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Abstract: Optimization procedures provide ligament parameters by minimizing the difference
between experimental measurements and computational simulations. Literature values are used
as initial guesses of ligament parameters for these optimization procedures. However, it remains
unknown how these values affect the estimation of ligament parameters. This study evaluates the
effects of the initial guess on estimations of ligament parameters. A synthetic data set was generated
using a subject-specific knee computational model, reference ligament parameters and simulated
laxity tests. Subsequently, ligament parameters were estimated using an optimization routine and
four different initial guesses. The distance of these initial guesses from their true values ranged from
0 to 3.5 kN and from 0 to 3.6% for the stiffness and reference strains, respectively. The optimized
ligament parameters had an average absolute mean error ranging from 0.15 (0.09) kN and 0.08 (0.04)%
to 3.67 (2.46) kN and 1.25 (0.76)%, while the kinematic error remained below 1 mm and 1.2◦ for all
conditions. Our results showed that the estimations of the ligament parameters worsened as the
initial guesses moved farther away from their true values. Moreover, the optimization procedure
resulted in suboptimal ligament parameters that provided similar behavior to the true laxity behavior,
which is an alarming finding that should be further investigated.

Keywords: knee joint; laxity; optimization; ligament parameters; multibody modeling; force-dependent
kinematics

1. Introduction

Subject-specific musculoskeletal models are commonly used to estimate joint, muscle
and ligament forces, which assist in addressing orthopedic- [1,2] and injury-prevention [3,4]-
related research questions. Frequently, ligamentous structures are incorporated into such
models, as their function is important for the biomechanical behavior of the joints [5].
The needed material properties are adopted from generic/average literature-based values,
originating from mechanical tests performed on cadaveric specimens [6,7]. However, it has
been demonstrated that computational models provide closer agreement to experimental
measurements when subject-specific material properties are employed [1,2]. As such values
cannot be measured directly in a non-invasive manner, methodologies have been devel-
oped to provide estimations of ligament material properties in an indirect manner [1,2].
These procedures combine experimental measurements, computational simulations and
optimization routines [1,2]. The ligament parameters are computed using optimization
procedures that minimize the difference between computationally simulated and experi-
mentally measured joint kinematics resulting from laxity tests. A laxity test measures the
passive kinematic response of a joint under the influence of an externally applied load. Such
tests are commonly used in clinical practice to determine the integrity of ligaments [8] and
in biomechanical research to help in obtaining subject-specific ligament parameters [1,2].
Several studies have employed such methods [1,2,9–11] and they have reported different
levels of agreement between experimental and simulated behaviors due to the experimental
protocol, the complexity of the model and possibly the kind of the optimization procedure.
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Blankevoort and Huiskes [11] presented a workflow to optimize the reference strains
of the anterior and posterior cruciate ligaments (ACL, PCL) and medial and lateral collateral
ligaments (MCL, LCL). Experimental laxity measurements on anterior–posterior translation
and internal/external rotation for different knee flexion angles were used. The authors
reported better agreement between the simulations and the experimental laxity when the
optimized reference strains were used compared to the non-optimized ones. Later, Baldwin
et al. [1] used internal/external and varus/valgus laxity tests to obtain subject-specific
reference strains and stiffnesses for soft tissue structures crossing the knee joint via an
optimization procedure. Simulations with the optimized parameters demonstrated smaller
kinematic differences from the experimental values compared to using generic literature
values. The model with the optimized properties resulted in a root-mean-square error
(RMSE) of 2.6 (0.3)◦ for internal rotation and 1.4 (1.0)◦ for valgus, compared to 9.2 (4.8)◦ and
3.6 (2.7)◦ when using the literature generic values. Similar procedures were used by Ew-
ing et al. [2] to estimate soft tissue properties in knees after Total Knee Arthroplasties (TKA).
However, they reported worse kinematic agreement (RMSE of 4.3 (2.9)◦ for varus/valgus
and 3.2 (2.2)◦ for internal/external rotation) compared to previous studies, possibly due to
the fewer experimental trials employed.

