
Citation: Lee, J.-H.; Kim, J.-Y.; Kim,

H.-G. Emotion Recognition Using

EEG Signals and Audiovisual

Features with Contrastive Learning.

Bioengineering 2024, 11, 997.

https://doi.org/10.3390/

bioengineering11100997

Academic Editor: Larbi Boubchir

Received: 10 September 2024

Revised: 28 September 2024

Accepted: 1 October 2024

Published: 3 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Emotion Recognition Using EEG Signals and Audiovisual
Features with Contrastive Learning
Ju-Hwan Lee 1 , Jin-Young Kim 1 and Hyoung-Gook Kim 2,*

1 Department of Intelligent Electronics and Computer Engineering, Chonnam National University,
77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; juhwanlee@jnu.ac.kr (J.-H.L.);
beyondi@jnu.ac.kr (J.-Y.K.)

2 Department of Electronic Convergence Engineering, Kwangwoon University, 20 Gwangun-ro, Nowon-gu,
Seoul 01897, Republic of Korea

* Correspondence: hkim@kw.ac.kr

Abstract: Multimodal emotion recognition has emerged as a promising approach to capture the com-
plex nature of human emotions by integrating information from various sources such as physiological
signals, visual behavioral cues, and audio-visual content. However, current methods often struggle
with effectively processing redundant or conflicting information across modalities and may overlook
implicit inter-modal correlations. To address these challenges, this paper presents a novel multimodal
emotion recognition framework which integrates audio-visual features with viewers’ EEG data to
enhance emotion classification accuracy. The proposed approach employs modality-specific encoders
to extract spatiotemporal features, which are then aligned through contrastive learning to capture
inter-modal relationships. Additionally, cross-modal attention mechanisms are incorporated for
effective feature fusion across modalities. The framework, comprising pre-training, fine-tuning, and
testing phases, is evaluated on multiple datasets of emotional responses. The experimental results
demonstrate that the proposed multimodal approach, which combines audio-visual features with
EEG data, is highly effective in recognizing emotions, highlighting its potential for advancing emotion
recognition systems.

Keywords: emotion recognition; multimodal learning; contrastive learning; cross-attention mechanism

1. Introduction

Emotions are multifaceted psychological phenomena which result from the interaction
of both internal cognitive states and external environmental stimuli. They encompass
a wide range of physiological, behavioral, and subjective experiences which reflect an
individual’s response to a stimulus [1]. These stimuli can include sensory inputs from
multimedia content, such as videos and images, which play a crucial role in evoking
emotional responses. Platforms like YouTube, Netflix, and TikTok provide users with
dynamic audiovisual content which not only conveys information but also serves as a
significant medium for emotional engagement. These interactions highlight the complex
nature of emotions, which are influenced by both personal dispositions and external
influences. As a result, emotion recognition technology has gained importance in various
applications, such as personalized content recommendation [2], therapeutic interventions
in medical systems [3], and emotion-driven marketing strategies [4], helping to better
understand and respond to user emotions in digital environments.

Conventional emotion recognition typically analyzes users’ responses to stimuli, pri-
marily utilizing physiological signal responses (e.g., EEG or ECG) [5,6] and visual behav-
ioral responses (e.g., facial expressions and voice) [7,8]. Physiological signals offer the
advantage of objectively capturing unconscious emotional reactions, while visual behav-
ioral responses enable noninvasive and real-time analysis based on users’ external reactions.
An alternative approach to emotion recognition involves analyzing the stimulus itself and
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recognizing emotions by examining the characteristics of multimedia content [9,10]. The
audio-visual signals in multimedia content provide powerful emotional stimuli. For in-
stance, dark lighting and tense background music in horror movies induce fear and anxiety,
while bright color schemes and upbeat music in comedy programs evoke joy and laugh-
ter. These intrinsic emotions can typically be inferred from visual information (color,
brightness, and movement) and audio information (voice energy, frequency patterns, and
volume), which is a widely recognized direct emotion recognition method in video emotion
recognition [11–13].

Recently, multimodal emotion recognition [14,15], which allows for richer information
utilization than stimulus- and response-based single-modality emotion recognition, has
gained attention. This approach enables a more sophisticated understanding of emotional
states by simultaneously analyzing multiple signals such as physiological responses, visual
behavioral responses, and audio-visual signals. It has also been discovered that a more
robust emotion recognition model can be acquired through the collaboration of different
modalities [16,17]. However, multimodal approaches primarily focus on fusion at the
feature level [18–23] and decision level [24–27], which can present challenges in processing
redundant and conflicting information between modalities [28]. Additionally, concerns
have been raised about potentially overlooking implicit correlations between modalities
during the formation of high-dimensional feature vectors [29].

To address these issues, we propose an emotion recognition method which leverages
contrastive learning [30] and cross-modal attention. Contrastive learning is a technique
which clearly learns the relationships between high-dimensional data by placing similar
data closer together and dissimilar data farther apart. Cross-modal attention enhances
inter-modality interactions by selectively focusing on important information from different
modalities. We propose a multimodal emotion recognition method which utilizes both
the emotions inherent in video and audio stimuli and the physiological signals directly
experienced by humans in response to these stimuli. For this, we employ audio-visual
signals and EEG as physiological signals. EEG has proven to be a powerful tool for cap-
turing changes in emotional states, recently demonstrating significant improvements in
emotion recognition performance when combined with deep learning [31]. The choice of
physiological signals over nonverbal cues is based on emotion theories [32,33]. Physio-
logical signals, being unconscious bodily changes controlled by the autonomic nervous
system, can potentially represent emotions more reliably than voluntary or involuntary
facial behaviors.

The contributions of this paper can be summarized as follows:

1. In this paper, a multimodal emotion recognition framework is proposed based on
audio-visual signals and EEG signals to consider both response and stimulus signals.

2. We integrate modality-specific networks and temporal convolutional networks (TCNs)
into modal encoders to extract spatiotemporal representations of multimodal data
while employing contrastive learning to capture intra-modal, inter-modal, and inter-
class relationships in a shared embedding space.

3. We utilize cross-modal attention mechanisms to enhance the interactions between
the extracted representations and to focus on the most salient information from
each modality.

4. We demonstrate the superior performance of our proposed method in emotion recog-
nition through benchmark datasets and our own collected dataset.

