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Abstract: Colorectal cancer remains a leading cause of cancer-related deaths worldwide, with early
detection and removal of polyps being critical in preventing disease progression. Automated polyp
segmentation, particularly in colonoscopy images, is a challenging task due to the variability in polyp
appearance and the low contrast between polyps and surrounding tissues. In this work, we propose
an edge-enhanced network (EENet) designed to address these challenges by integrating two novel
modules: the covariance edge-enhanced attention (CEEA) and cross-scale edge enhancement (CSEE)
modules. The CEEA module leverages covariance-based attention to enhance boundary detection,
while the CSEE module bridges multi-scale features to preserve fine-grained edge details. To further
improve the accuracy of polyp segmentation, we introduce a hybrid loss function that combines
cross-entropy loss with edge-aware loss. Extensive experiments show that the EENet achieves a Dice
score of 0.9208 and an IoU of 0.8664 on the Kvasir-SEG dataset, surpassing state-of-the-art models
such as Polyp-PVT and PraNet. Furthermore, it records a Dice score of 0.9316 and an IoU of 0.8817
on the CVC-ClinicDB dataset, demonstrating its strong potential for clinical application in polyp
segmentation. Ablation studies further validate the contribution of the CEEA and CSEE modules.

Keywords: polyp segmentation; convolutional neural network; edge enhancement; attention mechanism

1. Introduction

Colorectal cancer (CRC) is among the top three most prevalent cancers globally and
ranks second in cancer-related mortality rates [1–4]. Fortunately, research has demon-
strated that early screening and endoscopic polypectomy are crucial in reducing CRC
incidence [5,6]. A critical aspect of these procedures is the accurate localization of polyps,
which aids in their removal. However, this task is tedious and time-consuming in clinical
practice, particularly during early screenings, which may generate over 10,000 images per
patient [7–9]. With advances in computer-aided diagnostic technologies [10–12], develop-
ing an accurate and real-time automated polyp segmentation framework offers a promising
solution to assist clinicians in distinguishing polyp from non-polyp regions.

Polyp segmentation poses distinct challenges compared to other medical segmentation
tasks, primarily due to the variability in polyp appearance (e.g., differences in size, color,
and texture) [13] and the minimal contrast between polyps and surrounding tissues [14–16].
To address the multi-scale nature of polyps, recent studies have introduced a series of multi-
scale feature aggregation methods [17] to effectively merge high-level features without
imposing excessive computational demands [13,18–21]. Meanwhile, efforts to resolve
the low contrast problem have focused on capturing discriminative regions using spatial
attention mechanisms or boundary constraints [22–24]. For example, LDNet [25] introduced
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a lesion-aware cross-attention mechanism to enhance feature contrast between polyp and
non-polyp areas.

Recent advancements in polyp segmentation, particularly transformer-based models
such as Polyp-PVT [26], MGCBFormer [27], MIA-Net [28], and CAFE-Net [29], have demon-
strated the efficacy of transformers in handling long-range dependencies and multi-scale
feature extraction. However, these models often face challenges in boundary refinement,
particularly for smaller or ambiguous polyps. In response to these challenges, we propose
a novel architecture that explicitly enhances edge features and integrates cross-scale edge
information, offering improved segmentation accuracy, especially in boundary precision.

While current methods have shown success, they struggle to match the precision of ex-
pert physicians, particularly when it comes to accurately identifying polyp boundaries—a
complex task even for experienced clinicians. This is of significant clinical concern, as
polyps often appear on mucosal surfaces, and improved boundary segmentation is essen-
tial for minimizing damage to surrounding tissues during polyp removal. Two primary
issues contribute to the coarse segmentation of polyp boundaries: (i) inadequate boundary
awareness and (ii) insufficient contrast between the boundary and surrounding regions.
First, the limited amount of annotated polyp data leads to poor boundary awareness in
models, as the diversity of shapes and sizes in the training set is restricted. While Guo
et al. [30] attempted to address this with a confidence-guided label mixup strategy, their
approach reduced contrast between polyp and non-polyp regions and introduced inac-
curate supervision in uncertain areas, which could hinder model training. Second, the
subtle contrast in colonoscopy images makes boundary features less distinguishable, often
resulting in wavy or inaccurate predictions. Although recent methods have employed
spatial attention mechanisms to enhance polyp features, these strategies have primarily
focused on the polyp’s interior, leaving the boundary contrast issue largely unresolved.

To address these challenges, we propose an edge-enhanced network (EENet) for polyp
segmentation. To be specific, we design a covariance edge-enhanced attention (CEEA)
module to capture edge context by attentive covariance analysis. Moreover, a cross-scale
edge enhancement (CSEE) module is proposed to bridge the gap of edge context between
encoded and decoded feature maps. By flexibly embedding CEEA and CSEE into the
encoder–decoder framework, sufficient edge details are preserved and utilized to produce
a high-certainty polyp boundary. The main contributions are as follows:

1. We propose CEEA, which integrates edge-awareness with covariance-based attention.
The CEEA module introduces a learnable Canny kernel [31] for adaptive edge detec-
tion, allowing the network to focus on fine-grained boundaries and structures crucial
for accurate segmentation. By leveraging a covariance matrix between the feature
map and edge-enhanced feature, the module captures both spatial and channel de-
pendencies, enhancing the attention mechanism’s ability to focus on relevant regions.