These studies fitted their models to experimental data sets and computed ligament
parameters via optimization procedures. The authors used, as initial guesses of the op-
timization process, values that were adopted from tensile tests conducted on cadaveric
specimens [6,7]. Moreover, during the optimization process, the parameters were bounded
within the existing experimental literature values [1,2]. However, these literature values
were adopted from studies with small sample sizes. The study by Butler et al. [6] employed
three specimens (two females, ages ranging from 21 to 30 years old), while Trent et al. [7]
performed tensile tests on six specimens from a subset of 10 cadaveric knees with ages
ranging from 29 to 55 years old. These studies most likely do not represent the existing
population variability. Therefore, the employed initial guesses and the imposed bounds
in the optimization processes limit the procedure from finding the true ligaments param-
eters for every individual. The optimization problem of estimating ligament parameters
is a non-convex problem, possibly with many local minima, at least when models that
include multiple ligamentous structures with nonlinear behavior are employed. Thus, it
is possible that the procedure will provide a suboptimal solution, close to the provided
initial guess, that results in similar biomechanical behavior to the true behavior. Models
with inaccurate ligament parameters could lead to suboptimal designs or to misleading
conclusions about interventions. It is, therefore, important to evaluate whether the initial
guess of the optimization procedure influences the estimations of the ligament properties
and, if so, how.

Recently, a case study was presented where two different sets of knee ligament param-
eters were obtained via optimization procedures [12]. This occurred because two different
initial guesses were used: a generic set of values adopted from the literature and another
with subject-specific values for ligament stiffnesses obtained from tensile tests. The results
showed that the initial guess could affect the obtained ligament parameters. However, the
study relied on experimental measurements susceptible to uncertainties, which influence
the estimation of ligament parameters [13]. Therefore, this article, which is a revised and
expanded version of a paper entitled “Influence of the Experimental Protocol and the Opti-
mization Method on the Noninvasive Estimation of Knee Ligaments Properties”, which
was presented at the International Conference on Digital Human Modeling, Antwerp,
Belgium, in 2023 [14], aims to evaluate how the initial guess of an optimization routine
affects ligament parameter estimation using a computationally generated synthetic data
set, free of experimental inaccuracies and uncertainties. We hypothesized that the further
away the initial guess is from the reference values, the worse the estimation of the ligament
parameters will be.
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2. Materials and Methods
2.1. Experimental Data

The experimental data were obtained from a previous study [15], but are briefly
described here for completeness. A 25-year-old healthy male (height 181 cm, mass 72 kg)
was subjected to magnetic resonance imaging (MRI) scans. His right lower limb was
scanned from pelvis to foot using a T1-LAVA-Flex coronal plane scanning sequence with
1.6 mm slice thickness on a 1.5 T OptimaTM MR450w—70 cm scanner (General Electric
Healthcare, Chicago, IL, USA). Three overlapping scans were obtained to cover the full
limb, and General Electric software was used to stitch them together. The first scan started
at the top of the pelvis, the second targeted the knee joint and the third ended containing
the lower end of the calcaneus bone. A detailed MRI scanning sequence, following the
OAI knee protocol [16], was performed on the knee joint complex to obtain the geometry
of the articular cartilages. The procedures were approved by the North Denmark Region
Committee on Health Research Ethics (N-20180077).

The femur, tibia and fibula bones were manually segmented using the full limb scans,
while the articular cartilages were segmented from the detailed knee scans. The digitalized
representations of the bones and their cartilages were exported as stereolithography (STL)
surfaces. Mimics Research 19.0 (Materialise NV, Leuven Belgium) software was used for
all segmentations.

The locations of the ACL, PCL, MCL and LCL insertion sites were identified on the
segmented bones using the MRI scans. Moreover, the following anatomical landmarks
were identified on the segmented bones: the center of the femoral head, medial and lateral
femoral epicondyles, and medial and lateral malleoli. The ankle center was defined as the
midpoint of the medial and lateral malleoli.

2.2. Computational Model

A computational model of the tibiofemoral joint was developed in the AnyBody
Modeling System (AMS) v. 7.4 (AnyBody Technology A/S, Aalborg, Denmark). The joint
included the tibial segment, the femoral segment and their articular cartilages (Figure 1).
The ACL, PCL, MCL and LCL were implemented into the model as single line elements that
connected their respective insertion sites. An anatomical coordinate system was defined
for each segment (Figure 1) using the selected anatomical landmarks, following the work
by Grood and Sunday [17].

