Influence of Screw Angulation on the Mechanical Properties on a Polyaxial Locking Plate Fixation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implants
2.2. Speciments
2.3. Test Preparation
- Each surrogate bone is measured, marked at its longitudinal centre, and cut into two equal-length fragments (Figure 2A).
- The surrogate bone is placed on one of the components of the fixation and drilling guide system, and two steel discs are used to create a 5 mm gap simulating a fracture (Figure 2B).
- The remaining components of the fixation and drilling guide are assembled to position the polyaxial plate and surgical drill guides (Figure 2C).
- A vertical column drill, which allowed for adjustment of the drilling angle at the base, is used to drill the holes for screw insertion (Figure 2D).
- The screws are inserted and tightened into the previously drilled holes using a torque wrench provided by the manufacturer of the polyaxial plates maintaining the plate–bone assembly within the fixation and drilling guide (Figure 2E).
2.4. Testing Configurations
2.5. Quasi-Static Tests
2.6. Cyclic Tests
2.7. Stiffness Assessment
2.8. Statistical Analysis
3. Results
3.1. Quasi-Static Torsion Tests
3.2. Cyclic Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keosengthong, A.; Kampa, N.; Jitpean, S.; Seesupa, S.; Kunkitti, P.; Hoisang, S. Incidence and classification of bone fracture in dogs and cats: A retrospective study at a Veterinary Teaching Hospital, Khon Kaen University, Thailand (2013–2016). Vet. Integr. Sci. 2018, 16, 211–221. [Google Scholar]
- Guiot, L.P.; Guillou, R.P.; Déjardin, L.M. Minimally invasive percutaneous medial plate-rod osteosynthesis for treatment of humeral shaft fractures in dog and cats: Surgical technique and prospective evaluation. Vet. Surg. 2019, 48, O41–O51. [Google Scholar] [CrossRef] [PubMed]
- Kallianpur, N.; Singh, K.; Gopinathan, A.; Sarangom, S.B.; Sharma, P.; Sowbharenya, C.; John, C. A preliminary investigation on effects of two different cortical- screw configurations on locking plates for the repair of simple diaphyseal long bone fractures in dogs. J. Anim. Plant Sci. 2019, 29, 684–694. [Google Scholar]
- Guiot, L.P.; Déjardin, L.M. Prospective evaluation of minimally invasive plate osteosynthesis in 36 nonarticular tibial fractures in dogs and cats. Vet. Surg. 2011, 40, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, P.; Südkamp, N.P. Principles and clinical application of the locking compression plate (LCP). Acta Chir. Orthop. Traumatol. Cech. 2006, 73, 221–228. [Google Scholar] [CrossRef]
- Kubiak, E.N.; Fulkerson, E.; Strauss, E.; Egol, K.A. The Evolution of Locked Plates. J. Bone Jt. Surg. 2006, 88 (Suppl. S4), 189–200. [Google Scholar]
- Miller, D.L.; Goswami, T. A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clin. Biomech. 2007, 22, 1049–1062. [Google Scholar] [CrossRef]
- Wagner, M. General principles for the clinical use of the LCP. Injury 2003, 34 (Suppl. S2), 31–42. [Google Scholar] [CrossRef] [PubMed]
- Gautier, E.; Sommer, C. Guidelines for the clinical application of the LCP. Injury 2003, 34 (Suppl. S2), 63–76. [Google Scholar] [CrossRef]
- Szypryt, P.; Forward, D. The use and abuse of locking plates. Orthop. Trauma. 2009, 23, 281–290. [Google Scholar] [CrossRef]
- Lh, B.; Glyde, M. Locking Plates in Veterinary Orthopedics. Locking Plates Vet. Orthop. 2018, 43, 483–487. [Google Scholar]
- Hoffmeier, K.L.; Hofmann, G.O.; Mückley, T. The strength of polyaxial locking interfaces of distal radius plates. Clin. Biomech. 2009, 24, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Otto, R.J.; Moed, B.R.; Bledsoe, J.G. Biomechanical comparison of polyaxial-type locking plates and a fixed-angle locking plate for internal fixation of distal femur fractures. J. Orthop. Trauma. 2009, 23, 645–652. [Google Scholar] [CrossRef]
