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Abstract: Vaginal intraepithelial neoplasia (VAIN), linked to HPV infection, is a condition that is
often overlooked during colposcopy, especially in the vaginal vault area, as clinicians tend to focus
more on cervical lesions. This oversight can lead to missed or delayed diagnosis and treatment for
patients with VAIN. Timely and accurate classification of VAIN plays a crucial role in the evaluation
of vaginal lesions and the formulation of effective diagnostic approaches. The challenge is the high
similarity between different classes and the low variability in the same class in colposcopic images,
which can affect the accuracy, precision, and recall rates, depending on the image quality and the
clinician’s experience. In this study, a dual-branch lesion-aware residual network (DLRNet), de-
signed for small medical sample sizes, is introduced, which classifies vaginal lesions by examining
the relationship between cervical and vaginal lesions. The DLRNet model includes four main com-
ponents: a lesion localization module, a dual-branch classification module, an attention-guidance
module, and a pretrained network module. The dual-branch classification module combines the
original images with segmentation maps obtained from the lesion localization module using a pre-
trained ResNet network to fine-tune parameters at different levels, explore lesion-specific features
from both global and local perspectives, and facilitate layered interactions. The feature guidance
module focuses the local branch network on vaginal-specific features by using spatial and channel
attention mechanisms. The final integration involves a shared feature extraction module and inde-
pendent fully connected layers, which represent and merge the dual-branch inputs. The weighted
fusion method effectively integrates multiple inputs, enhancing the discriminative and generaliza-
tion capabilities of the model. Classification experiments on 1142 collected colposcopic images demon-
strate that this method raises the existing classification levels, achieving the classification of VAIN into
three lesion grades, thus providing a valuable tool for the early screening of vaginal diseases.
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1. Introduction

Vaginal intraepithelial neoplasia (VAIN) is a group of lesions characterized by typical
hyperplasia and carcinoma in situ in the vaginal squamous epithelium. It was initially
identified during follow-up examinations after hysterectomy when vaginal lesions were
detected. Currently, there are two main grading methods for VAIN. In one system, VAIN
is classified into three grades: VAIN I, VAIN II, and VAIN III [1]. In a more recent classifi-
cation system, VAIN I is defined as a low-grade squamous intraepithelial lesion (LSIL),
whereas VAIN II and VAIN III are categorized as high-grade squamous intraepithelial
lesions (HSILs) [2]. According to the latest WHO classification for tumors of the female
reproductive tract (5th edition), vulvar squamous cell carcinoma and its precursor lesions
are now categorized by etiology into HPV-independent and HPV-associated squamous
types [3]. Due to the relatively low clinical focus on VAIN compared to cervical lesions,
early statistics reported an annual incidence rate of VAIN of just 0.2-2 cases per 100,000,
comprising only 0.4% of all lower genital tract intraepithelial neoplasias [4]. However,
with advancements in screening techniques and increased clinical awareness of vaginal
lesions, the incidence of VAIN has been rising steadily. Recent epidemiological data from
Chinese studies indicate that VAIN now accounts for 23.7% of lower genital tract intraep-
ithelial lesions [5], with an upward trend. Approximately 12% of high-grade VAINs have
been shown to have the risk of developing into invasive vaginal wall cancer [6]. Despite
extensive research on cervical intraepithelial lesions and well-defined diagnostic and
treatment protocols, there is limited research on VAIN, and there is a lack of standardized
diagnostic and treatment guidelines. Therefore, VAIN should receive more attention.

Colposcopy requires adequate illumination and local magnification to visualize the
epithelium of the lower genital tract. The diagnosis typically involves observing changes
in the cervical and vaginal epithelium after the application of acetic acid or iodine stains
[7]. Figure 1 provides examples of different types of vaginal epithelial lesions under iodine
stains. Variations in lighting, obstruction, angle, texture, and color in the affected areas
can lead to significant variations in the same category, while different types of lesions may
share similar features, as shown in Figure 2. As a result, the model struggles to account
for all feature variations due to the limitations of the dataset. The overlap of features across
categories can make decision boundaries obscure, making it more challenging to extract
disease-specific features and increasing the overall difficulty of feature extraction.

Figure 1. Three states of vaginal epithelium under iodine staining.

Intra-class difference

Variations in position, color, size, iodine dosage Inter-class similarity

Figure 2. Left: Variability in characteristics in the same type of vaginal epithelial lesion. Right: Sim-
ilar characteristics across different lesion types.
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In this study, we developed a novel deep neural network architecture (DLRNet) to
grade colposcopic impressions of VAIN. This method can improve existing classification
levels and provide a valuable tool for the early screening of vaginal diseases. The frame-
work of the model is shown in Figure 3.

The network was built on ResNet-34 architecture, which processes both global and lo-
cal images as input. An attention-guidance module was developed to enhance feature inter-
action and optimize the benefits of both pathways [8]. The attention mechanism guides the
network to prioritize critical areas, enabling it to extract pertinent disease features from these
regions. The principal contributions of this study are summarized as follows:

1. DLRNet, a new lightweight dual-branch lesion-aware network model, has been pro-
posed for small colposcopic datasets.

2. In this model, the different stages of vaginal lesions are classified, aiding doctors in
reducing missed diagnosis rates and improving diagnostic accuracy. The network
enhances classification performance by mutually learning global and local features
and automatically integrating contextual lesion information.

3. Through spatial and channel attention mechanisms, the attention-guidance module
learns disease-specific features, directing the model’s focus toward these particular char-
acteristics. The optimal layer count for ResNet was determined through experimentation.