The femoral segment was fixed in space while the tibial segment was constrained with
respect to the femur at a predefined flexion angle. The remaining five degrees of freedom
(DOF) (3 translations, internal/external and varus/valgus rotations) were modeled as
Force-dependent Kinematics (FDK) DOF [18]. This enabled the computation of movements
using the equilibrium among the contact forces generated between the articular surfaces,
the forces generated by the ligaments and the externally applied loads.

Two rigid-to-rigid STL-based contact models, representing the lateral and the me-
dial sides of the tibiofemoral joint, were defined to simulate the interaction between the
articular surfaces in terms of contact forces. These contact forces were computed as the
sum of the forces Fi exerted by each vertex i that was in contact with a triangle of the
opponent contact STL surface. The force of each vertex in contact was computed using the
following relationship:

Fi = P Vi (1)

where P is a pressure modulus equal to 10 GN/m3. This nonphysical quantity has been
used before for similar models [13,19] and it ensures that the penetration into the contact
surfaces remains in the same order of magnitude as the kinematic tolerance. Vi is the
penetration volume of the i-th vertex approximated by the equation

Vi = Ai di (2)
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where di is the penetration depth of a the i-th vertex into the closest triangle of the opponent
STL surface, and Ai is the area of the opponent triangle.

A nonlinear force–strain relationship was used to describe the force (f ) exerted by each
ligament [11]:

f (ε) =


k(ε − ε1), ε > 2ε1
kε2

4ε1
, 0 ≤ ε ≤ 2ε1

0, ε < 0
(3)

where k is the ligament stiffness, and ε1 (=0.03) is a constant related to the transition toward
the linear region of the f-ε curve. Each ligament reference length lr was defined from
its insertion and origin sites in the MRI scans. The slack length l0 of the ligaments was
computed from the equation

l0 =
lr

εr + 1
(4)

where εr is the reference strain. The ligament strain ε was computed using the ligament
length l:

ε =
l − l0

l0
(5)
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Figure 1. The tibiofemoral computational model. The implemented ligaments are represented by red
lines. The articular cartilage is represented by blue color. The anatomical reference systems of the
femur and the tibia are represented by yellow and green colors, respectively.

2.3. Model Evaluation

An evaluation of the model was performed to verify that the laxity behavior of our
computational model remains within the physiological range. This was achieved by
simulating laxity tests with loading conditions similar to those in previously reported
experimental tests [20–24]. The computational model with ligament parameters adopted
from the literature [25] (Table 1; reference values) was placed at 0, 20, 30 and 60◦ knee
flexion angles, and the following loads were applied on the tibial segment: (i) 134 N of
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anterior force, (ii) 100 N posterior force, (iii) 5 Nm of internal and external rotation moment,
(iv) 10 Nm of varus moment and (v) 8 Nm of valgus moment. The kinematic response of
our model to these loads was compared against the respective literature values [20–24].

Table 1. The initial guess (IG) of the stiffness (k) in kN and reference strain (εr) [%] of the ligaments
used for each set and their mean distance from the reference values.

Sets
ACL PCL LCL MCL Mean Distance from

Reference Values

k εr k εr k εr k εr k εr

Reference values 10.0 8.0 18.0 −4.0 6.0 2.0 8.3 4.0
IG 1 10.0 8.0 18.0 −4.0 6.0 2.0 8.3 4.0 0.0 0.0
IG 2 9.5 7.5 17.5 −3.5 6.5 2.5 8.0 4.5 0.5 0.5
IG 3 9.0 7.0 17.0 −3.0 7.0 4.0 7.0 5.0 1.1 1.3
IG 4 8.0 4.0 8.0 4.0 8.0 4.0 8.0 4.0 3.6 3.5

2.4. Generation of Synthetic Data/Reference Simulations

Reference simulations were conducted with the computational model using the liga-
ment parameters displayed in Table 1 (the reference values were used). An experimental
protocol similar to the one employed by Baldwin et al. [1] was used. The trials of the
synthetic data set consisted of varus/valgus (VV) and internal/external rotation (IE) laxity
tests, simulated by applying pure moments on the tibial segment. These moments varied
in magnitude from −10 Nm to 10 Nm in steps of 2 Nm. The procedure was repeated for
three knee flexion angles: 0◦, 30◦ and 60◦. The resulting knee translations and rotations
were computed according to Grood and Sunday [17].

