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Abstract: Background: Ensemble tree-based models such as Xgboost are highly prognostic in cardio-
vascular medicine, as measured by the Clinical Effectiveness Metric (CEM). However, their ability to
handle correlated data, such as hospital-level effects, is limited. Objectives: The aim of this work is to
develop a binary-outcome mixed-effects Xgboost (BME) model that integrates random effects at the
hospital level. To ascertain how well the model handles correlated data in cardiovascular outcomes,
we aim to assess its performance and compare it to fixed-effects Xgboost and traditional logistic
regression models. Methods: A total of 227,087 patients over 17 years of age, undergoing cardiac
surgery from 42 UK hospitals between 1 January 2012 and 31 March 2019, were included. The dataset
was split into two cohorts: training/validation (n = 157,196; 2012–2016) and holdout (n = 69,891;
2017–2019). The outcome variable was 30-day mortality with hospitals considered as the clustering
variable. The logistic regression, mixed-effects logistic regression, Xgboost and binary-outcome
mixed-effects Xgboost (BME) were fitted to both standardized and unstandardized datasets across a
range of sample sizes and the estimated prediction power metrics were compared to identify the best
approach. Results: The exploratory study found high variability in hospital-related mortality across
datasets, which supported the adoption of the mixed-effects models. Unstandardized Xgboost BME
demonstrated marked improvements in prediction power over the Xgboost model at small sample
size ranges, but performance differences decreased as dataset sizes increased. Generalized linear
models (glms) and generalized linear mixed-effects models (glmers) followed similar results, with
the Xgboost models also excelling at greater sample sizes. Conclusions: These findings suggest that
integrating mixed effects into machine learning models can enhance their performance on datasets
where the sample size is small.

Keywords: machine learning; AI; random effects; cardiovascular medicine; risk prediction; expectation–
maximization; xgboost

1. Introduction

Ensemble tree-based machine learning models including Xgboost have been found
to be highly prognostic in cardiovascular medicine [1]. The algorithm’s performance
across various clinically significant metrics has been previously assessed using the Clinical
Effectiveness Metric (CEM), a consensus-based measure that includes a set of constituent
components [2,3]: Discrimination (AUC [4], F1 score [5]) assesses the model’s ability to
distinguish between outcomes, while calibration (1—ECE [6]) ensures that the predicted
probabilities accurately represent the true outcomes. Overall accuracy [7] (1—Brier score [8])
evaluates the closeness between predictions and actual results, and clinical utility (net
benefit analysis [9]) measures the practical benefit of the model within a clinical setting.
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In statistical models, correlation inflates coefficient estimates, resulting in high vari-
ability and unstable models [10]. Group levels within the dataset that represent samples
from a population or a probability distribution of group levels, i.e., random effects such as
cardiac hospitals, could result in the correlation of samples within each group. However,
the extent to which ensemble tree machine learning models can deal with such correlation
is largely unknown.

Here, a binary-outcome mixed-effects Xgboost (BME) algorithm is developed and
evaluated using CEM, incorporating hospitals as the random effects. Scenarios (different
sample sizes) under which the model underperforms compared to the fixed-effects Xgboost
(no cardiac centre: NC) model without random effects is also shown. Commonly used
glmer and glm models were also assessed to see how alternative mixed-effects machine
learning models compare with traditional logistic regression-based mixed-effects models.

Although mixed-effects models incorporating random effects have been widely ap-
plied using traditional medical statistics approaches such as in linear mixed and generalized
linear mixed models, there are fewer studies (see Section Related Work) on integrating
mixed effects into the gradient-boosted tree models for binary classification. Specifically,
to the best of our knowledge, the development and application of binary-outcome mixed
models have been limited to neural network studies only [11,12].

This article is organized as follows: the remainder of Section 1 reviews related work in
this area; Section 2 describes the dataset and patient population analyzed, the exploratory
data analysis undertaken, the proposed Xgboost BME approach, and provides the valida-
tion approach taken; Section 3 illustrates the application of the method on a cardiovascular
dataset; Section 4 gives a discussion in the context of other research as well as some clinical
relevance of the approach; Section 5 provides potential future work and the limitations of
this study; and finally, a conclusion is provided in Section 6.

