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Abstract: The early detection accuracy of early gastric cancer (EGC) determines the choice of the opti-
mal treatment strategy and the related medical expenses. We aimed to develop a simple, affordable,
and time-saving diagnostic model using six machine learning (ML) algorithms for the diagnosis of
EGC. It is based on the endoscopy-based Kyoto classification score obtained after the completion
of endoscopy and other clinical features obtained after medical consultation. We retrospectively
evaluated 1999 patients who underwent gastrointestinal endoscopy at the China Beijing Hospital. Of
these, 203 subjects were diagnosed with EGC. The data were randomly divided into training and
test sets (ratio 4:1). We constructed six ML models, and the developed models were evaluated on
the testing set. This procedure was repeated five times. The Kolmogorov–Arnold Networks (KANs)
model achieved the best performance (mean AUC value: 0.76; mean balanced accuracy: 70.96%;
mean precision: 58.91%; mean recall: 70.96%; mean false positive rate: 26.11%; mean false negative
rate: 31.96%; and mean F1 score value: 58.46). The endoscopy-based Kyoto classification score was
the most important feature with the highest feature importance score. The results suggest that the
KAN model, the optimal ML model in this study, has the potential to identify EGC patients, which
may result in a reduction in both the time cost and medical expenses in clinical practice.

Keywords: early gastric cancer; Kyoto classification; machine learning; endoscopy; KANs

1. Introduction

Gastric cancer (GC) is one of the most common cancers worldwide. Despite a decline
in the incidence of GC over recent decades, the incidence rate of GC in China accounts
for 44% of the world’s gastric cancer incidence rate [1]. In China, gastric cancer was the
third leading cause of cancer-related mortality, with 260,400 deaths recorded in 2022 [2].
GC is a multi-factorial disease with environmental and genetic factors contributing to its
etiology. Some of these risk factors, such as age, sex, and family history of gastric cancer,
are not modifiable. Conversely, other factors, such as Helicobacter pylori (HP) infection,
nutrition improvement, body mass index (BMI), smoking and alcohol consumption, and
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physical activity, can be modified [3,4]. Gastric cancer can be classified into two types
based on staging: early stage and advanced stage. Patients with EGC can be cured with
timely treatment. Nevertheless, the five-year survival rate is poor for those diagnosed at an
advanced stage, even after surgery [5].

Clinically, gastrointestinal endoscopy is the primary and preferred means of screening
GC [6]. Unfortunately, due to hidden symptoms of EGC, some patients with EGC do not
actively choose to undergo endoscopy until the symptoms become severe, which leads to
most of the GC patients being diagnosed at an advanced stage [7]. Therefore, the early
detection for EGC is vital, especially to those with high risk factors, and would reduce the
costs associated with follow-up care and prevent the progression of gastric cancer at its
earliest possible stage.

In recent years, gastrointestinal endoscopy is gradually popularized in primary hos-
pitals. Nevertheless, due to the considerable number of patients and the relatively poor
quality of medical conditions in primary hospitals, their endoscopists were forced to make
definitive diagnosis based solely on the results of endoscopy that performed with their eyes.
As it is possible that the cancerous areas may be missed detected or incorrectly identified,
the rate of missed diagnosis of EGC is not optimistic [8–10]. In contrast, a definitive diagno-
sis of EGC in a municipal hospital is usually based on a combination of gastrointestinal
endoscopy and the results of three kinds of gastric functional tests (i.e., the PG I test, PG
II test, and G-17 test) or a single gastric functional test [11]. However, the additional cost
of gastric functional tests made them unaffordable for a proportion of patients in China,
which may have further discouraged proactive patient attendance.

In the field of gastroenterology, several prediction models for gastric cancer that have
been developed by ML methods, which process tabular datasets instead of endoscopic im-
ages, have been reported in previous studies [12–14]. ML techniques are an emerging tool
for the development of both predictive models and data analysis models. It can implicitly
extract useful information from raw data, even uncovering patterns [15]. However, the
previously described EGC prediction models were all constructed using traditional ML
algorithms that have achieved good performance on tabular datasets, such as the random
forest (RF) algorithm [16,17], multi-layer perceptron (MLP) algorithm [17,18], extra trees
(ET) algorithm [19], support vector machine algorithm [17,20], gradient-boosted trees algo-
rithm [16,17,20], and logistic regression (LR) algorithm [16,18], rather than KAN algorithms.
KANs represent a new class of neural network architectures that draw inspiration from the
work of Andrey Kolmogorov and Vladimir Arnold [21,22]. By representing functions as
the sum of these learnable functions, a KAN can accurately represent continuous functions
while maintaining the interpretability of the underlying model [23]. KANs were introduced
specifically as an alternative to MLPs [23]. In the study conducted by Eleonora Poeta
et al. [23], KANs exhibited superior or comparable accuracy and F1 scores in datasets with
numerous samples compared to MLPs, indicating that it can robustly handle complex
tabular data. In comparison to complex models with limited interpretability, selected ML
models that constructed traditional ML algorithms have clear interpretability and achieved
good performance in addressing classification problems with tabular datasets [24–26]. Con-
sequently, five traditional ML algorithms (i.e., ET, RF, LR, Ada Boost Classifier (Ada Boost),
and Radial Basis Function Kernel Support Vector Machine Classifier (RBF-SVM)) were
selected for EGC prediction in our study, in comparison to the KAN algorithm.