The geometrical representations of the bones, their articular surfaces and ligaments
combined with the loading scenarios, and the resulting knee kinematics comprised our
synthetic data set.

2.5. Optimization of Ligament Properties

An optimization procedure enabled the computation of the ligament parameters using
the reference laxity tests as the target biomechanical behavior and a different set of ligament
parameters as the initial guesses each time. The initial guesses were gradually moved
farther away from the reference ligament parameters used to provide the synthetic data
(Table 1). These variations in the initial guesses were used to provide an evaluation of the
influence of the initial guess on the estimation of the ligament parameters.

For each of the initial guesses, the optimization procedure provided a vector d = [ki, εri]
for i = 1, . . ., 4, where ki, εri represents the stiffness and reference strain of the i-th liga-
ment included in the model that minimized the difference between the simulated laxity
kinematics and the reference kinematics in a least-square sense:

min 1
2

d

n
∑

j=1

6
∑

q=1

(
Qsim

q − Qre f
q

)2

j

subjected to max
(

FFDK
j

)
< 0.001

ki ≥ 0, i = 1, . . . , 4

(6)

where Qsim
q and Qre f

q are the simulated and the reference q-th generalized coordinate of
the knee joint, representing the three knee joint translations in mm and the three knee
joint rotations in ◦. The number of laxity tests n is 63. FFDK

j is the FDK residual force and
moment for the j-th laxity trial.

The Complex optimization method [26] was selected to solve the problem described
in Equation (6). The Complex optimization is a direct method and, although it is more com-
putationally expensive compared to gradient-based methods, is efficient and convenient
in optimizing problems with nonlinear objective functions. The method is based on the
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Simplex method [27], but it uses more points than the Simplex during the search process,
which contributes towards converging to better local minima, thus avoiding premature
termination. This method has been successfully used for many applications, such as cali-
brating macroscopic traffic flow models [28], solving the iterative closest point problem [29]
and astronomical image-fitting [30]. The algorithm was implemented into the optimization
process as described in [13]. For each optimization process, a population of 20 candidate
solutions was randomly generated around the initial guess of the ligament parameters in
intervals of ±2 kN and ±3% of the given initial guess for the stiffness and the reference
strain, respectively. This procedure was selected to reduce the risk of the algorithm being
trapped in nearby suboptimal local minima. A value equal to 0.9 was selected for the
reflection factor, as preliminary simulations showed faster convergence compared to using
values higher than 1. If the candidate solution with the worst objective value remained
the same after four attempts, the candidate solution was replaced by a new random one
and the algorithm was reset. Different initial guesses were adopted to simulate the real-life
experimental challenge where the true ligament properties values are not known a priori.
Table 1 summarizes the different initial guesses that were used for the ligament parameters.
All trials were solved in AMS using the FDK solver in a single step. The AnyPyTools
library [31] was used to enable parallel processing of the trials.

The differences between the optimized and the reference ligament parameters were
calculated. Subsequently, the effect of the initial guess on the optimization process was
quantified by evaluating the averaged stiffness differences and the averaged reference
strain differences over all ligaments for each initial guess. Furthermore, the RMSE between
the reference kinematics and the kinematics obtained from the optimized ligament values
was calculated.

3. Results

The comparison between the simulations with our model and experimental measure-
ments from the literature [20,32] showed that the laxity profile of our model (Figure 2) was
within the range of previously reported physiological values (Table 2).
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Figure 2. The laxity profile of the synthetic data generated using the computational model and the
reference ligament parameter.

The error of the estimated ligament parameters increased as the initial guess moved
farther away from the reference values. The mean stiffness and reference strain error of the
ligaments increased from 0.15 (0.09) kN and 0.08 (0.04) [%] for the reference parameters
as the initial guess to 3.67 (2.46) kN and 1.25 (0.76) [%] for the initial guess that was the
farthest away from the reference values (Table 3). Figure 3 summarizes the estimations of
the ligament properties for the different initial guesses.
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Table 2. Experimental laxity measurements from the literature and simulated laxity values with our
model for different loading scenarios.