4. A clinical colposcopic image database comprising 1142 images from three different
types of vaginal lesions was established. Each image in the database is accompanied
by corresponding labels and segmentation annotations.

The experimental results indicated that the proposed model excels in both detecting
and classifying vaginal-type images.

This paper is organized as follows: Section 2 provides a review of the related litera-
ture. In Section 3, the proposed DLRNet is introduced. Sections 4 and 5 present the exper-
imental results, along with their analysis. Section 6 offers a conclusion summarizing the
key findings.
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Figure 3. DLRNet is comprised of four main modules: the lesion localization and segmentation
module, the dual-branch classification module, the attention-guidance module, and the weighted
fusion module.

2. Related Work

The colposcopic impression of VAIN is variable and may present confusing image
features depending on a number of factors, including the patient’s vaginal inflammation
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and hormone levels. Therefore, senior colposcopists always have a higher colposcopic ac-
curacy to diagnose histologic VAIN [9]. However, there is a significant shortage of highly
experienced colposcopists in rural areas of China, accompanied by lengthy waiting peri-
ods for colposcopy and biopsy pathology. Consequently, there is an urgent requirement
for a real-time and precise diagnostic approach to assist colposcopists in their diagnostic
and treatment procedures.

Research indicates that the severity of cervical lesions correlates with that of vaginal
lesions. VAIN grading is positively associated with concurrent CIN (cervical intraepithe-
lial neoplasia) grading. Furthermore, this consistency increases with age. The cervix,
vagina, and vault share a similar environment, suggesting a possible common etiology for
VAIN and CIN. This underscores the importance of examining the vagina when CIN is
suspected. The clinical features of VAIN are similar to those of CIN, and the diagnosis and
treatment principles for CIN are also applicable to VAIN. Artificial intelligence-based
computer-aided diagnosis offers efficient, scientific, and accurate processing of clinical
data, becoming an important branch of medical Al. Medical imaging and endoscopy have
long been critical auxiliary diagnostic tools in clinical settings. Recent developments in
convolutional neural networks (CNNs) for medical imaging have shifted the focus toward
classification techniques based on deep learning (DL). However, in these DL methods,
decisions are often made based on a single complete global image, overlooking a more
detailed examination of lesion areas, which may contain additional physiological infor-
mation. Moreover, due to the scarcity of colposcopic image data, transfer learning tech-
niques are particularly crucial, as they leverage pretrained model parameters [10], provid-
ing an effective starting point for training new models and overcoming challenges related
to limited data availability.

There are still challenges in the classification of actual nonterminal colposcopic im-
ages. First, traditional machine learning techniques often have variability across different
datasets. Second, CNNs, which operate as end-to-end models without requiring manual
feature extraction, are prone to overfitting when they are applied to small vaginal datasets
[11]. Third, the collection of large-scale cervical colposcopic image datasets is challenging,
and small sample sizes can easily cause the model to learn noise in the data rather than
the underlying data distribution, resulting in poor generalization ability on new data.
Based on current research findings, relevant technologies still have significant limitations
in clinical application [12]. Researchers predominantly make decisions based on a single
complete colposcopic image, overlooking the need for a more detailed examination of le-
sion areas that provide additional physiological information. Therefore, achieving an au-
tomated diagnosis of the severity of VAIN remains challenging.

Multibranch learning involves training multiple models simultaneously to explore
more information about the target, effectively improving learning efficiency and predic-
tion accuracy [13]. Consequently, multibranch learning techniques are increasingly uti-
lized for a range of medical image analysis tasks encompassing both segmentation and
classification [14]. For instance, Dolz et al. [15] proposed a multimodal network for multi-
ple sclerosis lesion segmentation by strengthening dense connections where CNNs corre-
sponding to each imaging modality were interconnected at each layer. Recent multimodal
approaches have achieved high accuracy in breast cancer classification by integrating in-
formation from SWE or color Doppler images with B-mode images [16]. Additionally,
Wang et al. [17] developed a dual-branch network that automates the classification and
segmentation of esophageal lesions, integrating contextual information from two perspec-
tives and extracting fine-grained features for precise lesion classification. Therefore, this
paper proposes a dual-branch framework that combines original images with lesion seg-
mentation maps using both global images and localized lesion regions to classify VAIN
and enhance target differentiation.

Multibranch models combine channel and spatial attention mechanisms to empha-
size critical features in the target region while reducing the influence of irrelevant data
and enhancing both the network’s performance and its capacity to detect key features.
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Recent research has concentrated on incorporating attention mechanisms into deep learn-
ing models using straightforward plugin modules that create weight masks to enhance
task-specific information [18]. Hu et al. [19] introduced the squeeze-and-excitation mod-
ule, which uses global average pooling to model nonlinear cross-channel interactions, fol-
lowed by two fully connected layers and a sigmoid function to assign channel-specific
weights. As well as the channel attention mechanism, Woo et al. [20] proposed an efficient
attention module that sequentially integrates channel and spatial attention mechanisms,
forming a hybrid approach for dynamic feature refinement. This study presents an en-
hanced attention strategy that integrates both spatial and channel attention mechanisms
[21]. The final layer includes several pooling operations and multilayer perceptrons to en-
hance feature mapping from both global and local branches, thereby improving contex-
tual information integration.

