung, C.; Ma, S.; Lim, K.; Ng, T.; Wong, J.; Li, J.K.; Mak, S.; Ng, C.F. Outcomes of Transperineal and Transrectal Ultrasound-Guided Prostate Biopsy. Hong Kong Med. J. 2019, 25, 209–215. [Google Scholar] [CrossRef]
- Velasquez, M.C.; Prakash, N.S.; Venkatramani, V.; Nahar, B.; Punnen, S. Imaging for the Selection and Monitoring of Men on Active Surveillance for Prostate Cancer. Transl. Androl. Urol. 2018, 7, 228–235. [Google Scholar] [CrossRef]
- Stabile, A.; Giganti, F.; Rosenkrantz, A.B.; Taneja, S.S.; Villeirs, G.; Gill, I.S.; Allen, C.; Emberton, M.; Moore, C.M.; Kasivisvanathan, V. Multiparametric MRI for Prostate Cancer Diagnosis: Current Status and Future Directions. Nat. Rev. Urol. 2020, 17, 41–61. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, A.; Harisinghani, M. PI-RADS: Multiparametric MRI in Prostate Cancer. Magn. Reson. Mater. Phys. 2022, 35, 523–532. [Google Scholar] [CrossRef]
- Bagcilar, O.; Alis, D.; Seker, M.; Erdemli, S.; Karaarslan, U.; Kus, A.; Kayhan, C.; Saglican, Y.; Kural, A.; Karaarslan, E. A Comparative Study of Multiparametric MRI Sequences in Measuring Prostate Cancer Index Lesion Volume. J. Belg. Soc. Radiol. 2022, 106, 105. [Google Scholar] [CrossRef]
- Ursprung, S.; Herrmann, J.; Nikolaou, K.; Harland, N.; Bedke, J.; Seith, F.; Zinsser, D. Die multiparametrische MRT der Prostata: Anforderungen und Grundlagen der Befundung. Urologie 2023, 62, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Hasebroock, K.M.; Serkova, N.J. Toxicity of MRI and CT Contrast Agents. Expert Opin. Drug Metab. Toxicol. 2009, 5, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Iacob, R.; Stoicescu, E.-R.; Cerbu, S.; Manolescu, D.-L.; Bardan, R.; Cumpănaş, A. Could Biparametric MRI Replace Multiparametric MRI in the Management of Prostate Cancer? Life 2023, 13, 465. [Google Scholar] [CrossRef]
- Schick, F.; Pieper, C.C.; Kupczyk, P.; Almansour, H.; Keller, G.; Springer, F.; Mürtz, P.; Endler, C.; Sprinkart, A.M.; Kaufmann, S.; et al. 1.5 vs 3 Tesla Magnetic Resonance Imaging: A Review of Favorite Clinical Applications for Both Field Strengths—Part 1. Investig. Radiol. 2021, 56, 680–691. [Google Scholar] [CrossRef]
- Yacoub, J.H.; Oto, A. MR Imaging of Prostate Zonal Anatomy. Radiol. Clin. N. Am. 2018, 56, 197–209. [Google Scholar] [CrossRef]
- Luttrell, L.; Li, J.; Cohen, R.J. Zonal Origin of Prostate Cancer: Comparison of Long-Term Outcomes after Radical Prostatectomy. Int. Urol. Nephrol. 2023, 55, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
- The Radiology Assistant: Prostate Anatomy. Available online: https://radiologyassistant.nl/abdomen/prostate/prostate-cancer-pi-rads-v2-1-1 (accessed on 5 October 2024).