Load Scenario (Study) Magnitude Knee Flexion
Experimental

Model
Mean sd

Anterior force (Senioris 2017 [24]) 134 N 30 5.6 3.1 5.7
Posterior force (Nau 2005 [22]) 100 N 30 6.1 2.5 9.4

Internal moment (Liu 2014 [21]) 5 Nm 30 21.0 2.8 23.0
Internal moment (Liu 2014 [21]) 5 Nm 60 20.8 4.6 25.0

External moment (Shultz 2010 [20]) 5 Nm 20 12.4 3.6 10.4
External moment (Liu (2014 [21]) 5 Nm 30 17.7 2.7 7.0
External moment (Liu 2014 [21]) 5 Nm 60 18.7 4.2 10.0

Varus moment (Liu 2014 [21]) 10 Nm 0 2.5 1.1 1.9
Varus moment (Liu 2014 [21]) 10 Nm 30 5.4 1.7 5.4
Varus moment (Liu 2014 [21]) 10 Nm 60 6.3 1.6 7.0

Valgus moment (Wierer 2021 [23]) 8 Nm 0 2.1 0.4 −0.2
Valgus moment (Wierer 2021 [23]) 8 Nm 30 3.7 0.9 1.3
Valgus moment (Wierer 2021 [23]) 8 Nm 60 4.4 1.2 2.4

Small kinematic RMSEs were observed for all initial guesses. The translation error
was smaller than 1 mm for all knee flexion angles, while both internal/external and
varus/valgus errors were smaller than 1.2◦ for all knee flexion angles (Table 4). Furthermore,
smaller kinematic RMSEs were found in this computational study for all initial guesses
compared to previous experimental results [1,2,9]. Table 5 presents the kinematic RMSEs of
previous cadaver studies and initial guess 4 from this study, which demonstrated the worst
estimation for the ligament parameters.

Table 3. The mean error and standard deviation (sd) for the estimation of the stiffness (k) and
reference strain (εr) parameters of the ligaments for each initial guess (IG).

Initial Guess
k (kN) εr [%]

Mean sd Mean sd

IG 1 0.15 0.09 0.08 0.04
IG 2 0.48 0.23 0.35 0.19
IG 3 1.05 0.67 1.16 0.90
IG 4 3.67 2.46 1.25 0.76
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Table 4. The absolute kinematic error for the different sets of IGs and knee flexion angles.

Measurement Anterior Translation (mm) Internal Rotation (◦) Varus Rotation (◦)

Knee Flexion 0 30 60 0 30 60 0 30 90

Set 1 0.0 0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0
Set 2 0.2 0.4 0.3 0.2 0.1 0.1 0.0 0.0 0.1
Set 3 1.0 0.8 0.7 0.6 1.0 1.1 0.5 0.4 0.2
Set 4 1.0 0.7 0.5 0.9 1.0 0.4 0.6 0.5 0.5

Table 5. Kinematic differences between the simulated and experimental results for initial guess 4 and
previously presented studies. Baldwin a refers to internal rotation and varus, while Baldwin b refers
to external rotation and valgus.

Study (Knee Flexion)
Internal Rotation (◦) Varus Rotation (◦) Anterior Translation (mm)

Mean sd Mean sd mean sd

Baldwin et al. [1] a 2.6 0.3 0.6 0.4
Baldwin et al. [1] b 2.2 0.9 1.4 1.0
Ewing et al. [2] 0◦ 3.2 2.2 1.7 1.3
Ewing et al. [2] 20◦ 4.0 2.7
Ewing et al. [2] 90◦ 4.3 2.9
Harris et al. [8] 0◦ 4.9 0.7 1.2 0.4 2.0 1.2

Harris et al. [8] 15◦ 5.8 1.9 1.8 0.5 2.2 1.0
Harris et al. [8] 30◦ 3.5 1.1 1.5 0.5 1.5 0.7
Harris et al. [8] 45◦ 2.1 0.7 1.2 0.6 1.4 0.6
Harris et al. [8] 60◦ 4.1 1.4 1.7 1.2 1.8 0.8