2. We introduce CSEE to fuse cross-scale features with edge-enhanced attention. The
module uses a shared learnable Canny kernel to extract edge information at different
scales, allowing the model to capture fine-grained boundary details across resolutions.
By computing a cross-scale attention map, the CSEE module ensures that features
from both encoder and decoder paths are aligned, enhancing the representation of
critical structures such as object edges.

3. We design a hybrid loss function that incorporates edge and cross-entropy losses
with a handcrafted hyperparameter. By appending the CEEA of each encoder stage
and deploying CSEE between the encoder and decoder, the proposed EENet enables
the improvement of boundary accuracy while maintaining multi-scale consistency,
leading to better segmentation performance.

4. Through extensive experiments on two benchmark datasets [32,33], EENet demon-
strates superior performance over state-of-the-art models. Our results are further
validated by an ablation study that highlights the advantages of CEEA over convolu-
tion layer and conventional self-attention models. Furthermore, we test the effects of
CSEE in EENet.



Bioengineering 2024, 11, 959 3 of 19

The paper is structured as follows. Section 2 provides an overview of related works
in polyp segmentation. Section 3 introduces the EENet with its sub-modules. Section 4
presents the comparisons and ablation studies. Section 5 draws the conclusion of our work
and points out the future directions.

2. Related Works
2.1. Traditional Methods for Polyp Segmentation

Early approaches to polyp segmentation primarily employed traditional image pro-
cessing and machine learning techniques [34–36]. These methods often relied on hand-
crafted features and predefined rules, such as edge detection, threshold-based segmentation,
and morphological operations. For example, Xia et al. [37] utilized a method that first
identified a preliminary region of interest (pROI) using a modified Hough transform. After
removing the background, a two-step process was implemented: a relaxation technique
to segment homogeneous regions, followed by a refinement step to merge unnecessary
segments based on color differences in the CIE color space. In another approach, Wang
et al. [38] proposed a computer-aided detection (CAD) system for identifying colorectal
polyps by analyzing both local and global geometric features of the colon wall. This system
employed texture and morphological information to quickly detect suspicious regions,
using edge detection and an elliptical polyp model to quantitatively evaluate the identified
areas. To reduce false positives, the method incorporated both texture and morphological
features. Similarly, Jerebko et al. [39] introduced a method for polyp detection that utilized
symmetric curvature patterns to differentiate polyps from other intestinal structures. By
extracting symmetry-based curvature features from candidate regions, this method aimed
to enhance detection sensitivity. However, traditional approaches struggled to address the
wide variability in polyp shape, size, and texture, resulting in limited effectiveness when
applied to real-world scenarios [40–43].

2.2. Deep Learning Methods for Polyp Segmentation

Convolutional neural networks (CNNs) have greatly improved polyp segmentation
by offering more flexible and reliable methods for analyzing medical images [44–46]. One
of the most influential models, U-Net [47], features a fully convolutional architecture that
integrates local and global features via its encoder–decoder framework. The use of skip
connections between corresponding layers helps retain spatial details, making U-Net par-
ticularly effective for medical segmentation tasks that demand both detailed and broader
contextual understanding [24,48]. Building on U-Net, several models have emerged to
further improve segmentation performance. For example, UNet++ [15] employs nested
skip pathways to reduce the semantic gap between the encoder and decoder, enhancing
the model’s capacity to capture fine-grained features. Its multi-resolution feature fusion
strategy allows UNet++ to process complex medical images more effectively, leading to im-
proved segmentation accuracy and robustness. Another significant extension, ResUNet [49],
integrates residual blocks from ResNet into the U-Net architecture. These residual blocks
mitigate the gradient vanishing issue during deep network training, thus improving the
network’s ability to extract complex features. The ResUNet has demonstrated particular
effectiveness in handling medical images with intricate backgrounds and subtle structural
differences. These U-Net-based architectures, by incorporating innovations such as skip
connections, multi-scale feature fusion, and residual learning, have significantly advanced
polyp segmentation performance. Despite these improvements, researchers continue to
explore novel architectures and techniques to push the limits of segmentation accuracy
and robustness in clinical settings. Specifically, unique challenges, such as the considerable
variation in polyp appearance and the low contrast between polyps and surrounding
tissues, persist, necessitating specialized approaches. To address the diversity in polyp
shape and size, Wang et al. [50] proposed a multi-scale context-guided framework that
captures both global and local features, allowing the model to handle objects of varying
scales. Similarly, ThresholdNet [51] introduced a confidence-guided label mixup technique
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that augments the training dataset, enhancing the model’s generalization capability across
different polyp shapes and sizes.

Low contrast between polyp boundaries and surrounding areas presents another
challenge. PraNet [21] tackled this issue by utilizing a reverse attention mechanism to
progressively enhance the discriminative polyp regions. Similarly, LDNet [25] designed a
lesion-aware cross-attention mechanism to improve contrast between the polyp boundary
and its surrounding tissues, aiding in more accurate boundary detection.