The remainder of this paper is organized as follows. Section 2 provides a review of
the related work, the proposed method is explained in Section 3, experimental results
validating the effectiveness of our emotion recognition approach are presented in Section 4,
Section 5 discusses the limitations of this work, and finally, Section 6 concludes this paper
and suggests directions for future research.
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2. Related Work

In this section, we present a concise review of the relevant literature, focusing on recent
advancements in the field of emotion recognition. Our discussion is structured around three
key areas which form the foundation of our proposed framework: multimodal emotion
recognition, contrastive learning, and cross-modal attention.

2.1. Multimodal Emotion Recognition

Emotion recognition has evolved significantly from its early focus on unimodal ap-
proaches. Initially, researchers explored individual modalities such as facial expression
analysis [34], speech signal processing [35], and physiological signal analysis [36]. These
unimodal methods provided valuable insights into specific aspects of emotion expression.
For instance, EEG-based emotion recognition using hybrid CNN and LSTM models demon-
strated promising results in capturing brain activity patterns associated with emotions [37].

However, emotion recognition systems that rely on a single modality often face chal-
lenges in real-world environments due to factors such as noise interference and signal
degradation. To overcome these limitations, researchers have introduced multimodal
emotion recognition techniques which integrate two or more modalities [38–40].

Among various multimodal approaches, the fusion of visual and audio data is partic-
ularly prevalent. This combination benefits from relatively straightforward data collection
and provides complementary information. However, it is important to note that within
the visual modality, dynamic stimuli (such as videos) often provide richer emotional in-
formation compared with static stimuli (like images). Dynamic visual content captures
the temporal evolution of emotions, allowing for a more comprehensive representation of
emotional states [41].

Furthermore, the impact of audio, video, and combined audio-video stimuli on emo-
tional responses varies significantly. Audio stimuli can evoke emotions through tone,
rhythm, pitch, and acoustic features, while video stimuli provide visual cues such as fa-
cial expressions, body language, color schemes, lighting, and movement patterns. When
combined, these audio-visual signals in multimedia content serve as powerful emotional
stimuli, creating a more immersive experience capable of inducing a wide range of stronger
and more complex emotional responses in viewers than either modality alone.

Despite these advantages, multimodal approaches using only visual and auditory
signals predominantly capture external emotional expressions, potentially overlooking
essential aspects of a person’s internal emotional state. To address this limitation, some
researchers have developed frameworks which merge visual or audio data with physio-
logical signals [42,43]. This approach offers the capability to detect subtle or concealed
emotions by leveraging both external and internal cues simultaneously.

Further expanding on this concept, some researchers have explored tri-modal systems
which integrate visual, audio, and physiological signals simultaneously [44,45]. These
approaches assess a more holistic range of emotional indicators, potentially enhancing the
sensitivity and robustness of emotion recognition.

Understanding the distinctions between different modalities and the strengths of
various modal combinations is crucial for developing more nuanced and effective emotion
recognition systems which can adapt to different types of input and scenarios.

2.2. Contrastive Learning

Contrastive learning is a self-supervised learning paradigm where a model is trained
to learn meaningful representations of input data by contrasting similar and dissimilar
examples [46]. While initially developed for unimodal data, particularly in computer vision,
its usage has recently expanded to multimodal learning. Contrastive learning has gained
prominence in multimodal contexts for several key reasons. First, it is effective in aligning
cross-modal data. It enables the mapping of data from different modalities into a shared
embedding space. Second, it is highly data-efficient as it can derive valuable representations
from unlabeled data, reducing the need for large labeled multimodal datasets and lowering
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associated costs and time investments. Third, it addresses challenges such as noise and
domain bias [47].

Contrastive learning has also been explored in the context of emotion recognition
within multimodal frameworks, though this remains an emerging area of study. Dis-
sanayake et al. [48] introduced a method using wearable sensor data to learn representa-
tions for individual vital sign modalities via a self-supervised learning mechanism, which
are subsequently fused for emotion recognition tasks. Jiang et al. [49] proposed a con-
trastive learning framework for emotion recognition based on EEG and eye movement
data. Similarly, Tang et al. [50] employed a multimodal approach centered on physiological
signals, designing emotion encoders which work across domains and modalities, and they
introduced a hierarchical network to integrate these modalities in a structured manner. This
multimodal contrastive learning approach leverages information from diverse modalities,
such as visual, auditory, and EEG data, to enable more precise and robust classification
of emotional states. By utilizing the unique emotional features inherent in each modality,
it captures richer emotional expressions while compensating for the shortcomings of any
single modality, making it more suitable for real-world applications.

However, to the best of our knowledge, no previous studies have been carried out
using contrastive learning for emotion classification which combine audiovisual data
(especially video) with EEG. We suppose this gap in the research is primarily due to the
complexity of the stimuli, particularly when incorporating video content. This complexity
presents significant challenges in applying contrastive learning techniques to such diverse
and rich modalities simultaneously.

2.3. Cross-Modal Attention

Cross-modal attention is a crucial technique in multimodal learning that enables the
effective modeling of relationships between different modalities. This mechanism learns
how the features from one modality influence those in another, thereby enhancing the
interaction and synergy across modalities. For instance, the authors of [51] employed a
cross-modal transformer module to capture long-range dependencies between emotional
cues and other modal elements in conversational contexts, emphasizing the interaction
between text and audio modalities to adaptively promote convergence between them.
Similarly, the authors of [52] applied a cross-modal attention mechanism within an audio-
visual fusion model for emotion recognition, aiming to learn the correlations between fused
feature representations and the representations of individual modalities.

In another approach, the authors of [53] introduced a multimodal method for music
emotion recognition, utilizing a cross-modal attention mechanism to integrate information
from various modalities into a hierarchical structure. This method efficiently combines
the strengths of each modality. Furthermore, the authors of [40] proposed an end-to-end
multimodal emotion recognition framework which leverages cross-modal attention to
fuse audio and visual data. This approach capitalizes on the complementary properties
of different modalities while maintaining modality-specific characteristics, resulting in
more discriminative embeddings, more compact within-class representations, and greater
separation between classes. Additionally, the authors of [54] adopted a cross-modal at-
tention mechanism for multidimensional emotion recognition, effectively modeling the
relationships between audio, visual, and textual modalities. By simultaneously capturing
both intra-modality and inter-modality interactions, this approach produces a more refined
and sophisticated feature representation.