Concurrently, with respect to independent variables involved in the development of
EGC prediction model, few studies have considered the endoscopy-based Kyoto classi-
fication score, also called Kyoto Classification of Gastritis, as a significant risk factor for
constructing ML models for EGC prediction [4]. The endoscopy-based Kyoto classification
score was calculated following the completion of endoscopy, which was first advocated
at the Japan Gastroenterological Endoscopy Society in 2013 and has since become one of
the most commonly used gastritis classification systems worldwide [27]. A higher Kyoto
classification score indicates higher risk of current HP infection and gastric cancer [28]. The
majority of previous studies have considered patients’ personal information, endoscopic
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features (i.e., atrophy, intestinal metaplasia, enlarged fold, nodularity, and diffuse redness),
and the results of routine blood, biochemical, and tumor marker tests as independent
variables in the development of ML models for the diagnosis of EGC [13,16,17,20]. In
comparison to a number of endoscopic characteristics, the endoscopic Kyoto classification
score of gastritis gives us a unified way to describe gastritis of different individuals [4],
which makes it suitable as an important variable to improve the performance of EGC
prediction model. For example, the work of Lin J et al. demonstrated that a predictive
nomogram model, constructed based on the endoscopic Kyoto classification scores, age,
sex, PG I/II ratio, HP antibody, and four endoscopic features, was proven to be of high
predictive value for GC [4]. Nevertheless, their method of predicting gastric cancer requires
the information on the PG I/II ratio, which resulted in increased medical expenses and a
time delay in the final diagnosis.

Thus, we hypothesize that ML-based prediction models of EGC that take into account a
minimum number of effective variables, including the endoscopy-based Kyoto classification
score and other clinical features collected after a simple medical consultation, can be a
simple and affordable method for the prediction of EGC in hospitals. The aforementioned
clinical features include age, gender, BMI, family history of gastric cancer, history of HP
infection and HP eradication, and smoking and alcohol consumption. Six ML models were
constructed for the purpose of predicting EGC. The aforementioned ML methods included
five traditional ML methods and a novel ML method, namely, KANs.

The objective of the present study was to evaluate and sought out the optimal ML
model using the endoscopy-based Kyoto classification score and multiple clinical features
collected from medical consultations in order to develop a practical and low-cost diagnostic
method for EGC.

The three main contributions of our work are as follows: (1) Investigating suitable
machine learning approaches for the diagnosis of EGC among six ML models (i.e., ET, RF,
LR, Ada Boost, and RBF-SVM, and the KAN model) using the Kyoto classification score and
other clinical features collected from medical consultations. (2) Finding the most important
feature with the highest feature importance score for predicting EGC cases. (3) The KAN
model, which was constructed using a novel ML method (i.e., KANs) for EGC prediction,
was proposed as the optimal ML model for implementation in clinical practice following
gastrointestinal endoscopy and routine consultations.

2. Materials and Methods
2.1. Patients and Inclusion and Exclusion Criteria

This is a retrospective, single-center study that received approval from the Ethics
Committee of Beijing Hospital, Chinese Academy of Medical Sciences (approved no.
2020BJYYEC-061-08) and was registered at the Chinese Clinical Trial Registry
(ChiCTR2000032812). Data were collected from May 2020 to May 2024, involving 2042 pa-
tients aged 23–91 years with suspected chronic gastritis. All participants provided written
informed consent to cooperate with routine diagnostic gastroscopy. Inclusion criteria are
as follows: (1) The patient underwent gastroscopy at our hospital’s Digestive Endoscopy
Center. (2) The patient signed an informed consent form and could cooperate with the
gastroscopy, including white-light gastroscopy and LCI mode. (3) Pathologically confirmed
as gastric cancer or no gastric cancer through biopsy or endoscopic submucosal dissection.
(4) White-light gastroscopy and LCI images of the suspected gastric cancer area were
clear. The exclusion criteria are as follows: (1) Inability to tolerate conventional endoscopy.
(2) Already diagnosed with middle or advanced stage gastric cancer. (3) Pathologically
confirmed as fundamental gastric cancer, gastrinoma, gastric adenocarcinoma of fundic
gland, or signet ring cell carcinoma. (4) Missing data of one of variables in this study.

We numbered the included patients firstly and collected basic information, including
gender, age, height, weight, HP infection and HP eradication history, and family history of
gastric cancer; lifestyle information was also collected, including alcohol consumption and
smoking consumption. The status of Helicobacter pylori infection is determined through the
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collection of medical history. For example, if a patient had previously been infected but
was successfully eradicated, this information was recorded. However, during subsequent
endoscopic examinations, if the rapid urease test was positive, or if Helicobacter pylori was
detected in the gastric mucosal biopsy, the information would be revised accordingly. The
BMI of the patient was calculated using the patient’s weight and height values and was
subsequently graded. In this study, the endoscopy-based Kyoto classification score of
each case was evaluated by at least two experienced endoscopists, with the score ranging
from 0 to 8. If the two endoscopists had different opinions, then they sought the advice
of a third senior endoscopist. The Kyoto classification score is defined as the sum of five
endoscopic findings, including atrophy score, intestinal metaplasia score, diffuse redness
score, nodularity score, and enlarged folds score [29,30].