Recent advancements in medical image segmentation have been significantly influ-
enced by the introduction of Vision Transformers (ViTs) [52] and Pyramid Vision Transform-
ers (PVTs) [53], which offer enhanced capabilities in modeling long-range dependencies
and multi-scale context aggregation [54,55]. ViTs, as introduced by Dosovitskiy et al. [52],
utilize a self-attention mechanism to effectively capture global relationships in images by
processing patches, thus overcoming the limitations of CNNs in capturing global context.
Similarly, PVTs, proposed by Wang et al., integrate the strengths of CNNs and transformers
by employing a hierarchical structure that captures both local details and global context at
multiple scales.

These transformer-based models have achieved state-of-the-art performance in var-
ious segmentation tasks [17,56], including medical image segmentation. For example,
TransUnet [57] combines the global context modeling ability of transformers with the
high-resolution features of CNNs in the decoder. In the study by Dong et al. [26], the
Polyp-PVT model demonstrated superior performance in polyp segmentation, achieving
an average Dice score of 0.917, significantly outperforming previous methods like PraNet
and U-Net. Similarly, MGCBFormer [27] utilizes multi-scale grid priors and boundary-
aware mechanisms to further refine segmentation precision, addressing both boundary
detection and contextual feature extraction. Meanwhile, MIA-Net [28], developed by Liu
et al., combines both transformers and convolutional layers to enhance feature learning,
offering a balanced approach that captures both local and global features, thus improving
segmentation accuracy. Lastly, the CAFE-Net [29] model proposed by Zhao et al. intro-
duces cross-attention and feature exploration techniques to enhance polyp segmentation,
particularly by focusing on hard-to-detect regions. These models, while advancing the state
of the art, also highlight the ongoing challenge of balancing high segmentation accuracy
with computational efficiency, a critical factor for real-time clinical applications.

Despite these advancements, many approaches continue to struggle with accurately
segmenting polyp boundaries, especially in challenging clinical scenarios. These limitations
underscore the need for further research to improve boundary segmentation performance
in polyp detection tasks.

3. Method
3.1. Covariance Analysis

In this subsection, we introduce the covariance analysis [58–60], which is central to the
functioning of the proposed CEEA module in our EENet framework. The motivation for
using covariance analysis stems from the need to capture spatial and channel dependencies
within the feature maps, especially in tasks like polyp segmentation where boundary
precision and fine-grained spatial relationships are critical.

Covariance analysis helps capture the relationships between channels in the input and
edge-enhanced feature maps by quantifying how two feature channels vary together. This
is crucial for highlighting areas in the feature map important for accurate polyp boundary
detection, where low contrast with surrounding tissues often leads to segmentation errors.

By incorporating covariance into the attention mechanism, the network can learn to
focus on both the channel dependencies and the spatial regions that contribute the most
to the segmentation task. This process ensures that the network assigns higher weights
to feature channels and regions that highlight the polyp’s boundaries, which are typically
difficult to distinguish.
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The covariance analysis plays a pivotal role in enhancing polyp segmentation by im-
proving the model’s ability to capture both spatial and channel dependencies. By leveraging
covariance matrices, the network can more effectively by carrying out the following:

1. Focusing on boundary regions that are difficult to distinguish due to low contrast;
2. Assigning attention weights that prioritize channels and spatial regions relevant to

polyp boundaries;
3. Ensuring that both fine-grained details and global contextual information are in-

tegrated into the segmentation process, leading to higher accuracy and improved
boundary delineation.

Therefore, this method is particularly important in the context of medical image
segmentation, where small, subtle differences between polyps and surrounding tissues can
significantly impact clinical outcomes.

3.2. Overview of the Proposed EENet

As shown in Figure 1, we introduce the architecture of the proposed EENet designed for
accurate polyp segmentation. The EENet framework is structured around an encoder–decoder
architecture, where the integration of edge enhancement at multiple scales is key to improving
boundary precision. The core components of the EENet include the CEEA module and the
CSEE module, which work synergistically to enhance edge features and preserve fine boundary
details during segmentation. The EENet architecture consists of several convolutional blocks,
each incorporating batch normalization and ReLU activation functions (see in Figure 2).

CSEE CSEE CSEE CSEE

Softmax

Pooling 22

Covariance Edge-Enhanced Attention

Convolution Block
Cross-Scale Edge 
Enhancement

CSEE

Convolution 11
Upsampling 
22

Input

Output

Figure 1. The framework of the EENet.

CEEA enhances feature extraction by capturing both spatial and channel dependencies
through covariance analysis. This allows the network to attend to crucial regions, particu-
larly around polyp boundaries, which are often difficult to distinguish due to low contrast
with surrounding tissues. On the other hand, to bridge the gap between the encoder
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and decoder stages, the CSEE module is introduced. The CSEE is responsible for fusing
multi-scale edge features from different levels of the network, ensuring that fine-grained
boundary information is preserved throughout the segmentation process.

Conv 33, BN, ReLU

Conv 11, BN, ReLU

Conv 11, BN, ReLU

Batch NormalizationBN

ReLU Linear Rectification Function

Figure 2. Pipeline of the CB.

Finally, the Softmax function is applied to generate pixel-wise semantic predictions.
Furthermore, to train the EENet effectively, we propose a hybrid loss function that combines
cross-entropy loss with edge-aware loss.

While transformer-based architectures like Polyp-PVT and MGCBFormer effectively
capture global context, they often require auxiliary post-processing or additional mecha-
nisms to handle boundary refinement. Our proposed CEEA module introduces a novel
approach to edge extraction during feature encoding, which directly improves boundary
precision. Additionally, the CSEE module dynamically integrates edge information across
multiple scales, addressing a key limitation in models like MIA-Net and CAFE-Net, where
cross-scale edge integration is not explicitly modeled. This results in better performance,
particularly in difficult polyp boundary delineation tasks.