3. Proposed Method

In this paper, we present a framework to enhance emotion recognition by leveraging
multimodal input data, including visual, audio, and EEG signals. Our approach combines
multimodal contrastive learning with cross-modal attention mechanisms to fully exploit
both inter-modal and intra-modal relationships, as well as their complementary character-
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istics. As depicted in Figure 1, the proposed framework consists of three interconnected
phases: pre-training, fine-tuning, and testing.

Figure 1. Diagram of a proposed multimodal framework which integrates video, audio, and EEG data
for emotion recognition tasks. The framework consists of three main phases: pre-training, fine-tuning,
and testing. In the pre-training phase, a modality encoder extracts features and fuses them into a
combined embedding using contrastive learning. In the fine-tuning phase, cross-modal attention is
utilized to capture interactions between modalities and trained for emotion recogntion. Finally, the
test phase is used to obtain predictive results.

In the pre-training phase, modality-specific encoders are used to extract spatiotemporal
features from the visual, audio, and EEG inputs. These features are then optimized in
a supervised contrastive learning framework [55] to align the shared embedding spaces
of the three modalities, allowing the model to learn more discriminative features for
emotion recognition.

The fine-tuning phase incorporates the pre-trained encoders, cross-modal attention
modules, and a task-specific classifier. Cross-modal attention is employed to capture and
fuse salient feature information across modalities. The classifier is subsequently trained to
predict emotion labels based on these multimodal fused representations.

During the testing phase, the fine-tuned encoders and cross-modal attention modules
process the input data, and the classifier utilizes the fused multimodal representations to
accurately predict emotional states.

3.1. Multimodal Encoder

This section describes the construction of a multimodal dataset and the encoder
architecture used to extract spatiotemporal representations from visual, audio, and EEG
data. The overall process involves two main steps: preprocessing and spatiotemporal
encoding, as illustrated in Figure 2.
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Figure 2. Illustration of modality-specific encoders for extracting spatiotemporal features from video,
audio, and EEG data. Each modality is preprocessed before being input to the corresponding encoder:
ViT for video, Vggish for audio, and Conformer for EEG. These encoded features are then processed
using a Residual-TCN.

First, we recorded EEG signals while a subject watched videos from a database. The
resulting dataset X = {(xv, xe, xa, y)i}N

i=1 consisted of N samples, where xv, xe, and xa
represent visual, EEG, and audio data, respectively, and y is the corresponding label.

In the preprocessing stage, we segmented each video into 4 s blocks with 50% overlap.
A demultiplexer separated the audio and visual signals, and we aligned the EEG segments
with these blocks to ensure all modalities were synchronized and ready for feature extrac-
tion. To address the synchronization of these heterogeneous data types, we specifically
applied a time-lagged synchronization approach [56]. This process ensured all modalities
were temporally aligned and ready for feature extraction, minimizing any potential impact
on the model’s performance due to misalignment.

EEG signals underwent bandpass filtering to extract five distinct frequency bands:
delta (0.4–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz).
For each frequency band, the power spectral density (PSD) was calculated.

Audio signals were processed by applying a 50 ms Hamming window with a 10 ms
hop length. This was followed by a short-time Fourier transform (STFT) on each windowed
segment to extract the frequency components. The frequency components were then
mapped to the Mel scale using 20 Mel filter banks to better align with human auditory
perception. Finally, the Mel spectrogram was converted into a log-Mel spectrogram (LMS)
by applying a logarithmic function.

For spatiotemporal encoding, we employed modality-specific encoder modules, as
shown in Figure 2. Each encoder consisted of two main components: spatial encoding and
temporal encoding. The spatial encoding used modality-specific models to capture spatial
features, while the temporal encoding utilized a common residual temporal convolutional
network (Residual-TCN) across all modalities.

3.1.1. Spatial Encoder

The spatial encoding process aims to extract meaningful spatial features from each
modality, considering their unique characteristics. The input to the spatial encoding stage
is the preprocessed data for each modality: video frames xv, audio Mel spectrograms xa,
and the EEG power spectral density xe.

For the visual data, we used a pre-trained vision transformer (ViT) [57], denoted as fv,
to extract spatial features from each video frame. The output of the visual spatial encoding,
sv, had a shape of RTv×Dv , where Tv is the number of video frames and Dv is the feature
dimension of the visual spatial encoding.
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Similarly, for the audio data, we applied a pre-trained Vggish [58] convolutional neural
network, denoted as fa, to extract features from the Mel spectrogram. The output of the
audio spatial encoding, sa, had a shape of RTa×Da , where Ta is the number of audio frames
and Da is the feature dimension of the audio spatial encoding.

For the EEG data, we used a modified Conformer [59] neural network, denoted as
fe, to extract spatial features from the power spectral density, excluding the self-attention
mechanism. The output of the EEG spatial encoding se had a shape of RTe×De , where Te is
the number of EEG segments and De is the feature dimension of the EEG spatial encoding.

The spatial encoding process maps the input data from each modality to a feature
space which captures the essential spatial information. The encoded spatial features sv, sa,
and se serve as the input to the subsequent temporal encoding stage.

3.1.2. Temporal Encoder

After spatial encoding, we employed a Residual-TCN for temporal encoding across all
modalities. The Residual-TCN takes the spatially encoded features sv, sa, and se as input,
extracting the temporal dependencies within each modality. The Residual-TCN effectively
extracts and represents the temporal features from the video [60–62], audio [63,64], and
EEG [65–67], enabling it to capture the unique temporal dynamics of each modality.

The network is composed of multiple blocks which process and refine temporal
features. Each block begins with a dilated convolution layer, expanding the receptive field
to capture long-range dependencies without increasing the parameter count. The dilated
convolution is defined as

F(t) =
k−1

∑
i=0

f (i) · x(t− d · i) (1)

where F(t) is the output at time t, f is the filter of a size k, x is the input, and d is the dilation
rate. This operation allows the network to efficiently capture long-range dependencies by
progressively increasing the dilation rate across layers. The dilation rate d determines the
spacing between input elements in the convolution, enabling the network to expand its
receptive field exponentially with depth while maintaining computational efficiency.

After the dilated convolution, a batch normalization layer stabilizes the learning
process, followed by an ELU activation function. A dropout layer (rate of 0.5) prevents
overfitting, and a residual connection facilitates smooth gradient flow. We stacked four
such blocks, progressively increasing the dilation rate (1, 2, 4, and 8) to model both short-
and long-term temporal patterns.