In this study, 43 patients were excluded based on according to the aforementioned
exclusion criteria. A total of 1999 subjects were enrolled for further study. The details of
sample inclusion and exclusion are shown in Figure 1. The workflow of the current research
is shown in Figure 2.

Figure 1. The process of inclusion and elimination.

2.2. Raw Data Preprocessing

Each sample in the raw dataset comprised eight features and one label column. These
eight features are age, gender, BMI, family history of gastric cancer, history of HP infection
and HP eradication, smoking consumption, alcohol consumption, and the endoscopy-based
Kyoto classification score. All of these variables are categorical features. The label values
were encoded as 1 for the positive class and 0 for the negative class. The samples with
the positive class label and the negative class label represent EGC cases (n = 203) and
non-EGC cases (n = 1796), respectively, which indicates that the two classes of data were
lightly imbalanced.

Firstly, no imputation was performed on categorical features, as these features had
no missing values after the process of data exclusion. One-hot encoding was applied to
the categorical features. Secondly, the datasets were randomly divided into a training
set (1599 samples) and a testing set (400 samples) with an 8:2 ratio. Thirdly, in order to
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alleviate the problem of the biased results towards the majority due to the two classes of
data being imbalanced, the “WeightedRandomSampler” function, a type of sampler from
the Pytorch library (specifically, from torch.utils.data.sampler), was employed to calculate
the probabilities of the sample with label 1 and label 0.

Figure 2. The workflow of current research.

In our study, the output of the “WeightedRandomSampler” function is a sequence
of weights and the length of which is equal to that of the training set. Subsequently, the
minority samples were resampled from the training set with the given weights sequence
and drawn with replacement through ten iterations. In each iteration, 10% of samples of
training set were resampled. Following the resampling procedure, the ratio of samples
with a positive class label to those with a negative class label in the preprocessed training
set is approximately equal to 1:1. Table 1 lists the number of positive samples and negative
samples in the training and testing sets, respectively, following data preprocessing. The
above resampling process was applied to the training set only and left the testing set intact
in order to avoid the inflation of performance measures.

2.3. Machine Learning Methods and Evaluation Metrics for Classification

Instead of complex models with limited interpretability, six ML techniques were em-
ployed for data modelling and evaluated for EGC binary classification performance using ac-
tual clinical data during cross-validation [31], as reported in previous studies [17,18,20,32,33].
The ML methods in this study included LR [33], RBF-SVM [34,35], ET [36], Ada Boost [37],
RF [38], and KAN [39] algorithms.

LR is a widely used multi-variable method for binary classification [40]. Logistic
regression models are employed to examine the effects of multiple predictor variables
on the outcome and normally the outcome is binary, such as the presence or absence
of disease [41].

Support vector machine is an optimal margin-based classification technique that
transforms the original data into a higher-dimensional space using nonlinear mapping. In
a higher-dimensional space, the support vector machine employs support vectors to find
an optimal hyperplane that separates the original data points according to their annotation
profiles [42]. For solving the binary classification task efficiently, the kernel function of
SVM was the radial basis function (RBF) in this study.
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Table 1. The number of positive samples and negative samples in a training set and a testing set after
data preprocessing.

The Binary
Classification

The Serial Number of 5 Repetitions When Using 5 Different Random Seed Values for Data Splitting

1 2 3 4 5

Random Seed = 256 Random Seed = 468 Random Seed = 592 Random Seed = 735 Random Seed = 814

Number of samples with
the positive class label in a
training set after data
preprocessing

841 775 790 809 793

Number of samples with
the negative class label in
a training set after data
preprocessing

758 824 809 790 806

Number of samples with
the positive class label in a
testing set after data
preprocessing

49 43 35 34 40

Number of samples with
the negative class label in
a testing set after data
preprocessing

351 357 365 366 360

Ada Boost is an ensemble method that improves the performance of a base machine
learning algorithm [43]. After adjusting the sample weights and the weights of weak
learners, the output of the base learning algorithms is combined into a weighted sum that
represents the final output of the boosted classifier. Subsequent base learners are trained in
favor of those samples that were misclassified by previous classifiers [37].

A random forest is a classifier consisting of a set of tree-structured classifiers where
each tree depends on the values of a random vector sampled independently and with
the same distribution for all trees in the forest [38]. In essence, random forest generates
a multitude of decision trees, which are used to form a “forest”. The output is then
determined by a voting process conducted on the multiple trees that comprise the forest.
However, its performance is strictly related to a number of hyperparameters, such as the
number of trees in the forest and the pruning strategies, as well as the max depth value.

ET is an extremely randomized tree-growing algorithm that combines the attribute
randomization of random subspace with a totally random selection of the cut-point [36].
This method depends on the number of trees M, one main parameter K, and a secondary
parameter nmin. The main parameter K controls the strength of the attribute randomization
and the secondary parameter nmin controls the degree of smoothing [36].