- Rodriguez, E.; Skarecky, D.; Narula, N.; Ahlering, T.E. Prostate Volume Estimation Using the Ellipsoid Formula Consistently Underestimates Actual Gland Size. J. Urol. 2008, 179, 501–503. [Google Scholar] [CrossRef]
- Ahmed, H.U.; El-Shater Bosaily, A.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic Accuracy of Multi-Parametric MRI and TRUS Biopsy in Prostate Cancer (PROMIS): A Paired Validating Confirmatory Study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Brembilla, G.; Giganti, F.; Sidhu, H.; Imbriaco, M.; Mallett, S.; Stabile, A.; Freeman, A.; Ahmed, H.U.; Moore, C.; Emberton, M.; et al. Diagnostic Accuracy of Abbreviated Bi-Parametric MRI (a-bpMRI) for Prostate Cancer Detection and Screening: A Multi-Reader Study. Diagnostics 2022, 12, 231. [Google Scholar] [CrossRef] [PubMed]
- Rosenkrantz, A.B.; Ginocchio, L.A.; Cornfeld, D.; Froemming, A.T.; Gupta, R.T.; Turkbey, B.; Westphalen, A.C.; Babb, J.S.; Margolis, D.J. Interobserver Reproducibility of the PI-RADS Version 2 Lexicon: A Multicenter Study of Six Experienced Prostate Radiologists. Radiology 2016, 280, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Chun, F.K.-H.; Hutterer, G.C.; Perrotte, P.; Gallina, A.; Valiquette, L.; Benard, F.; McCormack, M.; Briganti, A.; Ionescu, C.; Jeldres, C.; et al. Distribution of Prostate Specific Antigen (PSA) and Percentage Free PSA in a Contemporary Screening Cohort with No Evidence of Prostate Cancer. BJU Int. 2007, 100, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Belue, M.J.; Yilmaz, E.C.; Daryanani, A.; Turkbey, B. Current Status of Biparametric MRI in Prostate Cancer Diagnosis: Literature Analysis. Life 2022, 12, 804. [Google Scholar] [CrossRef] [PubMed]
- Junker, D.; Steinkohl, F.; Fritz, V.; Bektic, J.; Tokas, T.; Aigner, F.; Herrmann, T.R.W.; Rieger, M.; Nagele, U. Comparison of Multiparametric and Biparametric MRI of the Prostate: Are Gadolinium-Based Contrast Agents Needed for Routine Examinations? World J. Urol. 2019, 37, 691–699. [Google Scholar] [CrossRef]
- Westphalen, A.C.; McCulloch, C.E.; Anaokar, J.M.; Arora, S.; Barashi, N.S.; Barentsz, J.O.; Bathala, T.K.; Bittencourt, L.K.; Booker, M.T.; Braxton, V.G.; et al. Variability of the Positive Predictive Value of PI-RADS for Prostate MRI across 26 Centers: Experience of the Society of Abdominal Radiology Prostate Cancer Disease-Focused Panel. Radiology 2020, 296, 76–84. [Google Scholar] [CrossRef]
- Asif, A.; Nathan, A.; Ng, A.; Khetrapal, P.; Chan, V.W.-S.; Giganti, F.; Allen, C.; Freeman, A.; Punwani, S.; Lorgelly, P.; et al. Comparing Biparametric to Multiparametric MRI in the Diagnosis of Clinically Significant Prostate Cancer in Biopsy-Naive Men (PRIME): A Prospective, International, Multicentre, Non-Inferiority within-Patient, Diagnostic Yield Trial Protocol. BMJ Open 2023, 13, e070280. [Google Scholar] [CrossRef]
- Greenberg, J.W.; Koller, C.R.; Casado, C.; Triche, B.L.; Krane, L.S. A Narrative Review of Biparametric MRI (bpMRI) Implementation on Screening, Detection, and the Overall Accuracy for Prostate Cancer. Ther. Adv. Urol. 2022, 14, 175628722210963. [Google Scholar] [CrossRef]
- Steinkohl, F.; Pichler, R.; Junker, D. Short Review of Biparametric Prostate MRI. Memo 2018, 11, 309–312. [Google Scholar] [CrossRef]
- Bellin, M.-F.; Van Der Molen, A.J. Extracellular Gadolinium-Based Contrast Media: An Overview. Eur. J. Radiol. 2008, 66, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Brown, J.J. MR Contrast Agents: Physical and Pharmacologic Basics. Magn. Reson. Imaging 2007, 25, 884–899. [Google Scholar] [CrossRef] [PubMed]