3.3. Pipeline of the Proposed CEEA

The CEEA module is a crucial part of the EENet, designed to capture fine-grained boundary
details and spatial-channel relationships using covariance-based attention. The CEEA integrates
a learnable Canny kernel to adaptively detect edges in the input feature maps, enhancing the
edge-related features essential for accurate segmentation. In this section, we provide a detailed
explanation of the pipeline of the proposed CEEA module, illustrated in Figure 3.

C
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TC H W
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Centering
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Reshape

Figure 3. Pipeline of CEEA.
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Given the input feature map, Fin ∈ RC×H×W , where C, H, and W represent the number
of channels, height, and width, respectively, a convolution layer with a learnable Canny
kernel is implemented to extract edge features from Fin, termed as follows:

Fe = ConvLCK(Fin), (1)

where Fe ∈ RC×H×W is the edge-preserved feature map. This operation adapts the standard
Canny edge detection algorithm by learning the optimal edge detection parameters directly
from the data, thereby making it more flexible in handling diverse polyp structures.

After edge feature extraction, the module applies a covariance-based attention mecha-
nism to capture both spatial and channel dependencies. The covariance matrix is computed
between the edge-preserved feature map, Fe, and the input feature map, Fin. First, we com-
pute the mean for each channel of both the input feature map, F′′

in, and the edge-enhanced
feature map, F′′

e :

F̄in,c =
1

HW

HW

∑
i=1

Fin,c,i (2)

F̄e,c =
1

HW

HW

∑
i=1

Fe,c,i (3)

Subsequently, we subtract the mean values from the corresponding feature maps to center
them around zero:

F′
in = Fin − F̄in,c, (4)

F′
e = Fe − F̄e,c, (5)

where F′
in and F′

e are the centered feature maps. Afterwards, we reshape these two feature
maps to F′′

in ∈ RC×HW and F′′
e ∈ RC×HW , respectively. Then, the covariance matrix is

computed as follows:

Cov(Fin, Fe)c1,c2 =
1

HW

HW

∑
i=1

F′′
in,c1,i · F′′

e,c2,i, (6)

where Cov(Fin, Fe) ∈ RC×C is the covariance matrix, where each element represents the
covariance between a channel from Fin and a channel from Fe, F′′

in,c1,i denotes the centered
input feature at channel c1 and spatial location i, and F′′

e,c2,i represents the centered edge-
preserved feature at channel c2 and spatial location i. Thus, the attention map of channel-
wise covariance can be expressed as follows:

Ac = Softmax(Cov(Fin, Fe)), (7)

where Ac ∈ RC×C represents attention weights derived from the covariance matrix, and
the Softmax function ensures that the values in each row of the matrix sum up to 1, making
them interpretable as attention scores. Specifically,

Cov(Fin, Fe) =
1

HW
F′′

in · (F′′
e )

T . (8)

Meanwhile, another branch forms the attention map along pairwise positions from the
two feature maps. The denoted Ap ∈ RHW×HW is the spatial attention matrix derived from
the covariance operation between the input feature map and the edge-enhanced feature
map. It is designed to capture the relationships between spatial locations and highlight
regions of interest, especially around the edges, which are critical for segmentation tasks
such as polyp detection.
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Covariance between the two feature maps for each pair of spatial locations is com-
puted as follows:

Cov(Fe, Fin) =
1

HW
(F′′

e )
T · F′′

in. (9)

Then,
Ap = Softmax(Cov(Fe, Fin)), (10)

where Ap ∈ RHW×HW stores the position-wise covariance attention weights.
Finally, Ac and Ap are utilized to refine the corresponding input feature map. There-

fore, the output feature map, Fout ∈ RC×H×W , is generated.

3.4. Pipeline of CSEE

As shown in Figure 4, the proposed CSEE module is designed to bridge the gap
between multi-scale feature maps in an encoder–decoder architecture. This module aims to
preserve edge information across different resolutions and ensure consistency in boundary
detection for segmentation tasks. In this section, we provide a detailed explanation of the
CSEE pipeline, focusing on its multi-scale edge feature fusion and attention mechanisms.
The CSEE module integrates edge information from both the encoder and decoder paths,
ensuring that fine-grained boundary details are consistently represented across scales. It
applies edge enhancement through a learnable Canny kernel and then computes spatial
and channel-wise attention to align multi-scale features effectively.

C
on

v 
L

C
K

Centering
Reshape

Centering
Reshape

C H W
encF

 

C H W
decF

 

C H W
eencF  

C H W
edecF  

'' C HW
eencF 

'' C HW
edecF 

HW HW
cseeA S

T

' C H W
decF

 

' C H W
encF

 

C H W
cseeF  

Transpose

Softmax

Conv LCK Convolution with Learnable Canny Kernel

Element-wise Summation

Matrix Multiplication

T

S

Figure 4. Pipeline of CSEE.