Related Work

Ahlem et al. proposed a mixed-effects random forest (MERF) algorithm developed
using Expectation–Maximization (EM) to account for random effects in datasets with
continuous dependent variables [13]. In a pilot experimental study, we confirmed that
MERF should be used for only continuous outcomes and that for the standard random
forest there was limited gain in performance when hospital random effects were converted
into a high-dimensional set of 0 and 1 vectors and considered as fixed effects [14]. Ng
et al. applied the EM approach to determine the gating network’s weights in a mixture-of-
expert-based modelling framework for binary mixed-effects models [11]. The approach
was useful in that the estimated weights could be obtained directly from the log likelihood
and enabled faster convergence. However, the approach was based on neural networks. In
addition, Giora et al. developed an approach called linear mixed model neural network
(LMMNN) that defined a negative log likelihood for binary outcomes using the Gauss
Hermite Quadrature approximation to estimate the random effects as part of a mixed-effects
neural network model [12].

In our previous studies [2,3], it was found that combining the metrics covering all four
aspects of discrimination, calibration, clinical usefulness and overall accuracy into a single
CEM improved the efficiency of cognitive decision-making (according to Miller’s Law [15])
for selecting the optimal ensemble models [3,14]. This approach is useful for providing a
consensus metric that enables models to be ranked in scenarios where, for example, one
model could outperform another using one metric, but underperform under a different
metric. Furthermore, we demonstrated that such a consensus metric could be combined
with drill-down analysis to further interpret the models using individual metrics [3]. While
AUC does evaluate the diagnostic or predictive performance of a model, it does not directly
reflect patient benefit. This is why we had included within the CEM a suite of other metrics,
including the decision curve net benefit index, that were found to be clinically pertinent
from our prior study [1].
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2. Methods
2.1. Dataset and Patient Population

This study was performed on data from a national cardiac surgery patient registry
(details on the dataset can be found within Appendix A: dataset). The registry provides
a rich, time-stamped dataset ideal for evaluating the performance of predictive models
in clinical settings due to its comprehensive coverage of diverse patient populations and
outcomes. It consisted of a total of 227,087 patients over 17 years of age, undergoing
cardiac surgery from 42 UK hospitals between 1 January 2012 and 31 March 2019. The
dataset was split into two cohorts: training/validation (n = 157,196, 69.2%; 2012–2016)
and holdout (n = 69,891, 30.8%; 2017–2019) as per previous studies [2]. The division into
training/validation and holdout cohorts follows standard practices in clinical studies to
ensure temporal validation and to assess model generalization to future data [1]. The
primary outcome of this study was in-hospital 30-day mortality. As clinical machine
learning models with relevance to the tabular dataset are more applicable in the scenario
of a large number of variables (i.e., high-dimensional) and traditional statistical scores
using a small number of variables have already been well studied, this article examined
60 fixed-effects variables and 1 random-effects variable. The set of 60 fixed-effects variables
were determined to be clinically relevant upon consultation with two experienced cardiac
surgeons. The protocol for this dataset has been described in detail in the experimental
pilot study [14]. However, variable selection requires substantial experimentation work,
deserving a paper in its own right, and hence was excluded from the scope of this study.

2.2. Exploratory Analysis

An exploratory analysis was conducted by visualizing variation in the mortality rate
(%) across hospitals in the training set and test set using the previously validated approach
from [16] for facilitating comparison of patterns across geographical locations (hospitals in
this case). Horizontal dashed lines were added at the y-axis value that matched the mean
mortality rate across hospitals for the two respective plots.

2.3. Xgboost BME Approach

We define the Xgboost BME as follows:

yi = f (Xi)+Ziai, ai ∼ N
(

0, σ2
a

)
(1)

where f (Xi) represents the complex non-linear function for the random-effect cluster i of
m clusters. As in Simchoni et al. [12], f (Xi) = fi will be used interchangeably from here
on; yi = [y1, . . . , yni ]

T is the ni x 1 vector of responses for the ni observations in cluster i,
Xi =

[
xi1, . . . , xini

] T is the ni x p matrix of fixed-effect covariates, Zi =
[
zi1, . . . , zini

]T is

the ni x q matrix of random-effect covariates, and ai =
[
ai1, . . . , aiq

]T is the ith random-
effect cluster of the random effect from the q x 1 unknown vector of random effects having
clusters i = 1, . . . , m.

Unlike Hajjem et al. [13], the random effects are considered here to encapsulate the
variability in the hospitals as well as any sources of unexplained variation that may be
associated with different hospitals. In addition, due to the high computational cost in the
context of EM, as well as the rationale that Xgboost uses Boosting rather than Bagging as in
random forest, the out-of-bag prediction approach in [13] was excluded from the scope of
this study. The Gaussian log likelihood (GLL) was used for maximum likelihood estimation
(MLE) through EM with Gauss Hermite Quadrature in order to obtain estimates of fi and
σa. Since no substantial change was observed in the GLL criterion beyond 10 iterations in
the pilot experiments and the computational cost of the EM algorithm applied was high, a
minimum number of iterations was applied to avoid early stopping. The first iteration was
not considered, and the algorithm kept iterating until the absolute change in GLL was less
than a given value, such as 10−10.
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Step 0. Set r = 0. Let ai(0) = 0, σ2
a(0) = 1, y∗i(0) = yi.