3. Proposed Method
3.1. Local Lesion Segmentation Module

The localization features provided by the vaginal segmentation map are crucial for clas-
sification, but have not been fully exploited. Lesions from different categories may present
similar appearances. Local images offer more distinguishing texture and color information
than global information. Thus, combining global and local perspectives is essential for the ef-
fective diagnosis of the severity of VAIN. Local feature maps annotated for lesion areas in col-
poscopicimages using Lableme software are utilized. The version of the software we are using
is LabelMe Windows version 5.4.1. Pathological results serve as the gold standard for annota-
tion, ensuring that each original image corresponds accurately. As shown in Figure 4, the
global image confirms the colposcopic environment, while the local image reveals additional
local and detailed features. Only the key area in the red boundary is retained in the segmented
images. The remaining parts are masked in black.

Figure 4. Localized colposcopic image: The red contours indicate the key area of interest in the
vagina. The images above show the original with a red boundary, and the images below show the
segmented results.

3.2. Two-Branch Classification Module

The two-branch network takes both the full colposcopic image and the localized le-
sion area as inputs, generating an end-to-end classification result as the output. As shown
in Figure 3, the two-branch network utilizes the ResNet-34 model as its feature extraction
backbone. The global path extracts features from the full colposcopy image, while the local
path focuses on lesion-specific features from the pathology region. In the output layer, the
depth features from both branches are mapped into a unified representation space. Addi-
tionally, an attention module is positioned before the feature cascade to extract finer dis-
criminative features and highlight the contextual information of the lesion region, enhanc-
ing classification performance. The integrated feature representation is then forwarded to
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the decision layer to predict the colposcopic intraepithelial neoplasia status. In contrast,
multitask learning utilizes domain-specific insights from related tasks to promote induc-
tive knowledge transfer, improving both prediction accuracy and generalization for each
individual task [22]. We proposed a multi-input fusion method that utilizes a two-branch
ResNet model to enhance performance. The model has two input branches, each of which
undergoes a shared model for feature extraction and representation learning. The output
of each input branch is further processed by an independent fully connected layer to ob-
tain two independent feature representations. The weights are adjusted based on the
problem’s characteristics and the data’s relevance. The final feature representation is ob-
tained through weighted averaging, enabling the model to simultaneously learn both
global and local features, thus overcoming challenges related to varying lesion locations.
This approach significantly enhances the classification performance and generalization
ability of the model, ensuring robustness in various applications.

3.3. Attention-Guidance Module
Attentional mechanisms, inspired by human vision, allow neural networks to focus on
specific features and select relevant inputs £, e R™"", In this context, “ C * represents the

number of channels, * /’ the height, and ‘7’ the width of the input feature map. The channel
attention module emphasizes the interdependencies between the deepth dimensions of the
channel graph, thus improving the feature representation of a particular semantic meaning.
The spatial attention module then captures the relationships between feature points, integrat-
ing a wider context into the local features to enhance their representation. /' with subscript
irepresents the i-th input. F' with superscript k denotes the k-th feature. F' with
both superscript and subscript indicates the layer-specific feature. Specifically, the feature
maps are first compressed through average and max pooling to gather the spatial information
. > : C
ek and FieeR are then fed into

amultilayer perceptron (MLP) consisting of  layers,a Re/u activation function, and £,

from the feature maps F’;’ The aggregated features

layers, generating the following Formula (1) [23]:
A, = oW, Relu(W,F,,.)+W Relu(W,F,,)] 1)

max

In this context, VK and VI{ denote the weights of the MLP, while the Sigmoid func-

tion is applied to the normalized attention weights. The parameters W, and W represent

the weights of the multilayer perceptron (MLP). Subsequently, the Sigmoid function is
applied to the normalized attention weights, transforming them into a range between 0
and 1. The S-type function o applies the attention weights to the original high-level feature

maps, generating the channel attention feature maps F, = REHW.

F.=F,®4, @)

1
o (x)= ©)
where @ denotes element-wise multiplication, facilitating the propagation of attention
weights across the spatial dimension.

To improve feature discrimination across spatial domains, this study utilizes a spatial
attention model that incorporates key contextual information into local features, enhancing
their capacity to distinguish between different lesions [24]. The features are combined along
the channel axis through maximum and minimum pooling operations applied to the channel

attention features, producing spatial feature mappings £, €R™ and F,, € R™" . Specifi-

avg
cally, this process involves using convolutional operations to transform local features from the
input image into mappings that have spatial relevance in the feature space. This spatial feature
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mapping helps the network recognize and understand different lesion characteristics in spe-
cific areas, thereby enhancing classification accuracy. These two feature mappings are then
projected into the joint space, and the 2D spatial attention mapping is learned by another con-
volutional network.

A, =o(ConConcat(F,,,, F},))) (4)

In this context, ¢ denotes the Sigmoid function used to normalize the attention
weights, Concat indicates the concatenation operation for merging features, and Conv re-
fers to the convolutional network consisting of flattened and fully connected layers [25].
Finally, the channel attention feature map Fou and the spatial attention feature map As are
multiplied to obtain the lesion guidance feature map Four:

F , =F ®A

out

®)

In this regard, the attention-guidance module first introduces global and local
branches, followed by the concatenation of the high-level semantic features extracted from
both. In this way, by emphasizing lesion-related features across the whole image and within
local abnormal regions, irrelevant areas are minimized, enabling a more focused attention
on the semantic context of the lesion. The attention-guidance module enhances the model’s
ability to prioritize disease-relevant features while eliminating irrelevant ones. In addition,
it is incorporated before the feature fusion step between the two branches, enhancing the
consistency of attention features and improving classification accuracy.