As proposed by Liu et al. [39], KANs are promising alternatives to MLPs and represent
a novel class of neural network architectures. In traditional neural networks, the nodes of
traditional neural networks employed fixed nonlinear activation functions.

In contrast, each edge in a KAN is characterized by a learnable activation function.,
i.e., the parameter of each weight in the edges of KANs is replaced with a learnable 1D
function that is typically parameterized as a spline [23]. By representing functions as a sum
of these learnable functions, KANs can represent continuous functions accurately while
maintaining the interpretability of the underlying model [23]. This potentially significantly
enhances accuracy and interpretability in function approximation tasks [39].

A number of standard metrics were employed for the performance evaluation of each
ML algorithm in our study. These metrics included the area under the receiver operating
characteristic curve (AUC), balanced accuracy (BA), F1 score, precision, recall, false positive
rate (FPR), and false negative rate (FNR). For calculating the evaluation metrics of datasets
with binary targets in this study, we report the macro (i.e., unweighted) average [23].
Balanced accuracy represents a corrected measure of accuracy that is used for the purpose
of comparing datasets with imbalances in sample size. The value of AUC is the area
under the receiver operating characteristic (ROC) curve, which was employed to evaluate
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and seek out the optimal ML model. Higher AUC values indicate better classification
performance of the model [44]. The predefined probability threshold was set to 0.5. Python
3.6 and the open-source Python automated machine learning library, PyCaret 2.3.10, were
used for data modeling of traditional ML methods, model evaluation of traditional ML
methods, and feature analysis. The Pytorch 1.10.2 library was used for data preprocessing.
The scikit-learn library was used for the calculation of evaluation metrics.

2.4. The Procedure of Data Modelling of Traditional ML Methods

The data modelling procedure of the five traditional ML models, as illustrated in
Figure 3, was divided into three stages: model training, hyperparameter tuning of the
selected model, and model evaluation. The traditional ML models included in this study
were LR, RBF-SVM, ET, Ada Boost, and RF. The preprocessed training datasets were used
for model training and optimization using 10-stratified k-fold cross-validation. A random
grid search was employed for hyperparameter tuning, with the highest AUC value serving
as the target for model hyperparameter tuning.

Figure 3. The block diagram of the process of data modeling of five traditional ML models.

Then, the optimal hyperparameters and the preprocessed training datasets were
employed to train and obtain each hyperparameter-tuned ML model. Seven metrics were
derived from each hyperparameter-tuned ML model and employed for the performance
evaluation of each ML algorithm on the testing sets in each data modeling process for
each ML model. A comparison of the results of the training model with those of the
hyperparameter-tuned model can be used to assess the appropriateness of the selected
hyperparameters. Furthermore, a comparison of the results of the tuned model on the
training dataset with those of the tuned model on the test dataset is required, in order to
evaluate the presence of overfitting.

In order to reduce bias, five random seed values were utilized for data splitting
during data preprocessing [45]. Then, the mean AUC value, the average F1 score, the
mean balanced accuracy value, the average precision value, the average recall value, the
average FPR value, and the average FNR value were calculated from five repetitions of the
data modelling process. The estimates of model performance were obtained through the
implementation of 10-stratified k-fold cross-validation in each repetition. This approach
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ensured the consistent class distribution in each fold, thereby enhancing the reliability of
the estimates.

Table S1 listed the best hyperparameter of five traditional ML models for the prediction
of EGC in this study.

2.5. The Procedure of Data Modelling of the KAN Method

In this study, an efficient implementation of the KAN architecture, as detailed in [46],
was employed. In our experiments, we used a basic KAN model with a single input layer,
an intermediate layer configured with ten distinct dimensions of k nodes where k ∈ [6,15],
and an output layer for classification [23]. As an activation function, we used the sigmoid
linear unit (SiLU) [47]. The detail of the implementation of KANs can be found in the work
of Eleonora Poeta et al. [23].

In order to ensure the reliability of the results, five random seed values were utilized
for data splitting and then each experiment was conducted five times with different random
seeds. When the value of i is an integer within the range [6,15], the intermediate layer
of each KAN model is configured with i nodes. In each run, every model is trained for
12 epochs using AdamW [48] optimizer with a learning rate of 10−2. Additionally, we
apply an exponential decay function to the learning rate, with a decay factor 0.8 [23]. In
our study, a comparison was conducted between the metrics of KAN models that had an
intermediate layer configured with different numbers of nodes, as calculated in the test set.
The results demonstrated that the optimal KAN model is configured with 8 nodes in the
intermediate layer in each experiment.

Therefore, seven evaluation metrics were calculated on the testing sets for purpose
of assessing the performance of each optimal KAN model in each repetition of the data
modelling process. Finally, the average AUC value was calculated from five repetitions of
the data modelling process of the KAN model. Other evaluation metrics were obtained
in similar way. The code for the KAN is available at https://github.com/eleonorapoeta/
benchmarking-KAN (accessed on 19 July 2024).

Table A1 (in the Appendix A) presents the confusion matrix of the KAN model for
the prediction of label versus the observed label in a testing set. The false positive rate,
false negative rate, positive predictive value, and negative predictive value were calculated
according to the confusion matrix. The number of misclassified EGC samples with the
Kyoto classification score < 4 and ≥4 and their respective proportions were presented.