Step 1. Set r = r + 1. Update y∗i(r), fi, ai(r).

i. Build a forest of trees using a standard Xgboost algorithm with y∗i(r) as the training
set responses in logit scale and xij as the corresponding training set of covariates,
i = 1, . . . , m, j = 1, . . ., ni. Since logits of y∗i(r) are continuous and binary classification
using Xgboost is considered, the values were converted back to binary labels using
median as the threshold. Given the high class imbalance, with the outcome class
(mortality) constituting fewer than 3% of data, employing the median as a threshold
dynamically modifies the decision boundary to better detect rare positive instances.
Since the Xgboost now models only the fixed-effects component of the response, it was
necessary to update the hyperparameters. Random stratified 3-fold Grid Search Cross
Validation was applied using the training dataset with the same hyperparameter
search criteria as that for the Xgboost NC model, similar to previous studies [1,3].
A maximum of 30 combinations was imposed to allow for variability in parameters
across iterations.

ii. Obtain an estimate of fi(r−1) using the training data on Xgboost in logit scale.
iii. Estimate ai(r) using ŷi(r−1) and fi(r−1) as inputs into the Gauss Hermite Quadrature

using an approach similar to Simchoni et al. [12], where ŷi(r−1) = logit(yi(r−1) + ε).
The number of quadratures was set at 80, as determined through pilot experiments,
satisfying k < 2m − 1, where k represents the degree of the polynomial for numerical
integration and m is the adjustment parameter, as the number of random effect levels.

iv. y∗i(r) = ŷi(r−1) − Ziai(r), i = 1, . . ., n, where y∗i(r) represents the fixed component of the
response and is re-binarized to 0 and 1 using the median of y∗i(r).

According to [17], the numerical approximation is utilized to predict the conditional
mean values of the random effects:

E
[

ai(r) |y] ≈
∫ fy|ai

(y|a i) fai (ai)

fy(y)
dai

≈
log

{
∑K

k=1 exp

[
∑n

j=1

(
ŷi(r)

(
f i+

√
2σ2

a(r)
xk

)
−log

(
1+e

( f i+
√

2σ2
a(r)

xk)
))]

wk√
π

}

∑m
i=1 log

{
∑K

k=1 exp

[
∑n

j=1

(
ŷi(r)

(
f i+

√
2σ2

a(r)
xk

)
−log

(
1+e

( f i+
√

2σ2
a(r)

xk)
))]

wk√
π

} ,
(2)

where
fai (ai) ≈

wk√
π

,

fy(y) ≈ ∑m
i=1 log

{
∑K

k=1 exp
[
∑n

j=1

(
ŷi

(
f i +

√
2σ2

a(r)xk

)
− log

(
1 + e

( f i+
√

2σ2
a(r)

xk)
))]

wk√
π

}
,

fy|ai
(y|a i) is the conditional density function of mortality given random effects from

hospital i and f i is the mean of estimates from Xgboost on training data for cluster i. fy(y)
is also the GLL.

Step 2. Update σ2
a(r) using

Var
(
E
[
yij |ai

]
) = σ2

a(r)

≈ var
(

f i +ai

)
≈ ∑m

i=1
ni(yi−y)2

m−1

≈ ∑m
i=1

ni

(
( f i (r)+ai(r)

)
−y
)2

m−1

(3)

where yi = f i(r) + ai(r) is the empirical average of the predicted response values at RE
level i and y is the empirical average of the actual response, yi, across all RE levels on the
logit scale.



Bioengineering 2024, 11, 1039 5 of 17

Step 3. Keep iterating by repeating steps 1 and 2 until convergence.
We ran the algorithm for 20 iterations and stopped adding additional iterations as

there were little change in performance.
According to [12], the likelihood function is as follows:

GLL =
m

∑
i=1

log

{
K

∑
k=1

exp

[
n

∑
j=1

(
yi

(
fi +

√
2σ2

a(r)xk

)
− log

(
1 + e

( fi+
√

2σ2
a(r)

xk)
))]

wk√
π

}
(4)

2.4. Validation Approach
2.4.1. Xgboost BME and NC Variant Models

In order to provide a reliable estimate of model performance and its variability, the
geometric mean of the Clinical Effectiveness Metric (CEM) and individual component
metrics were evaluated using 1000 bootstraps for the Xgboost BME and NC model variants
that had either features that were standardized or unstandardized. The 95% confidence
intervals were also calculated from the bootstrap sampling for the CEM.

