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Abstract: We assessed the feasibility of using deep learning-based image harmonization to improve
the reproducibility of radiomics features in abdominal CT scans. In CT imaging, harmonization
adjusts images from different institutions to ensure consistency despite variations in scanners and
acquisition protocols. This process is essential because such differences can lead to variability in
radiomics features, affecting reproducibility and accuracy. Harmonizing images minimizes these
inconsistencies, supporting more reliable and clinically applicable results across diverse settings. A
pre-trained harmonization algorithm was applied to 63 dual-energy abdominal CT images, which
were reconstructed into four different types, and 10 regions of interest (ROIs) were analyzed. From
the original 455 radiomics features per ROI, 387 were used after excluding redundant features.
Reproducibility was measured using the intraclass correlation coefficient (ICC), with a threshold
of ICC ≥ 0.85 indicating acceptable reproducibility. The region-based analysis revealed significant
improvements in reproducibility post-harmonization, especially in vessel features, which increased
from 14% to 69%. Other regions, including the spleen, kidney, muscle, and liver parenchyma,
also saw notable improvements, although air reproducibility slightly decreased from 95% to 94%,
impacting only a few features. In patient-based analysis, reproducible features increased from 18%
to 65%, with an average of 179 additional reproducible features per patient after harmonization.
These results demonstrate that deep learning-based harmonization can significantly enhance the
reproducibility of radiomics features in abdominal CT, offering promising potential for advancing
radiomics development and its clinical applications.

Keywords: radiomics; CT acquisition; artificial intelligence; reproducibility; quality control

1. Introduction

Radiomics provides a quantitative approach to image analysis. By extracting numer-
ous quantitative features from medical images and studying their correlations with clinical
or genetic features, radiomics holds promise for diagnosis, stratification, and prognostic
prediction [1–3]. However, the low reproducibility of radiomics features is a significant
obstacle to the application of radiomics in real-world clinical settings. Variability in image
acquisition, preprocessing, and feature extraction can introduce substantial variability in
radiomics features, leading to unreliable results and reduced clinical utility [4].
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The reproducibility of radiomics is affected by each step of the radiomics model build-
ing process, including image acquisition, preprocessing, and feature extraction. Minor
variations in image acquisition parameters, such as slice thickness and reconstruction
kernel, can significantly affect the extracted features [5]. Additionally, differences in pre-
processing steps further contribute to variability [6,7]. As radiomics requires a substantial
number of images to construct models, obtaining a large number of homogeneous images
from a single institution is often impractical. Therefore, inhomogeneous images from
different machines, vendors, and institutions are commonly used for model development.
However, this introduces various confounding factors that affect the stability of radiomic
features, including vendor and machine types, acquisition parameters, and reconstruction
methods [4,8–12]. To address this issue, the standardization of medical images is essential
for stabilizing radiomics features.

To overcome the challenge of low reproducibility, efforts have been made to standard-
ize radiomics protocols across different institutions and imaging systems. A promising
approach is the use of artificial intelligence (AI) to standardize images through deep
learning-based image transformation. AI potentially identifies and corrects sources of
variability, leading to more accurate and reliable radiomics analysis. One of the most no-
table deep learning algorithms in medical imaging is the generative adversarial networks
(GANs). GANs can generate synthetic images or convert low-resolution images into high-
resolution images. A previous report introduced a deep learning-based image conversion
model that significantly improved the reproducibility of radiomics features in CT scans
using body phantoms [13]. The developed algorithm demonstrated an 83.3% improvement
in the concordance correlation coefficient (CCC) for synthetic images compared with the
original images. However, to deploy image conversion algorithms in clinical practice, it is
essential to develop and validate an algorithm using real human data.

In this study, we aimed to develop and evaluate the effectiveness of a deep learning-
based CT image harmonization algorithm for improving the reproducibility of radiomics
features in abdominal CT. Specifically, we sought to compare multiple reconstruction
protocols derived from the same CT scan and to harmonize images from these varying
protocols into a single target protocol using our deep learning model.