Given the encoder feature map Fenc ∈ RC×H×W and decoder feature map
Fdec ∈ RC×H×W , we first extract edge feature using learnable Canny kernel convolution:

Feenc = ConvLCK(Fenc), Fedec = ConvLCK(Fdec). (11)

Next, centring and reshaping operations are implemented:

F̄eenc,c =
1

HW

HW

∑
i=1

Feenc,c,i, F̄edec,c =
1

HW

HW

∑
i=1

Fedec,c,i, (12)

F′
eenc = Feenc − F̄eenc, F′

edec = Fedec − F̄edec. (13)

The reshaped feature maps are F′′
eenc, F′′

edec ∈ RC×HW . Then, we deploy the covariance-based
channel attention by carrying out the following:

Cov(Feenc, Fedec) =
1

HW
F′′

eenc · (F′′
edec)

T . (14)
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Formally, the attention map can be expressed as follows:

Acsee = Softmax(Cov(Feenc, Fedec)). (15)

With the post-fusion by element-wise summation, the output feature map is obtained,
Fcsee ∈ RC×H×W .

Overall, the CSEE module enhances polyp segmentation by ensuring that multi-
scale edge information is retained and accurately fused. Key contributions of the CSEE
module include the following:

1. The CSEE module aligns encoder and decoder feature maps across scales, ensuring that
high-resolution and low-resolution features contribute equally to segmentation accuracy;

2. By using channel-wise attention, the CSEE module focuses on the most relevant
channels, allowing the network to better capture the edge structures that are critical
for precise segmentation;

3. The use of a learnable Canny kernel ensures that boundary information is consis-
tently extracted and preserved, which is essential for distinguishing polyps from
surrounding tissues in medical images.

3.5. Hybrid Loss Function

In this section, we propose a hybrid loss function designed to improve the accuracy
of polyp segmentation by combining cross-entropy loss and edge-aware loss. The hybrid
loss function is specifically tailored for the architecture integrating the CEEA and CSEE
modules, which focus on both channel-wise and edge-preserving features. The goal of
this loss function is to enhance not only the semantic segmentation accuracy but also the
precision of boundary detection, which is critical for medical image segmentation tasks.

The hybrid loss function, denoted as Lhybrid, is defined as a weighted sum of cross-
entropy loss LCE and edge-aware loss Ledge:

Lhybrid = α · LCE + β · Ledge, (16)

where α and β are weights balancing the contributions of the two components (both set
as 0.5 in this study). The cross-entropy loss measures the pixel-wise classification error.
For a predicted segmentation map, P ∈ RC×H×W , and ground truth, Y ∈ RC×H×W , the
cross-entropy loss is as follows:

LCE = − 1
HW

H

∑
i=1

W

∑
j=1

C

∑
c=1

Yi,j,c log(Pi,j,c). (17)

The edge-aware loss ensures accurate boundary detection by comparing the predicted
and ground truth edge maps. First, edges are extracted:

EGT = Edge(Y), EP = Edge(P). (18)

To sum up, this hybrid loss encourages both accurate segmentation and precise boundary
detection, making it effective for polyp segmentation, where boundary precision is crucial.

4. Experiments
4.1. Datasets

Our experiments were conducted on two benchmark datasets, and the details are
given in this subsection.

4.1.1. Kvasir-SEG

As presented in Table 1, the Kvasir-SEG dataset, introduced by Jha et al. [32], is a
large-scale dataset specifically designed for the task of polyp segmentation in colonoscopy
images. It contains 1000 colonoscopy images with pixel-wise annotations for polyps,
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enabling researchers to evaluate the performance of various segmentation models. The
images in the dataset cover a wide range of polyp sizes, shapes, and appearances, reflecting
real-world variability in clinical colonoscopy procedures. The Kvasir-SEG dataset provides
a robust benchmark for developing deep learning-based segmentation models, especially
in the context of detecting and delineating polyps accurately. Additionally, the dataset
is freely available, making it an important resource for both medical image analysis and
broader multimedia modeling research.

Table 1. Dataset properties.

Dataset Size Total Training Set Validation Set Test Set

Kvasir-SEG [32] 487 × 332 to 1920 × 1072 1000 600 200 200
CVC-ClinicDB [33] 288 × 368 612 368 122 122

4.1.2. CVC-ClinicDB

As presented in Table 1, the CVC-ClinicDB dataset, introduced by Bernal et al. [33]
in their work on WM-DOVA maps for polyp detection, is a widely used benchmark in
colonoscopy image analysis. This dataset consists of 612 images extracted from colonoscopy
video sequences, where each image is annotated with corresponding pixel-level ground
truth masks of polyps. The dataset is designed to evaluate the performance of polyp
detection and segmentation algorithms, providing a reliable benchmark for both traditional
methods and deep learning-based approaches. The diversity in polyp appearance, size,
shape, and texture makes CVC-ClinicDB a challenging dataset that closely reflects real
clinical scenarios, which is crucial for developing robust medical image segmentation
models. The dataset is validated against saliency maps provided by expert physicians,
ensuring the accuracy and clinical relevance of the ground truth annotations.

4.2. Implement Details

The proposed EENet and the benchmark models were implemented on a Linux system,
utilizing the PyTorch framework and accelerated by an NVIDIA A40 GPU. As presented in
Table 2, to enhance model generalization, data augmentation methods, including random
flipping and cropping, were applied. During training, we used a batch size of 64 with
sub-patches sized at 256 × 256. The training procedure involved setting an initial learning
rate of 0.02 and running for a maximum of 500 epochs. The optimization was handled
by the SGD optimizer with momentum set at 0.9 and a polynomial learning rate decay
strategy. The Softmax cross-entropy loss function was employed. The model achieving the
lowest validation loss was selected for further evaluation.