Using a similar approach, the CEM and its individual components were assessed for
the glm and glmer model variants with and without standardization.

2.4.2. Performance by Sample Size

CEM and AUC performances were evaluated against different sample sizes ranging
from low (300–1000), medium (2000–10,000) to high (15,000-full sample size), specifically
300, 500, 700, 1000, 2000, 5000, 10,000, 15,000, 15,500 and 157,196. These were evaluated for
the two best models from each of the mixed and fixed Xgboost model variants, respectively,
i.e., the unstandardized Xgboost BME and standardized Xgboost NC models. In addition,
performance was evaluated for the two best models from each of the mixed glmer and
fixed glm model variants, i.e., standardized glmer and unstandardized glm models. Log10
transform of the sample size was performed along the x-axis of the figures.

2.4.3. Visualization of Parameters

The values of ai are kept in the log-odds space and plotted across the 42 hospitals by
their indices across all the sample sizes in the Section 2.4.2. Since ai contains random effects
due to both the hospital and any remaining residual error effects, we centred the ai effects
by subtracting the mean.

Based on the CEM plot by sample size, the ai across 20 iterations was visualized for
the unstandardized Xgboost BME model at a sample size (n = 2000) that showed marked
differences between the Xgboost BME and Xgboost NC models. To show the point of
convergence, the GLL objective function was plotted across 20 iterations.

2.4.4. Baseline Models

This study consulted with two cardiac surgeons on the most frequently used logistic
regression (LR) models used in their clinical studies. It was found that glm and glmer were
the most commonly used and they were not interested in further parameter optimization for
LR in their studies. As such, these models were included as baseline comparison models.

3. Results
3.1. Exploratory Analysis

The exploratory analysis showed hospital-related variability in mortality across the
training and test datasets. This variability highlights the necessity of accounting for hospital-
level effects in predictive modelling, justifying the use of mixed-effects models in this
context. Notably, the peak near hospital 20 showed a very large peak in the training set,
whilst the peak was diminished in the test set (Figure 1). Conversely, the peak at 32 was
diminished in the training set but was magnified in the test set.
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(B) holdout (test) sets; hospital numbers are shown on the x-axis; the red lines show the average
mortality rate across hospitals.

3.2. Model Validation: Comparison Using All Samples
3.2.1. Xgboost BME and NC Variant Models

The standardized Xgboost NC model demonstrated slightly higher performance
(CEM 0.741: 95%CI: 0.7405–0.7411; Table 1) than the other Xgboost model variants when
all training data samples were utilized. However, this difference is marginal and may
not translate into practical clinical benefits, emphasizing the importance of considering
model complexity and interpretability. The performance of unstandardized Xgboost BME
and NC did not differ (CEM: 0.740) with overlapping confidence intervals. However, the
standardized Xgboost BME model showed the lowest performance (CEM: 0.739, 95%CI:
0.7391–0.7397). There were negligible differences across individual component metrics.
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Table 1. CEM and individual component metrics for Xgboost BME and NC variant models.

Model Category ECE AUC Brier F1 Net Benefit CEM CEM Lower 95% CI CEM Upper 95% CI

standardized
Xgboost BME 0.998 0.854 0.977 0.293 0.908 0.739 0.7391 0.7397

unstandardized
Xgboost BME 0.997 0.854 0.977 0.294 0.908 0.740 0.7396 0.7402

standardized
Xgboost NC 0.997 0.854 0.977 0.295 0.908 0.741 0.7405 0.7411

unstandardized
Xgboost NC 0.997 0.854 0.977 0.293 0.908 0.740 0.7394 0.7400

3.2.2. Glmer and Glm Variant Models

The CEM of standardized glmer and unstandardized glm showed a higher magnitude
(CEM: 0.719) compared to the other two model variants (CEM: 0.718) due to slightly
higher contributions of either AUC or F1 scores, respectively. However, there was very
little evidence of the difference being significant across variant models of glmer and glm
with confidence intervals overlapping for CEM estimates, ranging from 0.7181 to 0.7189
(Table 2). AUC values were higher for the glmer models (AUC: 0.827) than the glm models
(AUC: 0.826), suggesting that remaining differences in CEM across models may be mostly
attributed to differences in F1 score.