The final outputs of the Residual-TCN for visual, audio, and EEG modalities are
represented by hv ∈ RB×Tv×D, ha ∈ RB×Ta×D, and he ∈ RB×Te×D, where B is the batch size,
T is the sequence length, and D is the feature dimension. These representations capture rich
spatiotemporal information, forming a strong foundation for the subsequent contrastive
learning phase, which enables the model to learn discriminative features for multimodal
emotion recognition.

3.2. Contrastive Learning for Multimodal Representation

Contrastive learning has rapidly gained traction as an effective technique for align-
ing the embedding spaces of multimodal data [68–71]. This approach is particularly
effective in multimodal contexts due to its ability to learn shared representations across
different modalities, handle heterogeneous data, exploit cross-modal correspondences,
and provide robustness to modality-specific noise. By learning discriminative repre-
sentations, contrastive learning enhances the ability to distinguish between classes by
pulling semantically similar samples closer in the latent space and pushing dissimilar
samples apart.

To fully leverage contrastive learning in multimodal emotion recognition, it is essential
to account for both intra-modal relationships within each modality and inter-modal interac-
tions across modalities. Intra-modal learning captures the distinct characteristics inherent
to each modality, ensuring that the model recognizes subtle patterns specific to visual,
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audio, or EEG data. Inter-modal learning, on the other hand, focuses on the complementar-
ities between modalities, allowing the model to integrate and enhance shared information
across different sources. By addressing both intra- and inter-modal relationships, as illus-
trated in Figure 3, the model becomes more capable of learning robust and discriminative
representations, ultimately improving its ability to accurately classify emotions.

Figure 3. MERCL consists of three components. (1) AMCL learns class-specific relationships within
the same modality. (2) EMCL aligns representations across different modalities within the same
sample. (3) Finally, SMCL minimizes modality gaps by aligning representations of different modalities
within the same sample.

For this phase, we first projected the modality-specific spatiotemporal representations
hv, ha, he obtained from the encoding module into a shared embedding space by passing
them through a projection layer:

zm = Wmhm, m ∈ {v, a, e} (2)

where zm represents the projected representation in the shared embedding space for the
modality m. Wm denotes the projection matrix specific to each modality, and hm is the
original spatiotemporal representation for that modality.

(1) Intra-Modal Contrastive Learning (AMCL): AMCL focuses on learning class-
specific relationships within a single modality by using supervised contrastive learning. For
each minibatch, a set C = {pm

1 , pm
2 , . . . , pm

N , nm
1 , nm

2 , . . . , nm
M} containing N positive samples

and M negative samples is generated for a modality m. The AMCL loss is defined as

LAMCL = −Ec

[
log

∑N
i=1(am)T pm

i

∑N
i=1(am)T pm

i + ∑M
j=1(am)Tnm

j

]
, m ∈ {v, a, e} (3)

where am is the anchor representation and pm
i and nm

j are the positive and negative samples,
respectively, within the same modality m. This encourages representations of the same
class to cluster closer together and those of different classes to be further apart within
each modality.

(2) Inter-Modal Contrastive Learning (EMCL): EMCL focuses on learning relationships
across different modalities by using supervised contrastive learning. Unlike AMCL, which
defines positive and negative pairs within the same modality, EMCL defines these pairs
across different modalities. For each minibatch, a set C = {p1, p2, . . . , p2N , n1, n2, . . . , n2M}
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containing 2N positive samples and 2M negative samples is generated for an anchor
modality m. The 2N positive and 2M negative samples are considered because EMCL
explores interactions between the anchor modality and two other modalities, creating more
pairings. The EMCL loss is defined as

LEMCL = −Ec

[
log

∑2N
i=1(am)T pi

∑2N
i=1(am)T pi + ∑2M

j=1(am)Tnj

]
, m ∈ {v, a, e} (4)

where am is the anchor representation from the modality m and pi and nj are the positive and
negative samples from other modalities, respectively. This loss encourages representations
of the same class to be closer across different modalities while pushing apart representations
of different classes.

However, while these two methods effectively capture intra- and inter-modal rela-
tionships, they may not fully address significant modality gaps within the same sample.
Inspired by [72], we introduce an approach which minimizes this gap by aligning different
modalities within the same sample, focusing solely on positive pairs. Negative pairs were
excluded to prevent over-separation of modalities, which could lead to the loss of valuable
modality-specific information. By aligning modalities with positive pairs, this approach
preserves their unique characteristics, ensuring a balanced and informative representation.
Therefore, we adopted this approach with a key modification. In our dataset, visual infor-
mation is consistently available, but audio may be missing in cases like silent scenes in
films. To address this, we calculated the energy of the audio signal to determine its presence
and exclude samples with low or absent audio energy. This adjustment ensured that our
method remains robust and adaptable to the specific characteristics of multimodal datasets.

(3) Sample-wise Multimodal Alignment Contrastive Learning (SMCL): SMCL fo-
cuses on minimizing the gap between representations of different modalities within the
same sample. It only considers positive pairs, defined as embeddings from different modal-
ities within the same sample. For each minibatch, a set C = {pm2

1 , pm3
2 } is generated, where

m1 ̸= m2 ̸= m3 and m1, m2, m3 ∈ {v, a, e}. SMCL also measures the energy of the audio
signal and excludes low-energy samples to ensure robustness when the audio modality is
missing or unreliable. The SMCL loss function is defined as

LSMCL = Ec

[
1
2

2

∑
i=1

∣∣∣∣∣∣(zm)T pmi
i − α

∣∣∣∣∣∣2], m ∈ {v, a, e} (5)

[LSMCL = Ec

[
1
2

(∣∣∣∣∣∣(zm)T pm1
1 − α

∣∣∣∣∣∣2 + ∣∣∣∣∣∣(zm)T pm2
2 − α

∣∣∣∣∣∣2)]
] (6)

where zm is the anchor representation from the modality m and pmi
i represents positive

pairs from other modalities. A modality margin α accommodates minor differences be-
tween modalities while ensuring alignment. Minimizing this loss helps the model align
representations across modalities within each sample, effectively reducing the modality
gap. Here, i is considered to be up to two because SMCL aims to align pairs of modalities
within the same sample. This reflects the two different modalities being aligned in each
positive pair.

Together, these three loss functions are called multimodal emotion recognition con-
trastive learning (MERCL) loss and are defined as follows:

LMERCL = λ1LAMCL + λ2LEMCL + λ3LSMCL (7)

where λ1, λ2, and λ3 are hyperparameters that control the contribution of each loss function.