2.6. The Method for Calculating Feature Importance Score of Variables

In order to assess the association between individual features and the accuracy of a
trained model, we also investigated the contribution of each feature on the model training
process by calculating the importance score of the predictors included in the model. This
score is mainly from the RF model. In RF, the importance score of each feature is calculated
by how much each feature improves the error rate of the classifier. The general concept
of the impact of a predictor variable in predicting the response is termed “variable impor-
tance”. The variable importance measure used in random forests, the Gini importance, is
based on the principle of impurity reduction [49]. Finally, the average importance score of
all trees in the RF is calculated to obtain the final score for each feature.

3. Results
3.1. Patient Characteristics

We included 1999 patients who underwent a gastrointestinal endoscopy and routine
medical consultations at our institution. Their mean (SD) age was 60.8 (11.1) years, and
1112 patients (55.6%) were men. Among these patients, 203 samples were diagnosed with
EGC, confirmed by the endoscopic and histologic findings. The definitions of the variables
are shown in Table 2.

https://github.com/eleonorapoeta/benchmarking-KAN
https://github.com/eleonorapoeta/benchmarking-KAN
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Table 2. The descriptive statistics of variables.

Variable Name
Attribute
and
Type

Values With Early Gastric
Cancer (203)

No Early Gastric
Cancer (1796) Total

Age (years) Categorical
variable

<30 1 14 15
30–39 0 64 64
40–49 8 219 227
50–59 35 510 545
60–69 82 626 708
≥70 77 363 440

BMI Categorical
variable

<18.5 15 106 121
18.5–23.9 88 796 884
24–27.9 78 729 807
≥28 22 165 187

Gender Categorical
variable

Male 132 980 1112
Female 71 816 887

HP infection and
HP eradication
history

Categorical
variable

Previous infection and
eradicated 90 668 758

Previous infection and
failed eradication 5 53 58

Current infection 27 200 227
Not HP infected 79 857 936
Others 2 18 20

Smoking Categorical
variable

No 132 1324 1456
Yes 71 472 543

Alcohol Categorical
variable

No 138 1289 1427
Yes 65 507 572

Family history of
gastric cancer

Categorical
variable

No 176 1612 1788
Yes 27 184 211

The
endoscopy-based
Kyoto
classification score

Categorical
variable

0 23 593 616
1 25 567 592
2 39 329 368
3 49 177 226
4 39 68 107
5 18 48 66
6 9 13 22
7 1 0 1
8 0 1 1

3.2. Model Performance

The two types of samples included in the testing set are imbalanced, as demonstrated
in Table 2. Accordingly, the value of AUC has a higher priority than accuracy for addressing
the unbalanced binary classification problem. Consequently, it is identified as the most
appropriate metric for evaluating ML models in our study.

The performances of six different ML models for predicting EGC are summarized in
Table 3. After repeating the data modelling process five times on a testing set, the perfor-
mance was evaluated using seven metrics, with the results expressed as mean ± standard
deviation. Results showed that the KAN model outperformed other ML models with the
highest average AUC value of 0.76, the highest average balanced accuracy of 70.96%, the
highest average F1 score value of 58.46, the highest mean precision value of 58.91%, the
highest mean recall value of 70.96%, and the lowest false negative rate of 31.96%, respec-
tively. In terms of the metrics of AUC value and F1 score, the KAN model exhibited the
lowest standard deviation, indicating a more stable performance in predicting EGC.
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Table 3. The means and standard deviations of performance metrics of six machine learning models
for the prediction of EGC using all features (the highest average F1 score and average AUC value is
in bold).

Metrics ET Ada Boost LR RF RBF-SVM KAN

AUC 0.758 ± 0.05 0.744 ± 0.05 0.742 ± 0.05 0.760 ± 0.05 0.691 ± 0.05 0.760 ± 0.04
F1 score 57.87 ± 3.34 57.23 ± 3.95 58.07 ± 2.99 57.68 ± 3.82 55.05 ± 4.89 58.46 ± 2.73
Precision 58.29 ± 2.15 58.03 ± 2.13 58.45 ± 1.85 58.11 ± 2.59 56.33 ± 3.47 58.91 ± 1.91
Recall 68.84 ± 3.64 68.49 ± 3.53 69.35 ± 3.25 68.44 ± 5.02 64.52 ± 7.66 70.96 ± 3.99
FPR 25.32 ± 2.56 26.56 ± 4.83 25.38 ± 2.57 25.27 ± 2.75 27.28 ± 2.16 26.11 ± 1.47
FNR 37.01 ± 6.45 36.46 ± 3.59 35.90 ± 5.16 37.86 ± 8.85 43.69 ± 13.45 31.96 ± 7.10
BA 68.83 ± 3.64 68.48 ± 3.53 69.35 ± 3.25 68.43 ± 5.02 64.51 ± 7.66 70.96 ± 3.99

AUC: area under the receiver operating characteristic curve; FPR: false positive rate; FNR: false negative rate;
BA: balanced accuracy.

The RF model achieved the highest average AUC value of 0.76 and the lowest false
positive rate of 25.27%, while the standard deviation of the AUC value of the RF model is
slightly larger than the standard deviation of the AUC value of the KAN model.