The input is derived from the features extracted by the backbone network. As illus-
trated in Figure 5, the channel attention module applies two spatial pooling methods and
then sends the results to the frame network to merge the feature maps. After the sigmoid
function is applied, the channel attention coefficients are multiplied by the input features.
The spatial attention block combines features at the channel level using two methods. The
spatial attention coefficients are obtained through convolution and the sigmoid function,
and then multiplied by the original image to generate the final feature map.

FyERC
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" . Channel
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Feature
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Figure 5. Network architecture of attention-guided blocks.
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3.4. Pretrained Network Module

Fine-tuned pretrained networks are widely applied in deep learning for the analysis
of medical images with limited samples. The term transfer refers to the process of trans-
ferring neural network weights, convolutional kernel parameters, and bias values. In the
same network model, pretrained weights from one dataset serve as the initial values when
training on a new dataset. This enables small adjustments to the original weights based
on the feature extraction requirements of the new task, improving its performance. This
method reduces training time and effectively mitigates the issue of limited data. Due to
the limited availability of training data, most medical image processing techniques rely
on deep learning and transfer learning. Xu et al. [26] utilized a pretrained AlexNet model
to classify cervical dysplasia in colposcopy images, demonstrating improved performance
over conventional machine learning approaches in the classification of CIN 2+ lesions.
Sato et al. [27] used deep learning to classify lesions in colposcopic images.Despite subop-
timal results, their research highlighted deep learning’s potential for classifying col-
poscopy images. In particular, in the study [28], they proposed a multimodal deep net-
work for diagnosing cervical dysplasia, setting a new benchmark in visit-level classifica-
tion. Tan et al. [29] proposed sequential fine tuning, a new transfer learning method, to
diagnose lung diseases, including cancer and tuberculosis (TB), using bronchoscopy im-
ages. Yuan et al. [30] enhanced a deep learning model with rotational invariance and im-
age similarity constraints, leading to significant improvements in polyp detection from
endoscopic images. Xiao et al. [31] utilized a transfer residual network (Re3sNet) for MRI-
based brain disease detection, attaining leading performance in a multiclass classification
task. Building upon the success of these studies, this research seeks to fine-tune all layer
parameters using a pretrained ResNet residual network.

ResNet utilizes residual blocks that link layers to prevent gradient vanishing and to
enhance learning efficiency. Each block consists of a convolutional layer and a residual con-

nection. The output aj ofthe j-th unitof the convolutional layer is computed as follows:

ay=f| 2 @ ¥k +b; ©)

: 1
ieM;

where M j denotes the selected set of input feature mappings, k' ; denotes the learna-
ble convolutional kernel, and s denotes the activation function. The convolution kernel

k,.’_j acts as a sliding window, advancing by a fixed step size.
H(x)=Y(x)+x (7)

In this context, the variable X refers to the input provided to the structure, while Y
signifies the sequence of convolution operations applied to this input. This notation empha-
sizes the functional relationship between the input and the subsequent processing steps in-
volved in the convolutional layers. The Re /u operation is performed before each weight
layer in each residual block. Re /u is the activation function, as shown below:

Relu(x)=max(x,0) (8)

After passing through multiple convolution layers, small images may lose edge in-
formation. To preserve all information, padding is applied to the input. The amount of
padding is determined by the size of the convolution kernel. The padding size, denoted
as P, applied to the input during convolution operations is determined by the size of the
convolution kernel. This padding ensures that the spatial dimensions of the input image
are preserved after convolution, thereby retaining important edge information that might
otherwise be lost during the operation. By applying this padding, the network can effec-
tively handle images with small dimensions and prevent the omission of critical features
located at the borders [32]. For a convolutional kernel with edge length, the input image
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is the same size as the output when P = [k /2].ResNet usually incorporates a single pool-
ing layer, located after the final residual block. This layer filters the features from the con-
volutional layer, which helps reduce the number of training parameters and minimizes
the risk of overfitting [33]. The output of pooling layer | is represented as follows:

d, =down(d; M) 9)

where ) ! denotes the size of the / th pooling layer and down() is a downsampling func-
tion, which can be mean pooling, maximum pooling, or average pooling, depending on the
specific pooling operation used. These pooling operations perform feature aggregation by se-
lecting the most appropriate feature values within a sliding window and reduce the size of the
output feature map to a multiple of three. As a result, the pooling layer reduces feature dimen-
sionality, speeds up the training process, and mitigates the risk of overfitting.

The “FC” (fully connected) layer is a crucial component of many neural network ar-
chitectures. In this layer, each neuron is connected to every neuron in the previous layer,
allowing the model to combine complex features. It is responsible for mapping the high-
level features extracted by convolutional layers to the final output classes, enabling accu-
rate predictions. Typically, the FC layer is positioned toward the end of the network, serv-
ing as the final step in feature aggregation before producing the output [34]. The final
stage of the ResNet model consists of multiple multi-neuron fully connected (FC) layers.
These layers perform the two key functions of weighting and summing the extracted fea-
tures. The FC layers fulfill three main roles: (i) combining features learned from the con-
volutional layers and aligning them with the label space; (ii) vectorizing high-dimen-
sional, multichannel features extracted by the CNN into one-dimensional vectors; and (iii)
serving as a classifier to consolidate all the knowledge learned so far. The multi-neuron
FC layers can approximate complex nonlinear transformations and also fine-tune the
CNN, enhancing its resilience to noise and disturbances.