- Gueorguiev, B.; Lenz, M. Why and how do locking plates fail? Inj. Int. J. Care Inj. 2018, 49, S56–S60. [Google Scholar] [CrossRef]
- Schoch, B.; Hast, M.W.; Mehta, S.; Namdari, S. Not all polyaxial locking screw technologies are created equal: A systematic review of the literature. JBJS Rev. 2018, 6, e6. [Google Scholar] [CrossRef] [PubMed]
- Hebert-Davies, J.; Laflamme, G.Y.; Rouleau, D.; Canet, F.; Sandman, E.; Li, A.; Petit, Y. A biomechanical study comparing polyaxial locking screw mechanisms. Injury 2013, 44, 1358–1362. [Google Scholar] [CrossRef]
- Tidwell, J.E.; Roush, E.P.; Ondeck, C.L.; Kunselman, A.R.; Reid, J.S.; Lewis, G.S. The biomechanical cost of variable angle locking screws $. Injury 2016, 47, 1624–1630. [Google Scholar] [CrossRef]
- Glowacki, J.; Bartkowiak, T.; Paczos, P.; Mietlinski, P.; Zawadzki, P.; Lapaj, L. Effect of screw angulation and multiple insertions on load-to-failure of polyaxial locking system. PLoS ONE 2023, 18, e0295526. [Google Scholar] [CrossRef]
- Glowacki, J.; Bartkowiak, T.; Gapinski, B.; Paczos, P.; Mietlinski, P.; Zawadzki, P.; Lapaj, L. Biomechanical Evaluation of Variable-Angle Locking Systems. A Micro-CT Analysis. J. Orthop. Trauma. 2023, 37, 10–1097. [Google Scholar] [CrossRef]
- Kaczmarek, J.; Bartkowiak, T.; Paczos, P.; Zawadzki, P.; Łączna, D.; Gapiński, B. What Is the Cost of Off-Axis Insertion of Locking Screws? A Biomechanical Comparison of a 3.5 mm Fixed-Angle and 3.5 mm Variable-Angle Stainless Steel Locking Plate Systems. Vet. Comp. Orthop. Traumatol. 2022, 35, 339–346. [Google Scholar] [CrossRef]
- Tomlinson, A.W.; Comerford, E.J.; Birch, R.S.; Innes, J.F.; Walton, M.B. Mechanical performance in axial compression of a titanium polyaxial locking plate system in a fracture gap model. Vet. Comp. Orthop. Traumatol. 2015, 28, 88–94. [Google Scholar] [PubMed]
- Eid, C.; Martini, F.M.; Bonardi, A.; Lusetti, F.; Brandstetter de Belesini, A.; Nicoletto, G. Single cycle to failure in bending of three titanium polyaxial locking plates. Vet. Comp. Orthop. Traumatol. 2017, 30, 172–177. [Google Scholar] [PubMed]
- Bufkin, B.W.; Barnhart, M.D.; Kazanovicz, A.J.; Naber, S.J.; Kennedy, S.C. The effect of screw angulation and insertion torque on the push-out strength of polyaxial locking screws and the single cycle to failure in bending of polyaxial locking plates. Vet. Comp. Orthop. Traumatol. 2013, 26, 186–191. [Google Scholar]
- Barnhart, M.D.; Rides, C.F.; Kennedy, S.C.; Aiken, S.W.; Walls, C.M.; Horstman, C.L.; Mason, D.; Chandler, J.C.; Brourman, J.D.; Murphy, S.M.; et al. Fracture Repair Using a Polyaxial Locking Plate System (PAX). Vet. Surg. 2013, 42, 60–66. [Google Scholar] [CrossRef]
- Yan, L.; Lim, J.L.; Lee, J.W.; Shi, C.; Tia, H.; Neill, G.K.O.; Chong, D.Y. Finite element analysis of bone and implant stresses for customized 3D-printed orthopaedic implants in fracture fixation. Med. Biol. Eng. Comput. 2020, 58, 921–931. [Google Scholar] [CrossRef]
- Zderic, I.; Willhuber, G.C.; Ahrend, M.D.; Gras, F.; Barla, J.; Sancineto, C.; Windolf, M.; Richards, G.; Gueorguiev, B. Biomechanical comparison between standard and inclined screw orientation in dynamic hip screw side-plate fixation: The lift-off phenomenon. J. Orthop. Transl. 2018, 18, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Triana, M.; Gueorguiev, B.; Sommer, C.; Stoffel, K.; Agarwal, Y.; Zderic, I.; Helfen, T.; Krieg, J.C.; Krause, F.; Knobe, M.; et al. LagLoc—A new surgical technique for locking plate systems. J. Orthop. Res. 2018, 36, 2886–2891. [Google Scholar] [CrossRef]
- Csiszer, A.B.; Daly, C.M.; Dyce, J.; Litsky, A.S.; Olmstead, M.L. Comparison of the effects of two screw insertion patterns on bone fragment translocation in a 3.5 mm dynamic compression plate and a 3.5 mm limited-contact dynamic compression plate. Vet. Surg. 2012, 41, 300–306. [Google Scholar] [CrossRef]