IG 4. 0◦ 0.9 0.6 1.0
IG 4. 30◦ 0.7 0.5 0.7
IG 4. 60◦ 0.4 0.5 0.5

Similar loading patterns were observed for the optimized values obtained from initial
guesses 1 and 3 and the synthetic data (Figure 4). The MCL force–strain curve for the opti-
mized parameters using initial guess 2 was different compared to that using the reference
parameters. Moreover, all force–strain curves were different for the optimized values with
initial guess 4 and the synthetic data (Figure 4). These differences are highlighted by the
ligament forces computed with models using the optimized parameters obtained with
initial guesses 1 and 4 for the laxity tests included in the protocol (Tables 6 and 7).
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Figure 4. Ligament force–strain curves for the anterior cruciate (ACL), posterior cruciate (PCL), me-
dial collateral (MCL) and lateral collateral (LCL) ligaments. The curves using the reference ligament
parameters (synthetic data) and the optimized values for the different initial guesses (IG) are presented.
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Table 6. The maximum differences between the ligament forces computed with models using the
synthetic data and the optimized parameters obtained with initial guess 4. The ligament forces for
the anterior (ACL), posterior cruciate (PCL), medial (MCL) and lateral collateral (LCL) ligaments are
presented per knee flexion angle.

Knee Flexion
(◦)

ACL Force (N) PCL Force (N) MCL Force (N) LCL Force (N)

IG 1 IG 4 IG 1 IG 4 IG 1 IG 4 IG 1 IG 4

0 278 238 32 20 155 242 384 400
30 237 183 63 40 160 244 293 262
60 409 350 263 201 141 228 191 166

Table 7. The maximum differences between the ligament forces computed with models using the
synthetic data and the optimized parameters obtained with initial guess 4. The ligament forces for
the anterior (ACL), posterior cruciate (PCL), medial (MCL) and lateral collateral (LCL) ligaments are
presented per loading scenario.

Load Scenario
ACL Force (N) PCL Force (N) MCL Force (N) LCL Force (N)

IG 1 IG 4 IG 1 IG 4 IG 1 IG 4 IG 1 IG 4

Anterior force 373 322 65 40 95 176 63 55
Posterior force 153 142 212 241 99 182 42 29
Varus moment 271 247 124 165 88 161 85 93
Valgus moment 126 93 151 124 127 210 91 85

ER moment 237 183 263 201 114 193 67 70
IR moment 409 350 53 88 141 228 293 262

4. Discussion

The presented study investigated the influence of the initial guess on the estimation
of ligament parameters via optimization procedures which aim to match simulations to
kinematic data from laxity tests. We generated a synthetic data set using a computational
model and literature values for the ligament parameters. Our synthetic data set was free
of measurement errors and inaccuracies, and thus, we were able to investigate how the
initial guess affects the computation of ligament properties unaffected by experimental
errors. As expected, it was demonstrated that the initial guess influences the computation
of ligament properties.

The laxity behavior of our model was within the physiological ranges reported in the
literature (Table 2). The kinematic response of our model to simulated anterior and posterior
drawer tests matched the respective experimental measurements [22,24]. Our simulations
showed good agreement with measurements provided by Liu et al. [21] for internal and
varus moments, but not for external moments. The loading scenarios that included external
moments underestimated Liu et al.’s [21] measurements, but were in agreement with the
kinematic measurements presented by Shultz and al. [20]. The valgus simulations showed
a similar trend compared to the measurements reported by Wierer et al. [23]. Overall,
these comparisons demonstrate that our model simulates the laxity profile of a random
healthy individual.

The computations of the ligament parameters showed that the accurate prediction of
ligament parameters is possible when an initial guess close to the true ligament parameters
is provided. This was shown for initial guesses 1, 2 and 3, which had up to 1.1 kN and a
1.3% mean distance from the reference stiffness and reference strain, respectively. It should
be noted, though, that only three initial guesses are not enough to define the problem’s
basin of attraction. A study with many more variations in the initial guess is needed to
generalize this observation and identify how close an initial guess should be to the true
ligament parameters to ensure their accurate estimation. However, the reported accurate
estimation of the parameters remains an encouraging finding as it supports the use of the
presented procedures for the estimation of ligament parameters. This has great clinical
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significance as, when combined with experimental procedures, it enables the estimation of
ligament parameters in an in vivo and noninvasive manner.