We compared our EENet with several state-of-the-art methods, including UNet [47],
DeepLav V3+ [14], UNet++ [15], ResUNet [49], ResUNet++ [16], PraNet [21], XNet [61],
and Polyp-PVT [26].

Table 2. Experimental settings.

Items Settings

Learning strategy Poly decay
Initial learning rate 0.002

Loss function Cross-entropy
Max epoch 500

GPU memory 48 GB
Optimizer SGD

Sub-patch size 256 × 256
Batch size 64
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4.3. Evaluation Metrics

In this study, we evaluated the performance of our predictions on the test set using
four standard evaluation metrics:

Dice =
2 × TP

2 × TP + FP + FN
, (19)

IoU =
TP

TP + FP + FN
, (20)

Sensitivity =
TP

TP + FN
, (21)

Specificity =
TN

TN + FP
, (22)

where TP, TN, FP, and FN denote the counts of true positives, true negatives, false
positives, and false negatives, respectively. Moreover, mDice and mIoU are calculated over
all test sets.

4.4. Comparison with State-of-the-Art Models
4.4.1. Numerical Evaluation of Kvasir-SEG

As presented in Table 3, the EENet exceeds all other models across all metrics. Notably,
the EENet achieves a Dice coefficient of 0.9208, outperforming Polyp-PVT and PraNet,
which scored 0.8907 and 0.8876, respectively. This Dice score improvement underscores
EENet’s superior capability to accurately distinguish between polyp and non-polyp regions.
Similarly, the EENet records the highest IoU of 0.8664, demonstrating its superiority in
accurately delineating the boundaries of polyps, which is crucial in clinical settings.

In terms of sensitivity, the EENet achieved a score of 0.9912, indicating that the model
is highly capable of identifying polyps across varying conditions, outperforming the next-
best model, Polyp-PVT, which scored 0.9792. Lastly, the EENet also leads in specificity with
a score of 0.9319, ensuring fewer false positives compared to other models, which is critical
in reducing unnecessary follow-up procedures. These results validate the effectiveness of
our CEEA and CSEE modules in enhancing polyp segmentation performance, particularly
in challenging scenarios where precise boundary detection is crucial.

Table 3. Results on the Kvasir-SEG dataset, where the bold text indicates the best results.

Methods Dice IoU Sensitivity Specificity

UNet [47] 0.8120 0.7405 0.9430 0.8507
DeepLab V3+ [14] 0.8149 0.7432 0.9464 0.8538

UNet++ [15] 0.8109 0.7349 0.9739 0.7971
ResUNet [49] 0.8179 0.7459 0.9499 0.8569

ResUNet++ [16] 0.8245 0.7734 0.8937 0.8299
PraNet [21] 0.8876 0.8303 0.9667 0.9015
XNet [61] 0.8583 0.8076 0.9239 0.8686

Polyp-PVT [26] 0.8907 0.8354 0.9792 0.9088
EENet (ours) 0.9208 0.8664 0.9912 0.9319

4.4.2. Visual Inspections of Kvasir-SEG

Figure 5 illustrates the qualitative comparisons of segmentation results on randomly
selected samples from the Kvasir-SEG test set. From the visual inspections, we can observe
that the EENet (k) consistently produces more precise and detailed polyp boundaries
compared to the other models. Specifically, in regions where the polyp boundaries are
irregular or faint, such as in the samples shown, the EENet is able to capture these subtle
differences more accurately. Models such as Polyp-PVT (j) and PraNet (h) also perform
well but tend to miss finer details, leading to slightly over-segmented or under-segmented
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areas. In contrast, traditional models like UNet (c) and UNet++ (e) show visible limitations,
especially in handling complex polyp shapes and backgrounds, resulting in blurred or
incomplete boundaries.

(a) (b) (d) (e) (f)(c)

(i)(h)(g) (j) (k)

(a) (b) (d)(c)

(k)(i)(g)

(f)(e)

(h) (j)

(a) (b) (e)(c) (d) (f)

(g) (h) (i) (k)(j)

Figure 5. Visual inspections of random samples from Kvasir-SEG test set. (a) Input image, (b) ground
truth, (c) UNet [47], (d) DeepLav V3+ [14], (e) UNet++ [15], (f) ResUNet [49], (g) ResUNet++ [16],
(h) PraNet [21], (i) XNet [61], (j) Polyp-PVT [26], and (k) EENet (ours).

The effectiveness of the EENet is particularly evident in the cases where there is low
contrast between the polyp and the surrounding tissues. It manages to segment the polyp
with minimal false positives, and its results are visually closer to the ground truth compared
to other models, indicating its robustness and superiority in real clinical scenarios.
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4.4.3. Numerical Evaluation of CVC-ClinicDB

Table 4 presents the quantitative results of our proposed EENet on the CVC-ClinicDB
dataset, compared to several state-of-the-art models. The EENet achieves the best perfor-
mance across most metrics. In terms of the Dice coefficient, the EENet records the highest
score of 0.9316, outperforming Polyp-PVT (0.9178) and PraNet (0.8990). This reflects the
EENet’s ability to segment polyps more accurately by capturing both fine details and over-
all structure. Furthermore, the EENet achieves the highest IoU score of 0.8817, indicating
its effectiveness in delineating the boundaries of polyps with greater precision than other
models, including Polyp-PVT (0.8667) and XNet (0.8204).