In this study, a pretrained ResNet was first used as the initial weights of the colpo-
scopic images, and the final FC layer was replaced with a new FC layer. The model has
two input branches, each of which undergoes a shared ResNet model for feature extrac-
tion and representation learning. The output of each input branch was further processed
by an independent fully connected layer to obtain two independent feature representa-
tions. In order to synthesize these two feature representations, a weighting strategy was
used, where the weights can be adjusted according to the characteristics of the problem
and the importance of the data. Ultimately, the result of weighting yields a comprehensive
feature representation for subsequent tasks. This approach makes full use of the multi-
input capability of the two-branch ResNet model at the algorithmic level and realizes the
feature representation and fusion of the two inputs through a shared feature extraction
module and an independent fully connected layer. Through weighted averaging, the in-
formation from multiple inputs can be effectively integrated to improve the performance
and generalization ability of the model. Finally, the cross-entropy function is used as the
loss function, which is represented as follows:

1 1
Loss = W il\ilLi = _Fz fil filyic log(p,.) (10)

where p, shows the predicted probability that the ith observed sample belongs to cate-
gory C. When M - 2, the task is two-category categorization, and when M - 2, the

task is multicategory categorization; M denotes the number of categories to be catego-
rized, and N the number of samples. The variable “i” represents the index of a sample,
typically used to refer to the position of a specific data sample within the entire dataset.

y, is used to check whether y isequal to C.If the true category of the ith sample is

equalto C, i will take the value 1. Otherwise, it will take the value 0.
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4. Experiments
4.1. Dataset

We collected colposcopic image data from 1142 patients who underwent vaginal wall
biopsy guided by colposcopy from June 2022 to June 2023 at Renji Hospital, affiliated to
the Shanghai Jiaotong University School of Medicine, the International Peace Maternity &
Child Health Hospital, and the Shanghai First Maternity and Infant Hospital. The imaging
and biopsies were conducted by six experienced clinicians using Tongren TR6000C colpo-
scopes and Leisegang (transliteration: Laiseikang) 3ML LED colposcopes. For each pa-
tient, one colposcopic image of the vaginal wall after a Lugol’s iodine test was collected.
The dataset includes three types of images: HSIL, LSIL, and normal. Some examples are
illustrated in Figure 1. To ensure patient privacy, the raw data were thoroughly anony-
mized upon extraction and converted into an anonymous file list.

Two experienced experts initially screened the images, excluding those without cor-
responding pathological analysis or those taken from patients undergoing surgery or en-
doscopic removal. After thorough verification and quality control, the final dataset com-
prised 500 normal images, 500 vaginal LSIL images, and 142 vaginal HSIL+ images, as
well as a segmentation dataset annotated using Lableme software for target detection
training. The version of the software we are using is LabelMe Windows version 5.4.1.The
dataset is evenly distributed. Clinical experts annotated each image category and corre-
sponding mask label based on strict histological criteria. As shown in Table 1, images from
the same patient were kept together to avoid overlap between the training, validation, and
test sets. Moreover, due to the issue of data imbalance, which could negatively affect train-
ing outcomes, data augmentation was performed on the 142 vaginal images of the HSIL
category. The original images were horizontally flipped, vertically flipped, and randomly
flipped at angles ranging from 0° to 90°, as depicted in Figure 6. Ultimately, the 142 vagi-
nal HSIL images were randomly augmented to 568 images. To improve training and test-
ing efficiency, the resolution was reduced to 224 x 224.

400
normal 189 12 350
300
w
° 250
o
5 s 74 ) k200
o
°
= t150
100
HSIL+ A 22 93 22
50
T : . Llo
normal LSIL HSIL+

Predicted Labels

Figure 6. Confusion matrix of colposcopic predictions by physicians.

The augmented dataset was split into training, validation, and test sets at a ratio of
7:1:2 for model training. The distribution of images is detailed in Table 1.

Table 1. Detailed distribution of the colposcopic dataset.

Training Validation Test Total
Normal 350 50 100 500
LSIL 350 50 100 500

HSIL+ 398 57 113 568
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4.2. Experimental Setup

The program described in this study was trained on a platform equipped with an
NVIDIA GeForce RTX 3080 Ti GPU with 30 GB of memory. The operating system of the
experimental machine was Windows 10, and the proposed algorithm was built using
PyTorch 1.7.0.

In the proposed method, a stochastic gradient descent (SGD) optimizer was em-
ployed. Other hyperparameters were set as follows: an initial learning rate of 1 x 102, ad-
justed using cosine annealing, a minimum learning rate of 1 x 102, adjusted using cosine
annealing, a minimum learning rate of 1 x 10, a batch size of 32, and a total of 200 epochs.
The multiclass cross-entropy was utilized as the loss function.

The proposed model in this study is referred to as DLRNet, and its development pro-
cess involved multiple stages, totaling approximately nine weeks. The first phase was data
preparation, which required about two weeks due to the need for extensive data cleaning
and annotation. Following this, we spent one week modeling the design, which included
selecting an appropriate architecture and tuning hyperparameters to optimize performance.

The training phase represents the highest time cost in the overall development pro-
cess. Depending on the complexity of the model, we utilized high-performance GPUs to
ensure that the training time for each model was kept in three to five days. For instance,
training the ResNet-34 architecture, which serves as the baseline model, required four
days on a dataset containing all images. Subsequently, we conducted a five-fold cross-
validation to ensure the robustness of the model’s performance. Afterward, several weeks
were spent making comparative analyses of the models and carrying out visualization
experiments.

Upon completing the training, we spent an additional week on model validation and
evaluation, ensuring that all performance metrics, including accuracy and ROC curve
analysis, were thoroughly assessed [35]. Overall, the entire timeline from data preparation
to final validation spanned approximately nine weeks, adhering to rigorous standards of
model development.