Table 2. CEM and individual component metrics for glmer and glm variant models.

Model Category ECE AUC Brier F1 Net Benefit CEM CEM Lower 95% CI CEM Upper 95% CI

standardized glmer 0.993 0.827 0.973 0.269 0.889 0.719 0.7182 0.7188

unstandardized glmer 0.993 0.827 0.973 0.269 0.889 0.718 0.7178 0.7184

unstandardized glm 0.994 0.826 0.973 0.270 0.889 0.719 0.7183 0.7189

standardized glm 0.994 0.826 0.973 0.269 0.889 0.718 0.7181 0.7187

3.3. Performance by Sample Size
3.3.1. Unstandardized Xgboost BME and Standardized Xgboost NC Models

At low sample sizes of 300–1000, the unstandardized Xgboost BME model outperforms
the standardized Xgboost NC by a large margin (Figure 2). This relationship holds for
medium-range sample sizes, although the size difference is reduced. Beyond n = 15,000,
little to no difference is observed across the two models. A similar relationship is observed
for AUC (Figure 3).

3.3.2. Unstandardized Glm and Standardized Glmer Models

In the comparison between the unstandardized glm and standardized glmer models
(Figure 4), a similar relationship was found to the Xgboost BME vs. NC models. That
is, the medium range of sample sizes, 2000–10,000, displayed higher CEM performance
for the mixed-effects Xgboost BME model compared to the fixed-effects Xgboost NC
model. However, differences between the glmer and glm models at low sample sizes of
300–1000 did not demonstrate a marked difference from that observed for the Xgboost
model comparisons.

While the glm and glmer models showed higher overall CEM performance compared
to the Xgboost models for middle-range sample sizes, the performances of Xgboost BME
and NC were higher for large sample ranges. While the Xgboost BME model showed
similar performance to the glm and glmer models at low sample ranges, the performance
of the Xgboost NC model was substantially lower.
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The relationship of sample size to AUC was similar for the logistic regression (glm and
glmer) to that of the Xgboost model comparisons but with relative advantage of the glmer
over glm at low ranges to medium ranges of sample size being less prominent (Figure 5).
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3.4. Visualization of Parameters

As sample size increased, the magnitude of the random effects decreased (Figure 6).
This concurs with earlier results which showed that the effect of the mixed-effects models
was larger at low–medium sample ranges compared to high sample ranges. As these
random effects relate to the estimates of the model using the training/validation set, a
comparison could be made to the mortality rate of hospital 20 in the training set (Figure 1A).
It can be seen that the random effects at this point were diminished, suggesting that the
high variability of hospital 20 was suppressed. This suppression may be beneficial since in
the test set (Figure 1B), the peak at hospital 20 was very small in relation to the training set.

Bioengineering 2024, 11, x FOR PEER REVIEW 11 of 18 
 

 
Figure 6. Unstandardized Xgboost BME: random effects (a_i) across hospitals; the line at y = 0 can 
alternatively be considered as Odds Ratio = 1 if transformed from log odds, i.e., no effect on mortal-
ity. 

 
Figure 7. Unstandardized Xgboost BME: GLL across different sample sizes. 

4. Discussion 
In this study, it was found that the performance of mixed-effects machine learning 

models varied across different sample sizes with the tendency for higher performances in 
low to medium ranges of samples compared to the fixed-effects models. Whilst these 

Figure 6. Unstandardized Xgboost BME: random effects (a_i) across hospitals; the line at y = 0 can
alternatively be considered as Odds Ratio = 1 if transformed from log odds, i.e., no effect on mortality.

The GLL was shown to increase as sample size increased, indicating an improvement
in the fit of the model (Figure 7).
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4. Discussion

In this study, it was found that the performance of mixed-effects machine learning
models varied across different sample sizes with the tendency for higher performances
in low to medium ranges of samples compared to the fixed-effects models. Whilst these
models still demonstrated high performances with large sample sizes, the impact of random
effects was diminished. To explore this further, one could consider random effects from an
alternative perspective. According to [17], the theoretical conditional mean values of the
random effects is as follows:

E[ai|y] =
σ2

a

σ2
a + σ2

ni

(yi − µ) (5)

where σ2
a represents the between-cluster (or intercept) variance and σ2 can be considered

the residual variance and µ represents the true population mean of the mortality across all
possible cardiac surgery hospitals. According to [17], these three parameters are unknown
and hence have been estimated here using machine learning combined with numerical
integration approaches. Counter-intuitively, it could be observed that when the sample

size is large, individual hospital samples ni will be large, leading to the ratio σ2
a