In terms of sensitivity, the EENet remains competitive with a score of 0.9915, closely
matching the highest score of 0.9921 achieved by Polyp-PVT. This demonstrates that the
EENet is highly capable of detecting polyps, including those with subtle or irregular
boundaries. Importantly, the EENet shows a significant advantage in specificity, achieving
the highest value of 0.9586, outperforming Polyp-PVT (0.9300) and PraNet (0.9110). The
high specificity highlights the EENet’s ability to reduce false positives, ensuring that non-
polyp regions are correctly identified, thus improving the overall robustness of the model
in clinical applications.

Overall, these results demonstrate the superiority of the EENet in terms of both
segmentation accuracy and boundary precision, validating the effectiveness of the CEEA
and CSEE modules in handling complex polyp segmentation tasks.
Table 4. Results on the CVC-ClinicDB dataset, where the bold text indicates the best results.

Methods Dice IoU Sensitivity Specificity

UNet [47] 0.7618 0.6988 0.8766 0.7729
DeepLab V3+ [14] 0.7984 0.7325 0.9187 0.8101

UNet++ [15] 0.7940 0.7290 0.9270 0.7950
ResUNet [49] 0.7957 0.7299 0.9155 0.8073

ResUNet++ [16] 0.8590 0.7881 0.9885 0.8716
PraNet [21] 0.8990 0.8490 0.9901 0.9110
XNet [61] 0.8943 0.8204 0.9910 0.9073

Polyp-PVT [26] 0.9178 0.8667 0.9921 0.9300
EENet (ours) 0.9316 0.8817 0.9915 0.9586

4.4.4. Visual Inspections of CVC-ClinicDB

Figure 6 provides visual comparisons of segmentation results from various models
on randomly selected samples from the CVC-ClinicDB test set. Upon inspection, the
EENet (k) demonstrates superior performance in capturing polyp boundaries compared
to the other models. It consistently delivers the most accurate and sharp segmentation
results, particularly in challenging regions where the polyp boundaries are less distinct or
more complex. In contrast, models like UNet (c) and UNet++ (e) struggle with boundary
precision, often producing over-segmented or under-segmented outputs, which can lead to
incomplete or inaccurate delineation of polyps.

Advanced models such as Polyp-PVT (j) and PraNet (h) also perform well but occa-
sionally miss finer details in the polyp structure, which can lead to slightly less accurate
segmentation in comparison to the EENet. Overall, the EENet model stands out, providing
segmentation results that are visually closer to the ground truth and exhibit greater preci-
sion, especially in the presence of challenging polyp structures and low-contrast regions.
This further validates the effectiveness of the proposed network in real clinical scenarios
where precise boundary detection is critical.
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(a) (b) (c) (d)

(g)

(e)

(h)

(f)

(k)(j)(i)

(a) (b) (d)

(j)

(e)

(k)(g)

(c)

(h) (i)

(f)

(a) (b)

(i)

(e) (f)

(k)

(d)(c)

(j)(h)(g)

Figure 6. Visual inspections of random samples from CVC-ClinicDB test set. (a) Input im-
age, (b) ground truth, (c) UNet [47], (d) DeepLav V3+ [14], (e) UNet++ [15], (f) ResUNet [49],
(g) ResUNet++ [16], (h) PraNet [21], (i) XNet [61], (j) Polyp-PVT [26], and (k) EENet (ours).

4.5. Ablation Study of CEEA

To evaluate the contribution of the CEEA module in the EENet, we performed an
ablation study, replacing the CEEA layer with two alternatives: CB (see Figure 2) and a
standard self-attention model [62]. The modified networks, referred to as EENet-C (with
CB) and EENet-A (with self-attention), were tested on the Kvasir-SEG and CVC-ClinicDB
datasets to assess the effect of the CEEA module on segmentation accuracy.

Table 5 presents the results of this ablation study. On the Kvasir-SEG dataset, EENet-
C achieves a Dice/IoU score of 0.8687/0.8175, and EENet-A improves these results to
0.9023/0.8491, reflecting the benefit of introducing self-attention. However, when the full
EENet with the CEEA module is used, the model reaches the best performance, achieving
0.9208/0.8664 on the same dataset. A similar trend is observed on the CVC-ClinicDB
dataset, where EENet-C and EENet-A score 0.8508/0.8052 and 0.8977/0.8496, respectively,
but the EENet with CEEA achieves the highest Dice/IoU of 0.9316/0.8817.

These results demonstrate the significant improvement brought upon by the CEEA
module in both datasets. The incorporation of CEEA enhances both the accuracy and bound-
ary precision of polyp segmentation, confirming the module’s effectiveness in capturing
fine-grained details and spatial relationships that are crucial for high-quality segmenta-
tion performance.
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Table 5. Results of different variants on two dataset.