Our hypothesis for worse estimations of the ligament parameters when the distance
of the initial guess from the reference values increased was supported. This most probably
occurred due to the nature of this optimization problem that has many local minima. It
was shown that the optimization process, at least when using the Complex optimization
method, might provide a suboptimal solution with a set of ligament parameters that
produces biomechanical behavior close to the target behavior. The Complex optimization
was selected, as the preliminary results [14] showed better performance compared to the
simulated annealing, which is commonly adopted [1,2,9] for such procedures. Future
studies should investigate whether other optimizers, such as the genetic algorithm or
particle swarm, could overcome this challenge.

Simulations performed with the optimized parameters obtained with initial guess 4 demon-
strated that a set of ligament parameters different from the true ones can provide a similar
laxity profile with translation differences of less than 1 mm and rotational differences
of less than 1◦ compared to the reference kinematics. However, the optimized ligament
parameters using initial guess 4 were, on average, 3.67 (2.46) kN for the stiffnesses and
1.25 (0.76) [%] for the reference strains, different compared to the respective true values.
These differences in the parameters led to different loading patterns for the ligaments
(Tables 6 and 7). The observed differences in the ligament loading patterns are supported
by previous studies, demonstrating that computational models are sensitive to changes
in ligament parameters [33,34]. Future studies should investigate whether such differ-
ences in ligament loading could lead to altered conclusions about the design and/or the
performance of clinical interventions such as braces, implants and surgical planning.

The present computational study demonstrated how challenging it is to compute
ligament parameters accurately, even with no experimental uncertainties. In experimental
set ups, such uncertainties might be introduced during the identification of application
points, directions and magnitudes of forces, or application axes of moments and during the
kinematic measurements. Moreover, inaccuracies might occur in the digitalization of the
bones and the identification of the locations of the ligament insertions sites. Such uncer-
tainties and inaccuracies can affect the predictions of the ligament parameters [13]. Even
though we observed smaller kinematic errors in our study compared to studies where opti-
mization procedures were employed combined with experimental measurements (Table 4),
we obtained a set of ligament parameters that resulted in similar laxity behavior to the
true behavior. This indicates that the previously predicted ligament values [1,2] could
be different from the true values. Researchers have raised concerns that different combi-
nations of ligament properties could provide similar target biomechanical behavior [1,2].
This was recently demonstrated in an experimental case study [12]. The findings of this
computational study free of experimental inaccuracies confirms this concern, which should
be further investigated.

This study has some limitations that should be mentioned. Firstly, this study was
conducted on only one specimen using the four main knee ligaments, neglecting other
structures such as capsular tissues and menisci. Furthermore, the implemented ligaments
were simulated as single line elements without wrapping around bones, as it is physiologi-
cally. The single-element representation for each ligament neglects the different behavior
the bundles of the same ligamentous structures have under knee joint motions [35]. There-
fore, ligaments are often simulated as multiple linear elements or even as 3D continuum
representations [10]. Furthermore, as the aim of our study was to compute joint laxity,
the contact of the articular surfaces was modeled with a so-called rigid-to-rigid contact
model, with the cartilage being modeled as a rather stiff material. To simulate accurate car-
tilage deformations, different approaches are needed, such as finite element analysis. Our
computationally inexpensive choices kept the number of design variables to a minimum.
This allowed us to explore different scenarios, which were sufficient to demonstrate the
challenges of estimating ligament properties via optimization procedures.
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5. Conclusions

The presented computational study showed that accurate ligament properties can be
obtained when accurate laxity measurements and initial guesses close to the true values
are provided. However, simulations with many more initial guesses are needed to define
the problem’s basin of attraction. Additionally, the optimization procedure might result
in suboptimal solutions with combinations of ligament parameters that provide behavior
similar to the target biomechanical behavior. This is an alarming finding, and future
research should aim to provide methodological procedures to overcome this challenge by
exploring different optimization procedures.
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