σ2
a+

σ2
ni

tending

towards 1. This suggests that instead, the decrease in random effects at large sample sizes
is more likely due to the decreased deviation of the hospital-specific mortality rate from
the mean mortality rate across hospitals (yi − µ) as sample size becomes large. Possible
reasons for this could be related to the decreased effects of hospital-specific extreme outliers
as the average mortality rate is obtained from an increasingly larger number of patients that
dilutes the effects of outliers. This may partly explain why at larger sample sizes, random
effects and hence the effect of the hospital on the prediction of mortality are diminished. On
the other hand, the average mortality rates of patients in hospitals with low sample sizes
may be severely affected by variations in only a few mortalities. The precise modelling of
larger variations from extreme outliers at low sample sizes through integrating random
effects may also help to partly explain the performance gain observed at low sample sizes.

Specifically, at low sample ranges, the mixed-effects Xgboost BME outperformed the
fixed-effects Xgboost NC model by a large margin, potentially enabling Xgboost BME
to have more applicability for small datasets. The contrast in performance difference
was substantially smaller between the mixed-effects logistic regression glmer and the
non-mixed-effects glm, although in these two models the contrast is primarily found in
medium-sample-size datasets.

4.1. Technical Perspective

The literature review by Peter et al. found that “using machine learning on small
size datasets present a problem, because, in general, the ‘power’ of machine learning in
recognising patterns is proportional to the size of the dataset, the smaller the dataset, the
less powerful and less accurate are the machine learning algorithms [18]”. The challenge
is further exacerbated when the clinical outcome is rare, whereby the small dataset may
have a non-representative outcome variable frequency. For example, in cardiac surgery
where the average mortality rate is often less than 3%, the number of mortalities at the
smaller sample size may be difficult to extrapolate. Common approaches for dealing with
low sample sizes that have been have been proposed and implemented in the literature
include data augmentation through generative adversarial networks (GANs) [19], as well
as regularization, an approach that adds additional parameters or constrains to prevent
overfitting [20]. These approaches include adding a dropout rate modification to neural
networks or defining early stop criteria during training.

While performance was similar between the mixed-effects variant models at low
sample ranges, it was found that the mixed-effects Xgboost (BME) model demonstrated
higher performance at large sample ranges, while the mixed-effect logistic regression
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(glmer) showed higher performance at medium sample ranges. This suggests an intri-
cate relationship between sample size and the effectiveness of mixed effects on machine
learning models.

The idea of incorporating random effects in tree-based machine learning models has
been considered by Ahlem et al. [13]. Given many biological processes that are under study
in cardiovascular medicine and beyond, their approach is likely to find application for con-
tinuous outcomes whereas the Xgboost BME may be more suited for binary outcomes, for
example, whether the patient survives or not or experiences a post-operative complication
or not.

Giora et al.’s use of Gauss Hermite Quadrature approximation for approximating the
random effects in mixed-effects neural networks for binary dependent variable scenarios
provides the basis for extending this approximation approach to other machine learning
models such as Xgboost [12]. Their approach made use of the neural network’s inherent
capabilities to incorporate the random-effects-based negative log likelihood for binary
dependent variables as the loss function. This enabled the neural network’s performance
to surpass that of the glmer model.

While Ng et al. used the EM approach to estimate the weights of their MoE model, the
method adopted for estimating the likelihood is that of a residual or restricted maximum
likelihood (REML) using derivative-based maximization approaches rather than a Gauss
Hermite Quadrature-based approach [11]. In addition, their evaluation methods were based
on the use of misclassification percentages rather than the CEM and its component metrics.

In an algorithm developed by Lu et al. to handle high-dimensionality datasets, it was
found that convergence could occur rapidly in under five iterations [21]. The Xgboost BME
algorithm showed similar performance since convergence occurred early rather than late.

The inclusion of hospital IDs as a single fixed-effects variable in the model decreases
interpretability by imposing numerical ordering on naturally nominal category values,
which is not conceptually meaningful. This method could result in inaccurate readings of
the effect estimates since it presupposes an ordinal link between hospital identifiers, which
is not the case.