2. Materials and Methods

This retrospective study was approved by the Institutional Review Board of Seoul
National University Hospital, and the need for informed consent was waived (IRB No.
2108-139-1246).

2.1. Study Design

This study retrospectively evaluated a deep learning-based harmonization algorithm
for enhancing the reproducibility of radiomics features in abdominal CT scans. Data were
collected from patients who underwent dual-energy CT (DECT) scans, with 117 patients
(142 scans) used for training and internal validation and 63 scans from an independent
cohort for external validation. Multiple reconstruction protocols, including filtered back
projection (FBP), iterative reconstruction (IR), and virtual monoenergetic imaging at various
energy levels, were used. A hierarchical feature synthesis-based generator network with
pixel unshuffling and sequential spatial-channel attention was employed, paired with a
U-Net-style discriminator for CT image harmonization. Radiomics analysis focused on
455 features extracted from ten manually segmented regions of interest (ROIs) across organs.
Reproducibility was assessed via intraclass correlation coefficients (ICCs) using region-
and patient-based analyses, with features showing high redundancy excluded from the
final analysis.

2.2. Study Population

We retrospectively collected data from patients who underwent abdominal CT. Only
CT images acquired using dual-energy (DE) scans were included in the training and internal
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validation sets. We excluded CT images with severely degraded image quality. Finally,
for the training and internal validation sets, we collected data from 117 patients who
underwent 142 contrast-enhanced abdominal CT examinations at a single tertiary hospital
between March 2021 and July 2021 (Table 1). The training and validation sets used in this
study are the same as those used in a previous study [14]. For the external validation set,
we separately collected 63 contrast-enhanced abdominal CT examinations (in 63 patients)
using different CT machines at the same tertiary center between August 2021 and May 2022
(Table 1).

Table 1. Characteristics of the datasets.

Dataset Training and Internal Validation Set (N = 117) External Validation (N = 63)

M:F 57:60 38:25
Age (mean ± standard deviation, range) 8.7 ± 5.5 years (2 months–19 years) 12.8 ± 6.8 (2–39 years)

Underlying disease
Abdominal pain (n = 15, 12.8%)

Tumor follow-up (n = 69, 59.0%),
others (n = 33, 28.2%)

Abdominal pain (n = 30, 47.6%)
Tumor follow-up (n = 69, 33.3%),

others (n = 12, 19.0%)

Abbreviations: M, male; F, female.

2.3. Image Acquisition and Reconstruction

The training and internal validation sets were scanned using Somatom Force (Siemens
Medical Systems, Erlangen, Germany) with a DE scan. The DECT images of each patient
were reconstructed as follows: filtered back projection (FBP), iterative reconstruction (IR)
with a strength of 3, virtual monoenergetic images with 40 keV (M40), 60 keV, 80 keV, and
optimum contrast. CT images were acquired using Somatom Definition Flash (Siemens
Medical Systems, Erlangen, Germany). The DECT images in the external validation set were
reconstructed using FBP, IR, M40 and 70 keV. The detailed CT parameters are summarized
in Table 2.

Table 2. Detailed CT acquisition parameters of the datasets.

Dataset Training and Internal
Validation (N = 142 Exams)

External Validation
(N = 63 Exams)

Vendor Siemens Siemens
Machine Somatom Force Somatom Definition Flash

Acquisition type Helical, dual energy Helical, dual energy
Tube voltage 70 kVp and Sn150 kVp 80 kV and Sn140 kV

Reference tube current 370 mAs for the 70 kVp tube
93 mAs for the Sn150 kVp tube

270 mAs for the 80 kVp tube
104 mAs for the Sn140 kVp

tube
Field of view (mm) 152–355 250–350

Slice thickness 3 mm 3 mm
Pixel 512 × 512 512 × 512

Rotation time (s) 0.25 0.28
Pitch 1.2 1.2

Reconstruction methods FBP, IR, M40, M60, M80, OPT † FBP, IR, M40, M70 †

Scan timing Portal phase Portal phase
† FBP, filtered back projection; IR, iterative reconstruction; M40/60/80, virtual monoenergetic images at
40/60/80 keV; M40/70, virtual monoenergetic images at 40/70 keV.