3.3. Cross-Modality Attention and Classifier

Cross-modality attention mechanisms can help two different modalities share the
most important parts of each other, exploiting the complementarity between modalities
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to learn paired feature information and improve emotion recognition performance. In
this paper, we employ a pairwise cross-modality attention [73–76] method to process
hidden representations obtained through multimodal contrastive learning and identify
deep connections between different modalities. This allows the model to provide a more
holistic view of the information for emotion recognition, contributing to better performance.

As depicted in Figure 4, the cross-modal attentions are positioned after fixating the
pre-trained encoder, which computes the cross-modality attention (CMA) for the spatiotem-
poral representations hv, ha, and he of each modality output by the encoder. The CMA is
calculated using the multi-head attention (MHA) mechanism for each pair of modalities
as follows:

• Video-Audio CMA:

CMAa→v = MHA(hv, ha), CMAv→a = MHA(ha, hv) (8)

• Video-EEG CMA:

CMAe→v = MHA(hv, he), CMAv→e = MHA(he, hv) (9)

• Audio-EEG CMA:

CMAe→a = MHA(ha, he), CMAa→e = MHA(he, ha) (10)

Figure 4. Illustration of the CMA module between modalities α and β.
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The MHA process allows the model to jointly attend to information from different
representation subspaces at different positions. Each head in MHA can focus on different
aspects of the input, enabling the model to capture various types of relationships between
modalities. The MHA process for each pair of modalities can be described as follows, using
CMAa→v as an example:

Qi = hvWv
Qi

, Ki = haWa
Ki

, Vi = haWa
Vi

(11)

First, the input vectors hv and ha are linearly transformed into Query, Key, and Value
vectors using learnable weight matrices Wv

Qi
, Wa

Ki
, and Wa

Vi
, respectively. These weight

matrices play a crucial role in projecting the input features into different subspaces, allowing
the model to capture various aspects of the inter-modal relationships:

Ai =
QiKT

i√
dk

Vi (12)

The attention weights are then calculated by taking the dot product of the Query
and Key vectors, scaling the result by the square root of the Key vector’s dimension,
and multiplying by the Value vector. This operation allows the model to determine the
relevance of each part of the input from one modality to another, effectively capturing the
cross-modal interactions:

CMAa→v = Concatenation(A1, A2, ..., AM)WO (13)

The attention outputs from each head are concatenated and linearly transformed
using a weight matrix WO to obtain the final multi-head attention result CMAa→v. This
combination of multiple attention heads allows the model to capture different types of
cross-modal relationships simultaneously, enhancing its ability to understand complex
inter-modal interactions. The same process is applied to compute the CMA for the other
direction (CMAv→a) and for the other pairs of modalities (Video-EEG and Audio-EEG). This
bidirectional attention mechanism ensures that the model captures the mutual influence
between modalities, rather than just the influence of one modality on another.

The CMA outputs for each pair of modalities (r1, r2, ..., r6) are then concatenated into a
unified vector Outputconcatenation = [r1, r2, ..., r6], which contains the interaction information
between all pairs of modalities.

This concatenated output represents a rich, multi-faceted representation of the cross-
modal interactions, capturing both the individual modal characteristics and their inter-
modal relationships.

Finally, the Outputconcatenation vector is fed into a multilayer perceptron (MLP) classifier,
which consists of a linear layer followed by ReLU activation and a softmax function, to
classify the emotion ŷ. The MLP classifier learns to interpret the complex cross-modal
interactions captured by the CMA mechanism, mapping them to emotion categories. This
final stage of the model effectively translates the intricate inter-modal relationships into
meaningful emotion predictions.

The encoder module, cross-modal attention, and classifier are all optimized through
the fine-tuning process using the same dataset used for pre-training. This end-to-end
optimization ensures that all components of the model work together coherently to im-
prove emotion recognition performance, leveraging the complementary information from
different modalities.

Algorithm 1 presents a concise overview of our proposed multimodal emotion recogni-
tion method. This algorithm integrates the pre-training and fine-tuning stages, showcasing
the key steps of our approach, including multimodal encoding, projection, contrastive
learning, and cross-modal attention.
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Algorithm 1 Multimodal emotion recognition training algorithm.

Require: Multimodal dataset D = {(xv, xa, xe, y)i}N
i=1

Ensure: Trained model parameters θencoder, θCMA, θclassifier
// Stage 1: Pre-training encoders
for each pre-training epoch do

for each mini-batch (xv, xa, xe) ∈ D do
(zv, za, ze)← Encode_and_Project(xv, xa, xe)
LMERCL ← λ1LAMCL + λ2LEMCL + λ3LSMCL
θencoder ← Update(θencoder,∇LMERCL)

end for
end for
// Stage 2: Fine-tuning with CMA and classifier
Freeze θencoder
for each fine-tuning epoch do

for each mini-batch (xv, xa, xe, y) ∈ D do
(hv, ha, he)← Encode(xv, xa, xe)
// Cross-Modality Attention between modality pairs
CMAa→v = MHA(hv, ha), CMAv→a = MHA(ha, hv)
CMAe→v = MHA(hv, he), CMAv→e = MHA(he, hv)
CMAe→a = MHA(ha, he), CMAa→e = MHA(he, ha)
Concatenate all CMA outputs:
Outputconcatenation = [CMAa→v, CMAv→a, CMAe→v, CMAv→e, CMAe→a, CMAa→e]
ŷ← Classifier(Concatenate(Outputconcatenation))
Lcls ← Cross entropy(ŷ, y)
θCMA, θclassifier ← Update(θCMA, θclassifier,∇Lcls)

end for
end for
return θencoder, θCMA, θclassifier

4. Experimental Results

In this study, we evaluated the efficacy of our proposed method using four distinct
datasets: DEAP [77], SEED [78], DEHBA, and MTIY. These datasets were selected for their
comprehensive collection of EEG data elicited by audiovisual emotional stimuli.

4.1. Evaluation Datasets

• DEAP: The DEAP dataset contains EEG and peripheral signals collected from 32 par-
ticipants (16 males and 16 females between the ages of 19 and 37). EEG signals were
recorded while each participant watched 40 music video clips. Each participant rated
their level of arousal, valence, dominance, and preference on a continuous scale from 1
to 9 using a Self-Assessment Manikin (SAM). Each trial contained 63 s of EEG signals,
with the first 3 s serving as the baseline signal. The EEG signals were recorded at a sam-
pling rate of 512 Hz using 32 electrodes. For this study, EEG data from 20 participants
(10 males and 10 females) were selected for the experiment.