One-hot encoding is an alternative technique for fixed-effects coding that breaks down
the hospital variable into a set of binary (0/1) indicators, each of which represents a different
hospital. One-hot encoding enables direct comparisons between each hospital and a
composite reference group while maintaining some interpretability. However, this strategy
still reduces clinical interpretability because it compares to an abstract group without
a clear clinical reference, hindering understanding of hospital-specific outcomes. The
increased dimensionality expands the model’s degrees of freedom, increasing the danger
of overfitting, particularly in models with small sample sizes or significant variability. This
can produce unstable estimates, reducing the model’s generalizability and clinical value.
Furthermore, the added complexity of numerous hospital-specific parameters presents
substantial challenges for clinicians, who may struggle to extract clear, actionable insights
from these as separate variables. As a result, despite its statistical precision, this technique
ultimately limits practical interpretation in clinical contexts.

The binary-outcome mixed-effects Xgboost (BME) model accounts for random-effect
changes in hospital performance while remaining interpretable. This approach allows for
an assessment of how much each hospital’s results deviate from the general average after
controlling for other factors. By including random intercepts, the model captures hospital-
specific variations and quantifies the variance attributable to each hospital, allowing inter-
hospital comparisons.

4.2. Relevance to Clinical Practice
4.2.1. Cardiac Surgery Perspective

The variation in the cardiac surgery hospital mortality rate is a complex topic that
deserves to be discussed. Previous studies have indicated that consultant performance has
limited effect on outcomes but that the level of patient comorbidity across the demographics
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of different hospitals and across different time periods has an effect [22,23]. Although such
data were not available to this study, the effect of post-operative critical care provision
variations across hospitals, time and age may also have an impact [22]. Nonetheless,
variations in age [23] and other important risk factors across time, such as operative urgency,
weight of intervention (i.e., complexity of the mix of procedures performed), severity of
heart failure (New York Heart Association Functional Classification—NYHA score), level
of renal impairment and repeat operations, have been found to have varying effects on
outcomes across time in previous studies on both the current and other datasets [2,14].

Random-effects modelling can be applied into day-to-day clinical practice. For in-
stance, several studies have assessed the effects of regional/national level variations in
treatment interventions while accounting for patients’ characteristics and their socioeco-
nomic profiles [24,25]. By using a random-effects approach, this can reduce the chance of
overfitting that would occur by analyzing individual regions/hospitals separately. Further-
more, integration with machine learning approaches could enhance predictive accuracy
while retaining interpretability.

The potential use case of the XGBoost BME model for pediatric congenital heart
surgery data is especially relevant considering the challenges of small sample sizes in this
clinical context [26]. Paediatric congenital heart surgery frequently involves heterogeneous
and complex patients, making linkage across electronic health records and large dataset
collections challenging due to the rarity of problems, the wide diagnostic and surgical
strategy heterogenicity, and the relatively smaller samples size compared to adult cardiac
surgery. Traditional machine learning models may struggle to perform well on these small
datasets when the number of covariates is high, resulting in suboptimal predictions and
inferences. Hence, these reasons make the development of such ML models a very urgent
and required clinical priority in this field.

Subject to ethical approval applications, outcome monitoring after cardiac procedures
in congenital heart disease (OMACp) or a similar congenital heart disease dataset could be
analyzed [26], as these datasets capture the clinical complications and procedural variances
encountered in pediatric patients. Random effects such as the site of catheterization or
surgical centre can be integrated into the model to account for inter-site variability, further
enhancing the robustness of predictions.

4.2.2. Cardiology Perspective

Random-effects models are reported in the literature to be beneficial for bias reduction
through better identification of patient heterogeneity (e.g., patients with different responses
to drug treatment) [27]. They may be advantageous for obtaining repeated patient mea-
sures [28], improving generalizability [29] and increasing the predictive accuracy of ECG
analyses for enhanced patient outcomes. Xgboost BME could also have an application
for prediction tasks in heart rate variability (HRV) studies. A large portion of early work
carried out in this area (especially for congestive heart failure (CHF)) adopted tree-based al-
gorithms to deploy their models due to the interpretability of these models [29–31]. HRV is
the time intervals between consecutive heartbeats. In healthy subjects, these time intervals
can be highly variable. This is, however, not the case in patients with diseased hearts where
HRV measures are depressed. Essentially, higher values of HRV indicate healthier hearts.
The presence of random effects in HRV measures can be due to lifestyle factors, individual
differences, the types of devices used for HRV measurements, differences in the conditions
under which HRV is measured (physical activity, time of day, posture, stress level, age
categories, etc.) and variation across different experimental study conditions. Xgboost BME
could be used to account for these differences in variability that coexist within different
levels of the HRV data hierarchy. HRV measures are obtained from electrocardiogram
(ECG) signals, and they exist in the time, frequency and non-linear domains. Xgboost
BME could have utility in improving prediction tasks in these domains since ECG signals
simulate the presence of random effects across the different domains, thus making more
accurate and personalized interpretations possible. Xgboost BME could also enhance the
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extraction of ECG-related intra-subject correlations that capture individual-specific base-
line ECG characteristics, and account for individual variability across multiple sites and
devices [32,33].