Receiver operating characteristic (ROC) curves and area under curve (AUC) values
for six different ML models were obtained after repeating the data modelling process five
times with five different random seed values (Figure A1 in the Appendix B).

3.3. The Result of Feature Importance Score

In addition to the model performance, we ranked the features in the model training
stage according to the feature importance score generated by the RF model, as shown in
Figure 4. According to the result of the feature importance score, we conclude that the five
variables of the endoscopy-based Kyoto classification score, age, history of HP infection
and HP eradication, gender, and alcohol consumption contribute the most. Among these
features, the endoscopy-based Kyoto classification score was the most important feature.

 

Figure 4. The feature importance score of each variable in the RF model.
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4. Discussion

The accuracy of early detection of EGC determines the choice of the optimal treatment
strategy and the related medical expenses as well as in the prevention of the progression of
gastric cancer. Gastrointestinal endoscopy, gradually popularized in primary hospitals, is
the primary and preferred means of screening GC. Despite a decline in the incidence of GC
and an improvement in people’s living standards and attention to their health over recent
decades, the incidence rate of GC in China still accounts for 44% of the world’s gastric
cancer incidence rate [1]. Therefore, there is a pressing need to identify a methodology
that not only raises the precision of EGC screening but also does so without adding to the
financial burden on patients. Thus, there is dire demand to develop a simple, affordable,
and time-saving diagnostic model using ML algorithms for the diagnosis of EGC following
the completion of gastrointestinal endoscopy and routine consultations. Such a strategy
would not only result in the acceptable medical cost, but also contribute to the reduction
of the time cost for obtaining a definitive diagnosis. In addition, the required patient’s
information is collected from medical consultation, which is readily available in many
digestive system departments of medical institutions.

In our study, the diagnostic ability of six ML models for predicting EGC was estab-
lished based on the endoscopy-based Kyoto classification score and seven traditional risk
factors obtained after a simple medical consultation (i.e., age, gender, BMI, family history
of gastric cancer, history of HP infection and HP eradication, and smoking and alcohol
consumption). The performance of each model was demonstrated according to the mean of
the AUC value, balanced accuracy, F1 score, precision, recall, FPR, and FNR metrics, which
were obtained after five repetitions of the data modelling process.

Among these ML models, the KAN model has the best performance with the highest
average AUC value of 0.76, the highest average balanced accuracy of 70.96%, the highest
average F1 score value of 58.46, the highest mean precision value of 58.91%, the highest
mean recall value of 70.96%, and the lowest false negative rate of 31.96%, respectively.
And the KAN model demonstrated the lowest standard deviation in three metrics of F1
score and AUC value, indicating a more stable performance in predicting EGC. These two
points suggest that the KAN model is the optimal ML model for developing a practical and
low-cost diagnostic method for EGC using the endoscopy-based Kyoto classification score
and multiple clinical features that were easily collected from medical consultation. Previous
studies have demonstrated that a Kyoto classification score of 0, ≥2, and ≥4 indicate a nor-
mal stomach, H. pylori-infected gastritis, and gastritis at risk for GC, respectively [4,50,51].
These findings are consistent with our findings, i.e., the endoscopy-based Kyoto classifi-
cation score was the most important feature for predicting EGC cases in our study. Our
findings, when considered alongside those of previous studies, indicate that the Kyoto
classification score plays a critical role in the diagnosis of EGC. This is because it enables
the severity of gastritis and the characteristics of visible lesions under endoscopy to be
captured, thereby providing a comprehensive assessment tool.

Some researchers use endoscopic features (atrophy, intestinal metaplasia, enlarged
fold, nodularity, and diffuse redness), the serum biomarkers of GC (i.e., PG I test, PG II test,
and G-17 tests), personal baseline information (age, sex, and BMI), and other information
about lifestyle behaviors (diet, drinking, and smoking) to predict the risk of GC. The
comparison between the results of other studies and the results of our research is shown in
Table 4. For example, Cai Q et al. [13] developed a prescreening tool that comprised the
variables age, sex, PG I/II ratio, G-17, anti-H. pylori IgG concentrations, and consumption
of pickled food and fried food, for identifying individuals at an increased risk of GC in the
Chinese high-risk population. The novel GC risk prediction rule showed good performance,
with an area under curve of 0.76, which was consistent with the results of our study in
terms of the AUC value. Similarly, the research of Lin J et al. [4] demonstrated that the AUC
of a predictive nomogram to predict GC using the Kyoto classification score, age, sex, PG
I/II ratio, HP antibody, and four endoscopic features was 0.79, which was slightly better
than the AUC value results of our study.
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Table 4. Comparing machine learning methods to predict EGC patients based on clinical features.

Studies No. of Patients
Enrolled

Characteristics Used for
Prediction

No. of Features
Collected Methodology Result

Cai Q et al. [13]
(2019) 14929

Age, sex, BMI, H. pylori infection, PG I,
PG II, PG I/II ratio, G-17,
anti-H. pylori IgG antibody,
pickled food, fried food, high-salt diet,
alcohol consumption and smoking
consumption, etc.

21 Logistic regression

The prediction rule
owns a good
discrimination, with
an AUC of 0.76.