• SEED: The SEED dataset contains EEG and eye movement signals collected from
15 participants (7 males and 8 females). For this study, data from 10 participants
(5 males and 5 females) were selected. Each participant’s EEG signals were collected
while watching 15 Chinese movie clips approximately 4 min in length, designed to
evoke positive, neutral, and negative emotions. The signals collected from 62 elec-
trodes had a sampling rate of 1 kHz, which was then downsampled to 200 Hz. After
watching each film clip, each participant recorded an emotion label for each video as
negative (−1), neutral (0), or positive (1).

• DEHBA: The DEHBA dataset is a human EEG dataset collected during emotional
audiovisual stimulation. EEG data were measured while subjects watched video clips
designed to elicit four emotional states: (1) happy, (2) sad, (3) angry, and (4) relaxed.
These states are defined on a plane with axes representing arousal and valence from
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the circumplex model of affect: “happy” corresponds to high valence and high arousal
(HVHA), “angry” corresponds to low valence and high arousal (LVHA) “sad” corre-
sponds to low valence and low arousal (LVLA), and “relaxed” corresponds to high
valence and low arousal (HVLA).
Researchers selected 100 videos (25 for each emotional state) based on their ability
to elicit strong emotions without relying on language understanding. These videos
were validated by 30 college students, who rated the intensity of their emotions after
viewing each clip. EEG data were collected from 30 participants using a 36 channel
electrode cap at a sampling rate of 1 kHz, and for this study, data from 12 participants
(6 males and 6 females) were selected for analysis.
The participants reported their emotional responses and rated the intensity of the
emotions they experienced after viewing each video. This feedback was used to refine
data selection and evaluate the results.

• MTIY: The Movie Trailer In YouTube (MTIY) dataset was constructed from 50 movie
trailer videos retrieved from YouTube using the search term “movie trailer”. The
videos covered five genres—science fiction, comedy, action, horror, and romance—with
10 videos in each genre, and each video was 60 s long. Subjects were instructed to
watch all 50 videos, and an Emotiv headset was used to obtain EEG signals, with EEG
features extracted every second. The EEG data were collected using 14 electrodes.
The EEG features were collected using 36 electrodes. For this study, data from 16 par-
ticipants (8 males and 8 females) were used. Each subject rated the level of arousal,
valence, dominance, and preference on a continuous scale from 1 to 9 after watching
all of the videos.

4.2. Experimental Set-Up

To evaluate the emotion recognition performance of the proposed method and compare
it with other existing approaches, we employed fourfold cross-validation to ensure robust
evaluation. For comparison, we used existing multimodal models with both feature-level
fusion and decision-level fusion methods. The following baseline methods were applied in
the experiments:

• VE-BiLSTM [79]: This method employs a two-layer bidirectional LSTM network. It
performs feature-level fusion by concatenating video and EEG features as input, where
the video features are 1024 dimensional and the EEG features are also 1024 dimen-
sional. The first LSTM layer has 1024 hidden units, and the second LSTM layer has
256 hidden units. The final recognition is performed using a softmax layer on top of
the concatenated forward and backward hidden states from the second Bi-LSTM layer.

• AVE-RT [45]: This method combines EEG, audio, and visual features for emotion
recognition through feature-level fusion. It extracts power spectral density features
from the EEG signals across five frequency bands, audio features using eGeMAPS [80],
and visual features, including the luminance coefficient and color energy. These
multimodal features are concatenated at the feature level and fed into a random tree
classifier for emotion recognition.

• AVE-KELM [81]: This method combines video content and EEG signals. It extracts
audio-visual features from video clips and EEG features using wavelet packet de-
composition (WPD). The video features are selected using double input symmetrical
relevance (DISR), while EEG features are selected by a decision tree (DT). The se-
lected features from both modalities are then combined at the decision level using a
kernel-based extreme learning machine (ELM) for final emotion recognition.

• AVE-LSTM [82]: This method integrates the audio, video, and EEG modalities for
emotion recognition. Each modality has its own feature extractor, and LSTM networks
are used for emotion recognition. Specifically, audio features are derived from MFCC,
video features are extracted using VGG19, and EEG features are obtained through
PCA after bootstrapping. The outputs from each LSTM are individually used for
emotion recognition, and the final emotion prediction is achieved through decision
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fusion of these results. While the original approach also incorporated EMG data, our
implementation excluded this modality.

All baseline methods were reimplemented according to the model configurations
provided by their respective authors to ensure fair comparison. This approach allowed
us to directly compare the performance of our proposed method with existing techniques
under consistent experimental conditions.

The performance of each method was evaluated by using the accuracy and F1 score as
the evaluation metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

F1 =
2× TP

2× TP + FP + FN
(15)

where true positive (TP) is the number of positive samples correctly classified as positive,
true negative (TN) is the number of negative samples correctly classified as negative, false
positive (FP) is the number of negative samples incorrectly classified as positive, and false
negative (FN) is the number of positive samples incorrectly classified as negative.

4.3. Experimental Results

This section provides a comprehensive analysis of the experimental results obtained
from our proposed multimodal emotion recognition method. Our evaluation focuses on
comparing the performance of our approach with that of a model combining EEG and
audio-visual features, highlighting the effectiveness of our method. We explored how
different modality combinations influence overall performance, revealing the impact of
each on the model’s efficacy. Through an ablation study, we demonstrate the significance
of the contrastive learning and cross-modal attention mechanisms.

To evaluate our proposed model’s performance, we conducted various experiments
by using different emotion classification schemes for each dataset. Tables 1 and 2 illustrate
our classification schemes for two-level and three-level emotions, respectively, as applied
to the DEAP dataset. For the DEAP dataset, we redefined the emotion classes based on the
original 1–9 rating scale for valence, arousal, and dominance. In addition to the two-level
and three-level classifications shown in the tables, we implemented a four-level emotion
classification by combining the valence and arousal dimensions. This resulted in four
categories: HVHA, LVHA, LVLA, and HVLA. The SEED dataset, with its preexisting labels
of negative (−1), neutral (0), and positive (1), was used for three-level valence classification
experiments without any relabeling. For both the DEHBA and MTIY datasets, we employed
the same four-level emotion classification scheme as that used with the DEAP dataset,
categorizing emotions into HVHA, LVHA, LVLA, and HVLA based on the combination of
valence and arousal dimensions.