- Currie, G.M. Pharmacology, Part 5: CT and MRI Contrast Media. J. Nucl. Med. Technol. 2019, 47, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Stanzione, A.; Ponsiglione, A.; Di Fiore, G.A.; Picchi, S.G.; Di Stasi, M.; Verde, F.; Petretta, M.; Imbriaco, M.; Cuocolo, R. Prostate Volume Estimation on MRI: Accuracy and Effects of Ellipsoid and Bullet-Shaped Measurements on PSA Density. Acad. Radiol. 2021, 28, e219–e226. [Google Scholar] [CrossRef] [PubMed]
MRI Sequence | Image Aquisition Principle | Information Provided |
---|---|---|
T1-weighted (T1) | Proton Density-based Image Acquisition–Measures tissue proton density. | It provides ‘anatomical’ images resembling macroscopic tissue appearances. Examples: Fat appears bright (high signal), while water and soft tissues appear darker (low signal). |
T2-weighted (T2) | Emphasizes tissue T2 relaxation. The sequence highlights disparities in tissue T2 relaxation time, aiding in tissue characterization. | Highlights disparities in tissue T2 relaxation time, aiding in tissue characterization. Examples: Fluid-filled structures appear bright (high signal), while dense structures appear darker (low signal). |
Diffusion-weighted (DWI) | Measures water molecule movement within tissues. | It reflects tissue cellularity, cell swelling, and edema. Examples: Tumors with high cellularity restrict water movement, appearing bright (high signal), while areas of edema or fluid accumulation may appear darker (low signal). |
Dynamic contrast-enhanced (DCE) | Monitors tissue enhancement post-injection of contrast agent. | It offers morphological and functional information based on contrast uptake. Examples: Rapid contrast enhancement may indicate areas of increased vascularity or neovascularization, suggesting malignancy. Slower enhancement may be seen in benign conditions. |
Parameter | Median/Arithmetic Mean | IQR/SD |
---|---|---|
Age (years) | 69 | 62–74 |
Prostate Ellipsoid Volume (mL) measured by mpMRI | 41.50 | 32–54 |
Prostate Ellipsoid Volume (mL) measured by bpMRI—reader 1 | 41 | 30–52.50 |
Prostate Ellipsoid Volume (mL) measured by bpMRI—reader 2 | 41 | 31–53.50 |
PI-RADS mpMRI | 2 | 2–4 |
PI-RADS bpMRI—reader 1 | 2 | 2–4 |
PI-RADS bpMRI—reader 2 | 2 | 2–3.5 |
Prostate-Specific Antigen (ng/mL) | 10.25 | 4.85–21.05 |
Parameter | Inter-Rater Agreement— Weighted Kappa | Standard Error | 95% CI |
---|---|---|---|
Prostate Ellipsoid Volume (mL) measured by bpMRI | 0.99270 a | 0.00182 | 0.98912 to 0.99627 |
PI-RADS bpMRI | 0.79754 b | 0.03263 | 0.73358 to 0.86149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacob, R.; Manolescu, D.; Stoicescu, E.R.; Cerbu, S.; Bardan, R.; Ghenciu, L.A.; Cumpănaș, A. The Diagnostic Value of bpMRI in Prostate Cancer: Benefits and Limitations Compared to mpMRI. Bioengineering 2024, 11, 1006. https://doi.org/10.3390/bioengineering11101006
Iacob R, Manolescu D, Stoicescu ER, Cerbu S, Bardan R, Ghenciu LA, Cumpănaș A. The Diagnostic Value of bpMRI in Prostate Cancer: Benefits and Limitations Compared to mpMRI. Bioengineering. 2024; 11(10):1006. https://doi.org/10.3390/bioengineering11101006
Chicago/Turabian StyleIacob, Roxana, Diana Manolescu, Emil Robert Stoicescu, Simona Cerbu, Răzvan Bardan, Laura Andreea Ghenciu, and Alin Cumpănaș. 2024. "The Diagnostic Value of bpMRI in Prostate Cancer: Benefits and Limitations Compared to mpMRI" Bioengineering 11, no. 10: 1006. https://doi.org/10.3390/bioengineering11101006
APA StyleIacob, R., Manolescu, D., Stoicescu, E. R., Cerbu, S., Bardan, R., Ghenciu, L. A., & Cumpănaș, A. (2024). The Diagnostic Value of bpMRI in Prostate Cancer: Benefits and Limitations Compared to mpMRI. Bioengineering, 11(10), 1006. https://doi.org/10.3390/bioengineering11101006