5. Future Work and Limitations

Although Xgboost BME holds potential for improved performance over many of these
scenarios, more research is needed to determine how it can be used to better understand
data distribution patterns, address sample size issues, interpret complex results, reduce the
effect of outliers or influential data points on estimates of heterogeneity, and decrease the
computational complexities and explainability associated with large datasets or complex
hierarchical structures. This then leads to the question of the efficacy of adopting nested
random effects for model improvement. In this scenario, ranges of one grouping variable
are completely associated with specific levels of another grouping variable to account
for the structure and size of the sample data. Models incorporating this approach have
been proposed in the literature to improve the accuracy and interpretability of predictions
by capturing variability at different levels of the data hierarchy [34]. The Xgboost algo-
rithm is hierarchical in nature and can naturally handle nested data, but may potentially
lead to increased model complexity, making the model too complicated for clinicians to
understand. Several ways to address this issue have also been proposed. In the design
and deployment of nested random-effects models, strategies focusing on model simplicity
(adopting simple models that adequately represent the data and use of appropriate model
selection criteria) [35], clarity (defining clear hierarchical structures in the data by com-
bining or collapsing levels and/or evaluating the need for each nesting level) [36,37] and
clinical relevance (using visualization and diagnostics tools to assess the distribution of
random effects) are recommended [37,38]. Wherever possible, model interpretation is to
be prioritized over model fit. Also, when communicating with clinicians, simple technical
language and avoidance of statistical jargon are advised when describing the model to help
clinicians grasp the impact of variability between different patient groups and to ensure
they understand and use the results effectively.

Some existing uses of nested design models in healthcare settings include modelling
the correlation between repeated measures taken from the same individual over time in
longitudinal studies [39], evaluation of variability in treatment effects in patients nested
across several clinical trial centres [40], robust estimation of randomized clinical trial effect
sizes through efficient sampling [41] and optimized estimations of the overall effects of
study outcomes [42].

Future studies should also consider creating rating scales based on the predicted risk
of patients from binary mixed-effects machine learning models. For example, risks can
be grouped across different severity of risks: high, medium and low risk. Alternatively,
with clinical input, one may create new rating scales for benchmarking the quality of
services provided by hospitals and integrate such ratings as standalone or additional
random effects [43]. Such rating scales may also be useful in studies involving clinical
questionnaires. As the number of hierarchical levels in multi-level random effects increase,
future work could also consider the use of confirmatory factor analysis (CFA) to test the
most suitable groupings for rating scales for input into mixed-effects ML models [43].

Many of the above-mentioned aspects were out of the scope of this study. However,
future work on the Xgboost BME model could incorporate some of the methods and
algorithms used in the cited studies.

6. Conclusions

In this study, a binary-outcome mixed-effects algorithm for ensemble tree machine
learning models has been presented. Performance gains over fixed-effects models and
traditional glm/glmer models demonstrated a complex sample-size-dependent relationship
that deserves further research in future studies. These findings suggest that integrating
mixed effects into machine learning models can enhance their performance on datasets
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with low sample sizes. However, the specific scenario for such application should be a
personalized decision.
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Appendix A

Dataset. The analysis was performed using the National Adult Cardiac Surgery Audit
(NACSA) dataset, which comprises data prospectively collected by the National Institute
for Cardiovascular Outcome Research on all cardiac procedures performed in all National
Health Service (NHS) hospital sites and some private hospitals across the UK. The register-
based cohort study is part of research approved by the Health Research Authority (HRA)
and Health and Care Research Wales, and since the study used de-identified data, a waiver
for patients’ consent was waived (HCRW) (IRAS ID: 278171). A total of 227,087 patients
over 17 years of age, undergoing cardiac surgery from 42 UK hospitals between 1 January
2012 and 31 March 2019, following the removal of 3930 congenital cardiac surgery cases,
1586 transplant and mechanical support device insertion cases and 3395 procedures missing
information on mortality, were included in this analysis. There were 6258 deaths (mortality
rate of 2.76%). The primary outcome of this study was in-hospital mortality. Missing and
erroneously inputted data in the dataset were cleaned according to the National Adult
Cardiac Surgery Audit Registry data pre-processing recommendations; The dataset was
split into two cohorts: training/validation (n = 157,196; 2012–2016) and holdout (n = 69,891;
2017–2019) as per previous studies.
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