Lin J et al. [4]
(2022) 2639

Age, sex, PG I/II ratio, HP
antibody, atrophy, intestinal
metaplasia, enlarged fold, diffuse
redness and the Kyoto classification
score

9 Nomogram
The AUC of the
nomogram to predict
GC
was 0.79

Our study
(2024) 1999

The Kyoto classification score, age,
gender, BMI, family history of gastric
cancer, the history of H. Pylori
infection and H. Pylori eradication,
smoking consumption and alcohol
consumption

8

Logistic regression,
extra trees, radial
basis function kernel
support vector
machine, Ada Boost,
random forest,
Kolmogorov–Arnold
networks

The KAN model
outperformed other
ML models with the
highest average AUC
value of 0.76, the
highest average
balanced accuracy of
70.96%.

G-17: gastrin-17; H. pylori: Helicobacter pylori; PG: pepsinogen; AUC: area under the receiver operating characteris-
tic curve.

However, several differences were observed in the data modelling algorithms and the
selected variables in the previous study (Cai Q et al.; Lin J et al.) and those employed in
the present study. Firstly, the number of features employed in the present study is fewer.
Secondly, our study did not use the serum biomarkers of GC (i.e., PG I test, PG II test,
and/or G-17 tests) to train the EGC predictive models, which reduced medical expenses
and time cost required to obtain the result of diagnosis. Thirdly, our study constructed EGC
prediction models that employed not only five traditional ML algorithms that have been
previously applied in previous studies but also using the KAN algorithm. KANs are capable
of accurately representing continuous functions while maintaining the interpretability of
the underlying model, which may be the reason for its superior performance in our study.
The application of KANs can significantly improve the accuracy and interpretability of the
function approximation task, which is achieved by representing a function as the sum of
these learnable functions [39].

In our study, the mean false negative rate of six ML models evaluated in the testing
set ranged from 31.96% to 43.69%. This indicates that the proportion of positive samples
(EGC cases) were incorrectly classified as negative (non-EGC cases), resulting in a missed
diagnosis. As demonstrated in Table A1, the results of the sample set incorrectly classified
by the KAN model indicate that [25.58%, 42.85%] of the EGC samples in the testing set was
predicted to be non-EGC samples, and [81.8%, 100%] of misclassified EGC samples with the
Kyoto classification score below 4. Previous research may interpret that the main reason for
missed diagnosis of EGC cases in the present study. To illustrate, the systematic review and
meta-analysis proposed by Zhang H. et al. [6] revealed that intestinal metaplasia and gastric
atrophy, both of which influence the score of the Kyoto classification system, were the two
factors that had the greatest impact on the risk of GC following the investigation. Moreover,
previous research [52] has demonstrated that individuals with intestinal metaplasia and
high-level gastric atrophy are at an extremely high risk of developing GC, even after the
eradication of H. pylori, due to the high incidence and hidden early symptoms of gastric
cancer and colon cancer. As demonstrated by the work of Kato M and Kamada T [27], the
Kyoto classification score for no-atrophy (C0) and atrophy (C1), mild atrophy (C2–C3), and
moderate to severe atrophy (O1–O3) is 0, 1, and 2, respectively. This is the same grading
rule as that used in our study. Therefore, we hypothesized that this may be attributable
to the presence of intestinal metaplasia and gastric atrophy or the presence of high-level
gastric atrophy in these samples, which leads to the development of early gastric cancer in
those stomachs.
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On the other hand, the mean false positive rate of the six ML models evaluated in
the testing set ranged from 25.27% to 27.28%. This resulted in the erroneous classification
of some non-EGC cases. In this study, the limited sample size of EGC patients resulted
in a difference in the learning degree between positive and negative samples during the
training process. This indicates that patients with non-EGC are easy to overfitting, whereas
those with EGC are prone to underfitting. This provides an explanation as to why the FNR
value of each ML model evaluated in the testing set is higher than its FPR value.

The prevalence rate of gastric cancer is 10.15% (203/1999) in this study; there is a
binary classification problem of imbalance in training samples. The resampling process
detailed in Section 2.2 was applied to the training set only for the purpose of oversampling
positive label samples and under-sampling those with negative labels. This was done in
order to balance the learning degree of the two types of labels. The main cause of the very
high negative predictive value (see Table A1) is low prevalence of EGC. This made the
NPV metric inapplicable to the detection of rare diseases, as it failed to provide sufficient
information to assess the performance of the model [53].

Other features, such as age, gender, BMI, and H. pylori infection, are associated with
early gastric cancer. Each of these features has a specific role to play in screening, and they
cannot be substituted for one another. Similarly, the Kyoto classification score cannot be
replaced by other features. In future research, we intend to investigate how these features
interact and complement each other in the risk assessment framework.