Table 1. Emotion classes for two-level emotion classification on the DEAP dataset.

Rating Values (RVs) Valence Arousal Dominance

1 ≤ RVs ≤ 5 Low Low Low
6 ≤ RVs ≤ 9 High High High

Table 2. Emotion classes for three-level emotion classification on the DEAP dataset.

Rating Values (RVs) Valence Arousal Dominance

1 ≤ RVs ≤ 3 Negative Activated Controlled
4 ≤ RVs ≤ 6 Neutral Moderate Moderate
7 ≤ RVs ≤ 9 Positive Deactivated Overpowered
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Tables 3–6 show the results of 2–4 levels of emotion classification using the four
datasets. The final classification performance results were obtained by calculating the
average of all the cross-validation folds.

Table 3. Performance comparison of different methods for two-level classification on the DEAP dataset.

Methods
Valence Arousal Dominance

Accuracy F1 Accuracy F1 Accuracy F1

VE-BiLSTM [79] 71.8 71.4 70.1 70.2 71.5 71.3
AVE-KELM [81] 78.3 78.1 76.2 76.6 77.9 78.1
AVE-LSTM [82] 82.6 83.1 80.6 80.3 82.1 81.9
AVE-RT [45] 85.7 85.5 82.4 82.2 85.2 84.8
Proposed Method 93.4 93.2 91.7 92.0 93.5 93.2

Table 4. Performance comparison of different methods for three-level classification on the DEAP dataset.

Methods
Valence Arousal Dominance

Accuracy F1 Accuracy F1 Accuracy F1

VE-BiLSTM [79] 64.6 64.2 64.3 63.9 63.7 63.5
AVE-KELM [81] 73.7 73.5 73.2 74.1 72.4 72.1
AVE-LSTM [82] 78.5 77.8 77.1 76.9 76.8 77.2
AVE-RT [45] 80.1 80.3 79.5 80.2 80.7 80.5
Proposed Method 89.3 89.6 88.6 88.2 89.2 89.5

Table 5. Performance comparison of different methods for four-level classification on the DEAP
dataset and three-level classification on the SEED dataset.

Methods
DEAP: Four-Level SEED: Three-Level

Accuracy F1 Accuracy F1

VE-BiLSTM [79] 60.1 59.4 69.3 70.2
AVE-KELM [81] 67.5 68.2 75.6 74.9
AVE-LSTM [82] 69.3 70.2 77.3 78.5
AVE-RT [45] 75.5 78.4 81.5 81.3
Proposed Method 83.2 84.1 90.9 91.2

Table 6. Performance comparison of different methods for four-level classification on the DEBHA
dataset and MITY dataset.

Methods
DEBHA MITY

Accuracy F1 Accuracy F1

VE-BiLSTM [79] 80.3 80.4 75.6 74.3
AVE-KELM [81] 83.4 82.7 78.3 79.2
AVE-LSTM [82] 85.3 84.1 80.2 81.1
AVE-RT [45] 87.5 86.6 82.6 83.0
Proposed Method 96.5 96.5 91.6 92.7

As shown in the results, the accuracy of emotion classification gradually decreased as
the number of classes increased from two to four in the DEAP, SEED, DEBHA, and MITY
datasets. This trend aligns with the expectation that as the number of emotion classes to
be distinguished increases, the complexity of the patterns that the model needs to learn
also increases.

The multimodal emotion recognition method proposed in this study, utilizing con-
trastive learning and cross-modal attention, consistently demonstrated superior perfor-
mance compared with existing approaches. As can be seen in Tables 3–6, the proposed
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method achieved the highest accuracy and F1 scores across all datasets and classifica-
tion levels. It should be noted that the higher performance in four-level classification
for the DEBHA and MITY datasets compared with the DEAP and SEED datasets can be
attributed to the selection of videos with more distinct emotional content in the DEBHA
and MITY datasets. This clarity in emotional stimuli resulted in relatively consistent recog-
nition performance across all methods except for our proposed approach, which showed
significant improvement.

Existing feature-level fusion approaches (VE-BiLSTM and AVE-RT) simply concatenate
features from multiple modalities, but this has limitations in fully capturing the complex
interactions between modalities. This limitation becomes more apparent as the number
of emotion classes increases. Another approach, decision-level fusion (e.g., AVE-KELM),
processes each modality independently and combines them in the final decision stage.
While this method can be computationally efficient, it has the drawback of potentially
missing early interactions between modalities. In contrast, our proposed method can
more effectively capture implicit correlations between modalities by explicitly learning the
relationships between the features of each modality through contrastive learning.

Notably, the proposed method showed relatively less performance degradation as the
number of classes increased. For example, when transitioning from two-level classification
(Table 3) to four-level classification (Table 5) in the DEAP dataset, our method only showed
about a 10% decrease in accuracy. In contrast, other methods showed a larger performance
drop of 15–20%. This suggests that our approach is robust even in distinguishing more
fine-grained emotional states.

Even compared with recent deep learning-based methods like AVE-LSTM, our method
consistently showed better performance. This emphasizes that in multimodal emotion
recognition, learning the unique characteristics and correlations between modalities is
more important than simply using deep neural networks. Lastly, it is noteworthy that our
method showed balanced performance improvement across all three emotional dimensions:
valence, arousal, and dominance. This indicates that our approach can effectively capture
the multidimensional nature of emotions.

We argue that combining external emotional stimuli (audiovisual data) with internal
physiological responses (EEG signals) can provide a more comprehensive understanding
of emotional states. To clearly understand this, we examined the effects of various modality
combinations and investigated how audiovisual signals and EEG, which are in a stimulus–
response relationship, interact to improve recognition accuracy.

Accordingly, in Table 7, the experimental results showed that emotion recognition
based solely on audiovisual information has limitations in terms of accuracy and robustness.
In contrast, when audio or video data were combined with EEG signals representing
physiological responses, recognition performance significantly improved. This emphasizes
the complementary role of external stimuli and internal physiological reactions in emotion
recognition. Notably, among dual-modality combinations, the pairing of video data and
EEG signals yielded the best performance, suggesting that visual cues provide particularly
valuable information when combined with physiological data.