- Cuadrado, A.; Yánez, A.; Martel, O.; Deviaene, S.; Monopoli, D. Influence of load orientation and of types of loads on the mechanical properties of porous Ti6Al4V biomaterials. Mater. Des. 2017, 135, 309–318. [Google Scholar] [CrossRef]
- Gardner, M.J.; Evans, J.M.; Dunbar, R.P. Failure of fracture plate fixation. J. Am. Acad. Orthop. Surg. 2009, 17, 647–657. [Google Scholar] [CrossRef]
- Rowe-Guthrie, K.M.; Markel, M.D.; Bleedorn, J.A. Mechanical Evaluation of Locking, Nonlocking, and Hybrid Plating Constructs Using a Locking Compression Plate in a Canine Synthetic Bone Model. Vet. Surg. 2015, 44, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Windolf, M.; Klos, K.; Wähnert, D.; Van Der Pol, B.; Radtke, R.; Schwieger, K.; Jakob, R.P. Biomechanical investigation of an alternative concept to angular stable plating using conventional fixation hardware. BMC Musculoskelet. Disord. 2010, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Malenfant, R.C.; Sod, G.A. In vitro biomechanical comparison of 3.5 string of pearl plate fixation to 3.5 locking compression plate fixation in a canine fracture gap model. Vet. Surg. 2014, 43, 465–470. [Google Scholar] [CrossRef]
- Yánez, A.; Cuadrado, A.; Cabrera, P.J.; Martel, O.; Garcés, G. Experimental analysis of the minimally invasive plate osteosynthesis technique applied with non-locking screws and screw locking elements. Med. Eng. Phys. 2014, 36, 1543–1548. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, T.; Ando, K.; Wolf, S.; Augat, P.; Claes, L. The effect of micromovement on callus formation. J. Orthop. Sci. 2001, 6, 571–575. [Google Scholar] [CrossRef]
- Mori, Y.; Kamimura, M.; Ito, K.; Koguchi, M.; Tanaka, H.; Kurishima, H. A Review of impacts of implant stiffness on fracture healing. Appl. Sci. 2024, 14, 2259. [Google Scholar] [CrossRef]
- Denard, P.J.; Doornink, J.; Phelan, D.; Madey, S.M.; Fitzpatrick, D.C.; Bottlang, M. Biplanar fixation of a locking plate in the diaphysis improves construct strength. Clin. Biomech. 2011, 26, 484–490. [Google Scholar] [CrossRef]
- Kaczmarek, J.; Bartkowiak, T.; Schuenemann, R.; Paczos, P.; Gapinski, B.; Bogisch, S.; Unger, M. Mechanical Performance of a Polyaxial Locking Plate and the Influence of Screw Angulation in a Fracture Gap Model. Vet. Comp. Orthop. Traumatol. 2020, 33, 36–44. [Google Scholar] [CrossRef]
- Blake, C.A.; Boudrieau, R.J.; Torrance, B.S.; Tacvorian, E.K.; Cabassu, J.B.; Gaudette, G.R.; Kowaleski, M.P.; Boudrieau, R.J. Single cycle to failure in bending of three standard and five locking plates and plate constructs. Vet. Comp. Orthop. Traumatol. 2011, 24, 408–417. [Google Scholar] [CrossRef]
p-Values after Torsion Tests | ||
---|---|---|
Group 2 | Group 3 | |
Initial stiffness | ||
Group 1 | 0.10 | 0.16 |
Group 2 | 0.87 | |
Number of cycles before failure criterion | ||
Group 1 | 6.13 × 10−5 | 1.83 × 10−6 |
Group 2 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Fortún, G.; Yánez, A.; Cuadrado, A. Influence of Screw Angulation on the Mechanical Properties on a Polyaxial Locking Plate Fixation. Bioengineering 2024, 11, 1024. https://doi.org/10.3390/bioengineering11101024
Martínez-Fortún G, Yánez A, Cuadrado A. Influence of Screw Angulation on the Mechanical Properties on a Polyaxial Locking Plate Fixation. Bioengineering. 2024; 11(10):1024. https://doi.org/10.3390/bioengineering11101024
Chicago/Turabian StyleMartínez-Fortún, Gabriel, Alejandro Yánez, and Alberto Cuadrado. 2024. "Influence of Screw Angulation on the Mechanical Properties on a Polyaxial Locking Plate Fixation" Bioengineering 11, no. 10: 1024. https://doi.org/10.3390/bioengineering11101024
APA StyleMartínez-Fortún, G., Yánez, A., & Cuadrado, A. (2024). Influence of Screw Angulation on the Mechanical Properties on a Polyaxial Locking Plate Fixation. Bioengineering, 11(10), 1024. https://doi.org/10.3390/bioengineering11101024