4.3. Evaluation Metrics

To precisely quantify the model’s classification performance, the following metrics
were introduced: accuracy, F1 score, precision, recall, and confusion matrix. Accuracy,
calculated using Formula (11), measures the percentage of correctly classified instances,
with values closer to 1 indicating better performance of the classification algorithm.

TP+TN

Accuracy = (11)
TP+TN+FP+FN

Precision, as defined in Formula (12), measures the proportion of true positive predic-
tions among all positive predictions. A value closer to 1 indicates better classifier performance.
.. P
Precision = ——— (12)
TP+ FP
Recall, as defined by Formula (13), quantifies the proportion of actual positives cor-
rectly identified by the model. Higher values, approaching 1, demonstrate the model’s
effectiveness in identifying all relevant cases.
TP
Recall =— (13)
TP+ FN

The F1 score, as defined by Formula (14), measures the balance between precision
and recall. A higher value, approaching 1, indicates superior performance, demonstrating

both accuracy and thoroughness in classification.
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Precisionx Recall 2TP

Fl=2x =
Precision+ Recall 2TP+ FP+ FN

(14)

Furthermore, this study also employed standard evaluation metrics for assessing object
detection performance, including true positives (7P s), false positives ( F'P s), and false nega-
tives (FN s). TP refers to the correctly identified positive images, FP to the incorrectly
detected instances, and F N to the positive samples misclassified as negative.

5. Results and Discussion
5.1. Selection of the Baseline Model

For the selection of a baseline model, choosing a deep learning network that aligns
with the specific characteristics of the image classification task can significantly enhance
the extraction of critical image features, thus improving classification accuracy. In this sec-
tion, seven classic classification networks are employed to train on, validate, and test the
raw endoscope image dataset [36]. For each network, the parameters achieving the highest
accuracy on the validation set are used for testing on the test set. Finally, based on these
results, the model with the best performance is selected as the baseline for processing vag-
inal image branches. Table 2 presents the classification results of the feature-encoding net-
works on the raw images.

Table 2. Classification results of the original image feature-encoding network.

Model Accuracy Precision Recall F1-Score
VGG-16 0.6579 0.6766 0.5257 0.5916
ResNet-18 0.6385 0.6338 0.6296 0.6316
ResNet-50 0.7007 0.6609 0.6086 0.6336
MobileNetV2 0.6719 0.6838 0.5687 0.6206
EfficientNet-BO 0.7322 0.6586 0.6363 0.6472
ShuffleNetV2 0.7619 0.6237 0.6190 0.6213

These results are based on the benchmark model evaluation conducted using the raw
endoscope image dataset listed in Table 1. As shown in the data from Table 2, ResNet-34
demonstrates relatively superior performance across the four metrics, achieving an accu-
racy of 0.7923, a precision of 0.7857, a recall of 0.5840, and an F1 score of 0.6700. In terms
of accuracy, ResNet-34 outperforms the second-best network, ShuffleNetV2, by 0.0304.
For precision, it exceeds MobileNetV2, ranked second, by 0.1019, and for the F1 score, it
surpasses EfficientNet-B0, ranked second, by 0.0228. Although ResNet-34 does not
achieve the highest recall, its overall performance across all metrics is superior to that of
the other networks. Therefore, this study selected ResNet-34 as the benchmark model for
handling the vaginal image classification task.

5.2. Ablation Study

In the classification test set of this study, colposcopists achieved an accuracy rate of
only 54.29% when making correct judgments based on case information and colposcopic
images combined with their experience. The biopsy detection rate was relatively low. As
shown in Figure 6, most predictions made by colposcopists were concentrated in the LSIL
category. While this approach reduces the probability of misdiagnosis, it also increases
the number of biopsies [37], leading to a lower detection rate and prediction accuracy.
These findings underscore the importance of developing a highly accurate automated
VAIN classification model.

Ablation studies were conducted on the internal dataset to assess the impact of each sub-
module in the proposed method. The baseline model, built on the ResNet34 architecture with
global images, served as the starting point, with each submodule added sequentially. The
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modules tested included single branch (Single), dual branch (Dual), pretraining (Pretraining),
and attention guidance (Attention). All experiments were conducted using a consistent train-
ing setup, producing quantitative results. The DLRNet model outperformed single-branch
models, which used either global or local images, highlighting the dual-branch approach’s
effectiveness in combining features from both sources, as shown in Table 3.

Table 3. Comparison of classification results for ablation network models. (All experiments were con-
ducted on the same dataset. The designation with an “*” indicates that the model has been pretrained.

Accuracy Precision Recall F1-Score
Single (global) 0.7923 0.7857 0.5840 0.6760
Single (local) 0.7643 0.7487 0.7463 0.7912
Dual (No pretrained) 0.7947 0.7862 0.7907 0.7882
Dual + Attention 0.8110 0.8113 0.8007 0.7951
Dual * (Pretrained) 0.8376 0.8213 0.8167 0.8032
DLRNet 0.8572 0.8557 0.8513 0.8562

As depicted in Figure 7, the t-SNE visualization shows the results of the ablation ex-
periments on the test set. It can be seen that the separation effect improves as each module
is incorporated into the proposed framework. When comparing (c) and (e), features of the
same type are more tightly grouped, indicating that the pretraining module aids in con-
vergence and better models the feature distribution by capturing multivariable relation-
ships [38]. A comparison between (e) and (f) reveals clearer distinctions between the nor-
mal, LSIL, and HSIL categories, confirming that the attention mechanism helps the net-
work focus on disease-specific features.