Table 7. Experiment with modality combinations on the DEBHA dataset.

Modality Accuracy F1

Audio + Video 78.4 77.8
Audio + EEG 82.5 81.9
Video + EEG 84.6 84.2
Audio + EEG + Video 96.5 96.5

The most notable point is that the highest accuracy in emotion recognition was
achieved when all three modalities—audio, video, and EEG—were integrated. This result
demonstrates the effectiveness of learning representations that incorporate both external
emotional stimuli and internal physiological responses. These findings showcase the syn-
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ergistic effect of combining multiple modalities, particularly the integration of external
emotional stimuli (audiovisual data) with internal physiological responses (EEG signals).
This approach provides a more comprehensive and accurate method for understanding
and recognizing complex emotions.

While the modality combination experiments demonstrate the potential of a multi-
modal approach, they do not explain how the specific mechanisms of our proposed method
maximize this potential. To explore this, we analyzed the contribution of each component
through an ablation study. According to the experimental results in Table 8, performance
dropped by 4.04% when contrastive learning was removed and by 2.19% when cross-modal
attention was removed. When both elements were removed, the performance decreased
the most (5.28%). This suggests that contrastive learning has a greater impact on learning
rich information from multiple modalities compared with cross-modal attention.

Table 8. Ablation study of the impact of contrastive learning and cross-modal attention on the
DEBHA dataset.

Condition Accuracy F1

Without Contrastive Learning 92.5 91.3
Without Cross-Modal Attention 94.3 94.0
Without Contrastive Learning and Cross-Modal Attention 91.2 92.1
Proposed Method 96.5 96.5

The importance of contrastive learning appears to stem from its ability to effectively
capture complex relationships between different modalities and learn an integrated feature
space. In particular, contrastive learning can be interpreted as playing a crucial role in
learning subtle correlations between internal physiological responses like EEG signals and
external expressions like audio-visual data.

The fact that performance dropped the most when both elements were removed shows
that contrastive learning and cross-modal attention create a synergistic effect, maximizing
the performance of multimodal emotion recognition. While contrastive learning learns
the overall relationships between modalities, cross-modal attention enables more fine-
grained information exchange based on this, thereby enhancing the model’s expressiveness.
These results demonstrate that our proposed method reaches beyond simply combining
information from multiple modalities, effectively modeling complex interactions between
each modality.

Finally, one important consideration in multimodal learning is how to handle samples
that do not contain meaningful information in each modality. These samples can hinder
model learning or lead to learning incorrect patterns. This issue becomes even more critical
in complex tasks such as emotion recognition.

Table 9 shows our approach to this problem. When applying the audio energy-based
sample selection method, the model’s accuracy and F1 score improved. This proves that
selectively using samples rich in information is more effective than simply using all samples.
The key to this method is selecting samples likely to contain significant information based
on the energy level of the audio signal. High-energy audio samples are generally more
likely to contain clearer emotional expressions and are expected to have more distinct
correlations with other modalities (EEG and video).

Table 9. Impact of audio energy-based sample selection on the DEBHA dataset.

Method Accuracy F1

Proposed method (all samples) 96.5 96.3
Proposed method (audio energy-based selection) 97.4 98.1
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5. Discussion

While the proposed multimodal emotion recognition framework demonstrated sig-
nificant improvements in classification accuracy, several important considerations and
limitations warrant further discussion and future research.

The integration of multiple modalities and advanced techniques such as contrastive
learning and cross-modal attention resulted in a highly complex model. This complexity,
while contributing to the model’s performance, poses challenges in terms of interpretability.
Developing methods to visualize and explain the model’s internal representations and
decision boundaries could provide valuable insights and increase trust in the system’s
outputs. Furthermore, investigating how each modality’s signals (video and audio) specifi-
cally influence brain responses as captured by EEG data is crucial. This exploration, along
with existing efforts in interpreting multimodal emotion recognition systems [83–85], could
provide insights into the actual interactions between different modalities and their impact
on emotional responses. Such research could bridge the gap between computational models
and neurophysiological processes, potentially leading to more biologically plausible and
interpretable emotion recognition systems.

The current study utilized a limited number of datasets, which may affect the model’s
generalizability to diverse populations and contexts. The complex nature of the model,
combined with limited data, raises concerns about potential overfitting. It is important to
acknowledge the significant challenges in collecting comprehensive datasets for multimodal
emotion recognition. Acquiring audiovisual materials which effectively elicit a wide range
of emotions, along with corresponding EEG data, is a complex and resource-intensive
process. The subjective nature of emotional responses and the variability across individuals
further complicate this task. Future work should explore innovative approaches to data
collection and augmentation, including semi-supervised learning techniques [86,87] which
can leverage limited labeled data more effectively.

The proposed model’s complexity necessitates substantial computational resources for
training and inference, which may limit its applicability in real-time or resource-constrained
environments. Future research should explore model compression techniques, such as
knowledge distillation [88–90], to reduce the model’s size and computational requirements
without significantly compromising performance. Additionally, investigating incremental
learning methods could facilitate more efficient model updates and adaptations to new
data, enhancing the model’s practical applicability in dynamic real-world scenarios.

6. Conclusions

This study proposed a novel multimodal approach for emotion recognition, integrating
audio-visual data with EEG signals. Our research demonstrated that combining externally
observable cues with internal physiological responses significantly improves emotion
recognition accuracy. The proposed method, utilizing contrastive learning and cross-
modal attention, consistently outperformed existing approaches across various datasets
and classification levels.

Key findings include the crucial role of EEG signals in enhancing recognition accuracy,
particularly when combined with audio-visual data, and the effectiveness of selective sam-
ple usage based on audio energy levels. Our approach showed robustness in distinguishing
fine-grained emotional states, maintaining relatively high performance even as the number
of emotion classes increased.

Future research should focus on enhancing model interpretability, personalizing emo-
tion recognition. Developing techniques to visualize and explain the model’s decision-
making process will be crucial, particularly in understanding how different modalities
interact and contribute to emotion classification. Investigating adaptive models which ac-
count for individual differences in emotional expression and perception could lead to more
personalized and accurate systems. Additionally, exploring knowledge distillation methods
to create simpler, more efficient models from our complex multimodal approach could ad-
dress computational constraints while maintaining high performance. These advancements
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aim to create more interpretable, personalized, and efficient emotion recognition systems
suitable for various real-world applications.
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