There are some limitations in this study: First, our study was a single-center retrospec-
tive analysis, which may introduce bias into dataset. However, our research is particularly
significant due to the unique patient population we have access to at the National Center
of Gerontology, which serves as the national referral center for geriatric health issues. Our
patient pool is not limited to local residents but encompasses individuals from all over
the country. We acknowledge the importance of sample diversity and the limitations of
sampling bias. In future research, we plan to develop multicenter studies to minimize the
impact of sampling bias on the results. Second, the total size of the sample was relatively
small, with only 203 EGC cases enrolled. However, the low prevalence rate of EGC makes it
challenging to collect sufficient EGC cases. Nevertheless, the resampling process of training
sets during data preprocessing ensures that the predictive model for EGC remains valid
despite the imbalanced training datasets in our study. In future research, we will increase
the sample size to enhance statistical efficacy. Third, intestinal metaplasia and gastric
atrophy, the two endoscopic findings that definitively effect the development of EGC, could
not concretely describe in the endoscopy-based Kyoto classification score separately. Future
studies should incorporate clinical features related to intestinal metaplasia and gastric
atrophy in order to develop new EGC diagnostic models with the aim of improving the
predictive performance of EGC. Fourth, the Kyoto classification score has its own limi-
tations in the assessment process, like depending on the seniority and experience of the
endoscopist, and overcoming this was also the original intention of our study. We aim to
compile the subjective and objective factors related to gastric cancer screening, which are
readily available in primary care hospitals, into a computer model that is both accurate
and convenient for primary care physicians. Lastly, we employed ML methods and tabular
data for constructing EGC prediction model instead of deep learning methods. However,
previous research reported that the uses of transfer learning in the mutation detection of
different cancers (lung, gastrointestinal, breast, and glioma), gene expression, and genetic
syndrome detection based on the phenotype of patients [54]. Using transfer learning in
model development improves the final performance of the model compared with models
trained from scratch [54]. Therefore, we intend to investigate the potential of different types
of deep learning methods and other complex data types, such as endoscopic images and
serological tests, for the diagnosis of EGC in future research.
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5. Conclusions

The present study demonstrates that using ML algorithms based on the endoscopy-
based Kyoto classification score and other clinical features collected from medical consul-
tations is an effective method to identify EGC patients in China. The endoscopic Kyoto
classification of gastritis, obtained following the completion of endoscopy, has the po-
tential to significantly enhance the precision of EGC prediction models. Introducing the
optimal ML model into clinical practice, such as the KAN model, maybe be beneficial
to reducing the risk of missed diagnoses of EGC following gastrointestinal endoscopy
and routine consultations, and medical expenses, as well as saving time for receiving a
definitive diagnosis.
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Appendix A

Table A1. The confusion matrix of the KAN model for the prediction of label versus the observed
label in a testing set. The false positive rate, false negative rate, positive predictive value, and
negative predictive value were calculated according to the confusion matrix. The number of misclas-
sified EGC samples with the Kyoto classification score < 4 and ≥4 and their respective proportions
were presented.

The Binary
Classification

The Serial Number of 5 Repetitions When Using 5 Different Random Seed Values for Data Splitting

1 2 3 4 5

Random Seed = 256 Random Seed = 468 Random Seed = 592 Random Seed = 735 Random Seed = 814

True negative (TN) 257 270 264 267 271
False positive (FP) 94 87 101 99 89
False negative (FN) 21 11 10 12 11
True positive (TP) 28 32 25 22 29
Number of misclassified EGC samples
with the Kyoto classification score < 4 18 9 10 11 9

Number of misclassified EGC samples
with the Kyoto classification score ≥ 4 3 2 0 1 2

The ratio of misclassified EGC samples
with the Kyoto classification score < 4 85.7% 81.8% 100% 91.7% 81.8%

The ratio of misclassified EGC samples
with the Kyoto classification score ≥ 4 14.3% 18.2% 0% 8.3% 18.2%

False positive rate (FPR) 26.78% 24.36% 27.67% 27.04% 24.72%
False negative rate (FNR) 42.85% 25.58% 28.57% 35.29% 27.50%

https://www.mdpi.com/article/10.3390/bioengineering11100973/s1
https://www.mdpi.com/article/10.3390/bioengineering11100973/s1
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Table A1. Cont.

The Binary
Classification

The Serial Number of 5 Repetitions When Using 5 Different Random Seed Values for Data Splitting

1 2 3 4 5

Random Seed = 256 Random Seed = 468 Random Seed = 592 Random Seed = 735 Random Seed = 814

Positive predictive value (PPV) 22.95% 26.89% 19.84% 18.18% 24.57%
Negative predictive value (NPV) 92.44% 96.08% 96.35% 95.69% 96.09%

Here, the true positive (TP) value refers to the number of positive class instances that are predicted by the model
correctly; the true negative (TN) value refers to the number of negative class instances that are predicted by
the model correctly; the false positive (FP) value refers to the number of negative instances that are incorrectly
predicted as positive by the model; the false negative (FN) value refers to the number of positive instances that
are incorrectly predicted as negative by the model.

Appendix B

  
(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure A1. Receiver operating characteristic (ROC) curves and area under curve (AUC) values for
six different ML models was obtained by after repeating the data modelling process five times with
five different random seed values. (a) ROC curves and AUC value in the first repetition of the data
modeling process; (b) ROC curves and AUC values in the second repetition of the data modeling
process; (c) ROC curves and AUC value in the third repetition of the data modeling process; (d) ROC
curves and AUC value in the fourth repetition of the data modeling process; (e) ROC curves and
AUC value in the fifth repetition of the data modeling process.
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