As observed in the last row of Table 3, the introduction of the attention-guidance
module enhanced the network’s ability to focus on regions of interest within the lesions.
The right side of the table shows that, as modules are progressively added, performance
metrics improve, particularly in distinguishing the more challenging vaginal LSIL and
normal cases.

In order to assess the model’s effectiveness, the Wilcoxon signed-rank test was ap-
plied to compare the physician and DLRNet predictions. The results of this comparison
are summarized in Table 4 below.

Table 4. Wilcoxon signed-rank test for original predictions and model predictions.

Median + Standard Deviation (SD)

Paired Variabl Z Val Value Cohen’s d
ared Varable Pair 1 Pair 2 Paired Difference (Pair 1 — Pair 2) alue p value Lohen's
Physician Prediction vs. ok
DIRNet Prediction 1.000 £ 0.819 1.000 +0.768 0.000 + 0.626 6.275 0.000 0.989
0 ) <0.001.

The results of the paired sample Wilcoxon test show that the median of the paired
differences is 0.000, with a standard deviation of +0.626. This indicates that the difference
between the original and model predictions is, on average, minimal. The Z value is 6.275,
and the p value is 0.000, suggesting that the difference between the original and model
predictions is statistically significant [39]. Given that the p value is far smaller than the
commonly used significance threshold of 0.05, it can be concluded that the difference be-
tween the model and original predictions is of practical significance. The Cohen’s d value
is 0.989, indicating a large effect size. This suggests that the model has a significant impact
on enhancing prediction accuracy and consistency, underlining its substantial contribu-
tion to improving prediction outcomes.
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Figure 7. t-SNE visualization of ablation experimental results on the test set. (a) Single (global), (b)
Single (local), (c) Dual (No pretrained), (d) Dual + Attention, (e) Dual* (Pretrained), (f) Dual* + At-
tention.

5.3. Comparative Experiments

To demonstrate the efficacy of the proposed method, comparative experiments were
conducted, comparing 16 advanced classification techniques across three categories.
These included the improved classical and transfer learning methods MobileNet-RVFL-
CBA [40], ResNet-ELM-CBA [41], BN-AlexNet-ELM-CBA [42], and Deep transfer ResNet
[43]. They also included the multibranch method ELNet [44], an esophageal dual-stream
network that automatically integrates dual-view complementary lesion background in-
formation, extracting global and local features. Xie et al. [45] proposed a multibranch ar-
chitecture for fundus disease classification, integrating a cross-attention module to en-
hance feature representation. The relevant code was sourced from open-source reposito-
ries and retrained on the dataset to produce classification results [46]. To maintain con-
sistency, the same hyperparameters were used during the training process in this study.

To demonstrate the effectiveness of the proposed method, comparative experiments
were conducted with State-of-the-Art classification techniques. A multimodal input clas-
sification network was utilized, and the dataset comprised global vaginal images and lo-
calized lesion images from this study.

Table 5 shows the comparison results between our method and existing advanced
methods—the proposed DLRNet network achieved the highest accuracy. Compared to
the classic classification methods mentioned, the DLRNet network emerged victorious,
achieving higher accuracy than the methods in the classic networks. Among the existing
methods that used vaginal images as the dataset, most focused on binary classification, and
their accuracy did not meet the clinical diagnostic requirements [47]. The network proposed
in this study fills the research gap regarding the classification of vaginal images, enabling a
three-class classification that is more precise and significantly enhances accuracy.

As shown in Figure 8, this study plotted the ROC curves for each category and com-
pared them with classic methods. It is clear that the proposed method achieved the best
classification performance across all categories.
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Figure 8. ROC curves for each disease, comparing classic models and the proposed method. (a) 0:
Normal, (b) 1: LSIL, (c) 2: HSIL +, (d) Mean.

Table 5. Comparison with other State-of-the-Art methods on the same dataset.

Method Accuracy  Precision Recall F1-Score
CNN [33] 0.7225 0.7223 0.7225 0.7217
VGG Net-D & Net-E [34] 0.7239 0.7264 0.7239 0.7219
Mobilenets [35] 0.7786 0.7749 0.7748 0.7706
ResNet (ILSVRC'15) [36] 0.7800 0.7867 0.7869 0.7842
DenseNet-BC [37] 0.7900 0.7914 0.7937 0.7957
GoogLeNet [38] 0.8186 0.8129 0.8193 0.8146
EfficientNet [39] 0.8329 0.8281 0.8324 0.8349
MobileNet-RVFL-CBA [40] 0.8110 0.8133 0.8013 0.8241
ResNet-ELM-CBA [41] 0.8061 0.8067 0.8091 0.8007
BN-AlexNet-ELM-CBA [42] 0.8225 0.8204 0.8213 0.8115
Deep transfer learning[43] 0.8005 0.8072 0.8008 0.8094
AlexNet + TL 0.8139 0.8227 0.8162 0.8127
ELNet [44] 0.8173 0.8145 0.8057 0.8060
Cross [45] 0.8157 0.8263 0.8197 0.8201
MedCLIP (image) 0.8219 0.8306 0.8134 0.8290
CLIP [46] 0.8328 0.8465 0.8390 0.8280
DLRNet 0.8572 0.8557 0.8513 0.8562
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The 16 models were included to compare the performance of our proposed model
with other published medical image classification methods in terms of accuracy. In the
field of medical imaging, it is essential not only to achieve superior accuracy compared to
other approaches, but also to conduct a comparison of ROC curves. Following this, 10
models were selected based on the initial data comparison results to plot ROC curves for
evaluating the models’ detection capabilities. Subsequently, eight models were chosen for
further evaluation to compare their effectiveness in localizing lesion sites [48].