2.4. Deep Learning Architecture

Deep learning architectures for the GANs were developed based on the findings of pre-
vious studies [13,14]. A previous study introduced a Hierarchical Feature Synthesis (HFS)
module-based generator network architecture to improve the reproducibility of radiomics
features in abdominal phantom CT images [13]. We advanced the HFS module-based
generator network by substituting two-dimensional spatial average pooling with pixel un-
shuffling to preserve spatial information [14,15]. Pixel unshuffle enables models to handle
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images with lower resolution while maintaining essential spatial information, enhancing
performance in detailed image reconstruction tasks. Furthermore, we used a U-Net-style
discriminator to provide a more sophisticated image translation for CT standardization [16].
The U-Net architecture discriminator network provides pixel-wise feedback. Thus, it is
remarkable at detecting spatial and textural anomalies. Additionally, we demonstrated
that the sequential application of spatial and channel attention layers improved image
translation performance more than the parallel application of spatial and channel attention
layers [17]. We retained the generator architecture by applying sequential spatial and
channel attention to the HFS module, and the U-Net-style discriminator structure was used.
In this study, the input data consist of CT images reconstructed using various methods,
with the ground truth image for harmonization being an IR image with strength level
3. Detailed information of the deep learning architecture and experimental methods is
provided in the Supplementary Materials (Figures S1 and S2).

2.5. Radiomics Analysis

One radiologist (S.B.L., 8 years of experience in image interpretation) drew 10 regions
of interest (ROIs) to evaluate the reproducibility of radiomics features (Figure 1): the
liver parenchyma (two ROIs in the portal phase), spleen (two ROIs), bilateral kidneys
(two ROIs), paraspinal muscles (two ROIs), vessels (one ROI) and air regions (one ROI).
The Pyradiomics library version 2.2.0 was used to extract radiomics features from each ROI
of the original and synthetic images [18].
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Figure 1. Representative examples of regions of interest (ROIs, red circle) for evaluating the repro-
ducibility of radiomics features. (A) Liver parenchyma, (B) spleen, (C) vessels (aorta), (D) bilateral
kidneys, (E) paraspinal muscles, and (F) air. The typical ROI sizes are 120 mm2 for vessels and
240 mm2 for other regions, with adjustments to 50 mm2 and 100 mm2 in some instances depending
on body size.

The core radiomics feature set comprised 91 features with six different matrices:
(1) 18 first-order statistical features, (2) 22 texture features derived from the co-occurrence
matrix, (3) 16 features based on the gray-level run length matrix (glrlm), (4) 16 features
based on the gray-level size zone matrix (glszm), (5) 14 features based on the gray-level
dependence matrix, and (6) 5 features based on the neighboring gray-tone difference matrix.
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The core radiomics features were extracted based on Hounsfield unit intensity images,
and additional radiomics features were derived by further processing the images with
four different wavelet filters. Therefore, we extracted 455 radiomics features consisting of
30 feature groups.

2.6. Redundancy Feature Exclusion

Several radiomics features are redundant [8]. Therefore, we identified and excluded
redundant features from our analyses. We defined a redundant feature group if more than
half of the features in a class exhibited an intraclass correlation coefficient (ICC) ≥ 0.85
across all protocol types in the training dataset. The high ICC across all protocols im-
plies that these features fail to capture differences between protocols. These groups were
subsequently excluded from analysis if they were present in over half of the patients
within our external validation set. Consequently, the following four feature groups were
excluded: “original_firstorder”, “wavelet-low-low (LL)_firstorder”, “wavelet-LL_glrlm”,
and “wavelet-LL_glszm”. In total, 387 features were retained for analysis.

2.7. Statistical Analyses

In our study, “reproducibility” refers to the consistency of radiomic features measured
across different imaging protocols, with protocols serving as the raters. We aimed to
examine this reproducibility both across patients (per-ROI) and within each patient (per-
Patient) to capture variability due to protocol differences, rather than observer variability
or repeated measurements by the same observer.