Models Kvasir-SEG CVC-ClinicDB

EENet-C 0.8687/0.8175 0.8508/0.8052
EENet-A 0.9023/0.8491 0.8977/0.8496

EENet 0.9208/0.8664 0.9316/0.8817

4.6. Impacts of CSEE

To evaluate the contribution of the CSEE module in the overall performance of the
EENet, we conducted experiments by removing the CSEE module from the network, result-
ing in the variant EENet without CSEE. The performance of this variant was then compared
to that of the full EENet model on both the Kvasir-SEG and CVC-ClinicDB datasets.

Table 6 presents the results of this comparison. On the Kvasir-SEG dataset, the EENet
without CSEE achieves a Dice/IoU score of 0.8795/0.8276, which shows a noticeable
drop in performance compared to the full EENet, which scores 0.9208/0.8664. A similar
pattern is observed in the CVC-ClinicDB dataset, where the EENet without CSEE achieves
0.8945/0.8465, while the full EENet reaches 0.9316/0.8817.

These results highlight the significant impact of the CSEE module on improving
segmentation accuracy and boundary delineation. The CSEE module plays a crucial role in
maintaining multi-scale consistency and enhancing boundary detection, leading to better
segmentation outcomes, especially in challenging cases where precise edge detection is
critical for accurate polyp segmentation. Removing CSEE results in a noticeable degradation
in performance, reinforcing its importance in the overall network architecture.

Table 6. Results of removing CSEE.

Models Kvasir-SEG CVC-ClinicDB

EENet w/o CSEE 0.8795/0.8276 0.8945/0.8465
EENet 0.9208/0.8664 0.9316/0.8817

4.7. Discussions

In this section, we provide a comprehensive analysis of the significance of our results,
highlight the limitations of the EENet model, and suggest possible directions for further
research. The experimental results demonstrate that the EENet achieves a Dice score of
0.9208 and an IoU of 0.8664 on the Kvasir-SEG dataset, outperforming models such as
Polyp-PVT (0.8907 Dice, 0.8354 IoU) and PraNet (0.8876 Dice, 0.8303 IoU). Similarly, on the
CVC-ClinicDB dataset, the EENet surpasses existing models with a Dice score of 0.9316 and
an IoU of 0.8817, compared to Polyp-PVT (0.9178 Dice, 0.8667 IoU). These results represent
a significant improvement in the accuracy and precision of polyp segmentation, especially
in the detection of polyp boundaries. This higher accuracy is particularly crucial in clinical
applications, where precise boundary delineation can reduce the risk of complications
during polyp removal procedures.

However, the trade-off between accuracy and computational cost must be considered.
While the EENet achieves superior segmentation results, the inclusion of the CEEA and
CSEE modules increases the model’s complexity, potentially leading to longer processing
times compared to simpler architectures like U-Net or ResUNet. This trade-off may affect
the model’s real-time performance in clinical settings, where rapid image processing is
critical. While the EENet has shown excellent performance on polyp segmentation datasets,
its effectiveness on other medical segmentation tasks (e.g., tumor detection in different
organs) has not yet been explored. The model may require fine-tuning or architectural
adjustments to generalize effectively across other medical imaging modalities.

Specifically, while the EENet demonstrates excellent performance, with Dice scores
above 92% on both the Kvasir-SEG and CVC-ClinicDB datasets, we recognize that for
clinical diagnostic tools, accuracy must be as close to perfect as possible. Current models,
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including ours, serve as valuable second opinions in diagnostics, but for them to become
primary tools, further improvements are necessary. Future work will focus on increasing
accuracy through methods such as integrating multi-modal data, leveraging transformer-
based architectures, and conducting extensive clinical validation. These efforts aim to
ensure that models like the EENet can meet the stringent accuracy requirements of clinical
practice, providing more reliable and safer diagnostic support.

5. Conclusions

This paper presents the edge-enhanced network (EENet), designed to improve the
accuracy and boundary precision of polyp segmentation in colonoscopy images. The EENet
achieved a Dice score of 0.9208 and an IoU of 0.8664 on the Kvasir-SEG dataset, and a Dice
score of 0.9316 with an IoU of 0.8817 on the CVC-ClinicDB dataset, outperforming several
state-of-the-art models such as Polyp-PVT and PraNet. Clinically, these improvements
translate into more accurate and reliable polyp detection during colonoscopy procedures.
The higher Dice and IoU scores suggest that the EENet can reduce false positives and false
negatives, which is critical for preventing colorectal cancer by ensuring that polyps are
accurately identified and removed. Improved boundary precision also means that less
healthy tissue may be affected during polyp removal, minimizing the risk of complica-
tions. Therefore, the EENet not only provides technical improvements in segmentation
performance but also offers significant potential for enhancing patient outcomes in real
clinical settings.

In future work, we aim to extend the capabilities of the EENet by exploring its gener-
alizability to other medical imaging tasks, such as segmentation of tumors and lesions in
various organs beyond the colon. Additionally, incorporating advanced attention mecha-
nisms, such as transformer-based architectures, could further enhance the model’s ability to
capture long-range dependencies in complex medical images. Another avenue of research
is to optimize the network for real-time performance, making it suitable for integration into
clinical workflows where fast and accurate feedback is critical. Furthermore, we plan to
explore the application of semi-supervised or unsupervised learning techniques to reduce
the dependency on large labeled datasets, which are often challenging to obtain in medical
contexts. These developments have the potential to further improve the robustness and
applicability of the EENet in a variety of clinical settings.
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