Table 5 presents the metrics of our method compared with other advanced methods for
the collected dataset. The DLRNet method achieved the highest accuracy, precision, recall,
and F1 score. Additionally, to validate the feature extraction capability of the designed
method, Grad-CAM images were generated to demonstrate the proposed structure’s ad-
vantage in focusing on relevant features. The Grad-CAM visualizations, as shown in Figure
9, illustrate images of lesions under endoscopy. Compared to other methods, this frame-
work effectively focuses on the disease lesions while suppressing irrelevant areas.

(©) (d) (e) (®) (8) (h)
Figure 9. Grad-CAM visualizations comparing the proposed method with other classical methods:
(a) Endoscopic images; (b) CNN; (c) VGG Net-D & Net-E; (d) Mobilenets; (e) ResNet (ILSVRC'15);
(f) DenseNet-BC; (g) GoogLeNet; (h) EfficientNet; (i) DLRNet.

To explain why the DLRNet method outperforms other models in various metrics,
we can analyze its strengths in feature extraction, contextual information integration, and
the application of attention mechanisms.

Feature extraction: DLRNet employs a dual-branch structure that allows for simulta-
neous learning of global and local features. This capability enhances the model’s sensitiv-
ity to critical details in the images, enabling it to accurately identify complex lesions that
may be challenging for other models. The integration of original images with segmenta-
tion maps further enriches the feature set, leading to improved classification performance.

Contextual information integration: The model effectively incorporates contextual in-
formation from both global and local perspectives. By leveraging multimodal data, DLR-
Net can better understand the spatial relationships within the images, which is essential
for distinguishing between different lesion types. This comprehensive contextual analysis
enables the model to make more informed predictions.

Attention mechanisms: The attention-guidance module of DLRNet plays a pivotal role
in enhancing model performance. It directs the network’s focus toward relevant areas of the
image while suppressing noise from irrelevant features. This targeted approach not only
improves the model’s precision in identifying disease-relevant characteristics, but also helps
maintain high recall rates by ensuring that significant features are not overlooked.

These factors collectively contribute to DLRNet’s superior performance across all
evaluated metrics, establishing it as a reliable tool for vaginal image classification tasks.
The ability to effectively extract and integrate features, coupled with a robust attention
mechanism, underscores its potential for clinical application in gynecology and obstetrics.
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The DLRNet dual-branch architecture achieved superior accuracy, surpassing traditional
methods. The per-class precision highlights its ability to effectively distinguish challeng-
ing samples. Unlike traditional image classification methods, our approach effectively
captures local features and integrates global ones, enhancing the model’s ability to differ-
entiate lesion types. In contrast to multibranch methods, ELNet can extract both global
and local features. However, its performance is limited by its inability to focus on specific
lesion details, primarily due to the lack of an attention mechanism. Comparing local and
global inputs reveals that using images with mask-level local data generally enhances
classification accuracy [49], emphasizing the crucial role of the local branch [50] in distin-
guishing diseases. These results validate the superiority and robustness of our approach,
improving lesion detection in endoscopy and offering crucial assistance to physicians in
diagnosing vaginal lesions.

6. Conclusions

This study presents a dual-branch lesion-aware network utilizing the DLRNet model
for colposcopic lesion classification. The network simultaneously learns global and local
features, seamlessly integrating contextual lesion information. The attention-guidance
module focuses the network on prominent target areas, further exploring features associ-
ated with specific diseases. The dual-branch classification module integrates original im-
ages with segmentation maps from the lesion localization module, utilizing a pretrained
ResNet residual network to fine-tune parameters at different levels, exploring disease-
specific features from both global and local perspectives, and facilitating layered interac-
tions. The feature guidance module directs the local branch network to focus on vaginal-
specific features through spatial and channel attention mechanisms [51]. Ultimately, a
shared feature extraction module and independent fully connected layers achieve the rep-
resentation and fusion of features from the dual-branch inputs. The weighted fusion
method effectively integrates multiple inputs, enhancing the model’s discriminative and
generalization capabilities. Based on the data presented in Table 5, DLRNet demonstrates
superiority across four evaluation metrics, with the following specific results:

DLRNet achieves an accuracy of 0.8572, a precision of 0.8557, a recall rate of 0.8513,
and an F1 score of 0.8562. Compared to other models, DLRNet’s accuracy surpasses that
of the second-best model, EfficientNet, by 0.0243, and its precision exceeds that of the sec-
ond-ranked CLIP by 0.0092. Moreover, its recall exceeds that of the second-ranked CLIP
by 0.0123, and its F1 score is 0.0213 higher than that of the second-ranking EfficientNet.
On the whole, DLRNet's overall performance across all other metrics is superior to that of
other networks, demonstrating its effectiveness and reliability for this task. Ultimately,
this will enable precise preoperative assessment and management of patients, reduce the
incidence of surgical complications, and advance the practice of precision medicine in the
fields of gynecology and obstetrics.

There are several limitations. First, this study is based on a database from several
medical centers in Shanghai. To ensure its broad applicability in different regions and pa-
tient populations, a prospective study will be conducted to further validate the robustness
and generalization ability of the DLRNet model in diverse clinical settings. Second, colpo-
scopic images in combination with other investigations (e.g., HPV testing, histopatholog-
ical analysis, etc.) can facilitate a more comprehensive assessment of the patient’s condi-
tion. In future studies, we will consider these multimodal data in the network to improve
the accuracy and reliability of classification.
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