ICCs were used to evaluate the reproducibility of radiomics features. The reproducibil-
ity was evaluated using two distinct methodologies: region- and patient-based. Radiomics
features with an ICC of ≥0.85 were considered reproducible, and their percentage was
calculated [9,19]. In the region-based method, reproducibility was assessed for each organ.
When two ROIs from the same organ were analyzed, the number of features exhibiting an
ICC ≥ 0.85 in both ROIs was recorded. In the patient-based method, the ICC was computed
independently, without considering ROIs from the same organ.

All statistical analyses were performed using the Python package (pingouin 0.5.2;
Python Software Foundation). A p value < 0.05 was considered statistically significant. To
visually demonstrate the effect of harmonization, we constructed a standard deviation map.

3. Results
3.1. Region-Based Reproducibility Analysis

The reproducibility of the radiomics features in each ROI before and after image
harmonization is summarized in Table 3. In internal validation, image harmonization
significantly increased reproducibility for radiomics features, with an ICC ≥ 0.85 across all
ROIs, except for air. Notably, the vessel features exhibited the most substantial increase
in reproducibility, increasing by 41% from 36% before harmonization to 77% thereafter.
Although the liver parenchyma demonstrated the lowest increase among the tissues ex-
amined, it still showed significant improvement, with reproducibility increasing from 24%
before harmonization to 57% after a 33% increase. Additionally, enhanced reproducibility
was observed in the spleen (21% to 60%), kidney (22% to 63%), and muscle (42% to 68%).
By contrast, the reproducibility in air slightly decreased, from 94% to 89%.

External validation yielded similar results, with the highest reproducibility observed
for the vessel features, improving from 14% to 69%. Increases were also noted in the spleen
(18% to 62%), kidney (15% to 63%), and muscle (24% to 55%). The liver parenchyma also
showed enhanced reproducibility, increasing from 19% to 51%. Although the reproducibil-
ity for air slightly decreased from 95% to 94%, the actual decrease in the number of features
was minimal, from 369 to 365, indicating a negligible difference, and the reproducibility
was higher than that in the internal validation.
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Table 3. Feature harmonization results in internal and external validations.

Internal Validation

Region of
Interest

Liver
Parenchyma Spleen Vessel Kidney Muscle Air

Original 92 (24%) 80 (21%) 139 (36%) 84 (22%) 163 (42%) 365 (94%)
Synthetic 222 (57%) 233 (60%) 298 (77%) 245 (63%) 264 (68%) 343 (89%)

Increase (%) 33% 39% 41% 41% 26% −5%

External Validation

Original 75 (19%) 68 (18%) 55 (14%) 59 (15%) 92 (24%) 369 (95%)
Synthetic 199 (51%) 239 (62%) 266 (69%) 244 (63%) 212 (55%) 365 (94%)

Increase (%) 32% 44% 55% 48% 31% −1%

3.2. Patient-Based Reproducibility Analysis

For the external validation cohort, we drew the same 10 ROIs (two liver parenchyma,
two spleen, two vessels, two kidneys, two muscles, and two air regions) for all 63 pa-
tients and extracted 387 radiomics features from each. We evaluated the reproducibility
of these radiomics features before and after applying deep learning-based harmoniza-
tion in the external validation cohort. An average of 71 ± 19 (18%) radiomics features
were reproducible (ICC ≥ 0.85) before harmonization. After harmonization, an average
of 250 ± 61 (65%) radiomics features was found to be reproducible. We experimentally
found that harmonization resulted in an average of 179 additional radiomics features per
patient that were reproducible. Figure 2 shows the ICC values for each patient before and
after image harmonization as a heatmap.
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Figure 2. Intraclass correlation coefficient (ICC) heatmaps for all radiomics features in the original
and synthetic images. The heatmaps display the ICC values of the 387 radiomics features averaged
across two identical regions of interest. This visual representation indicates how the ICC values
change before and after harmonization. Higher ICC values are depicted as brighter.
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3.3. Standard Deviation Map

Figure 3 shows representative cases of abdominal CT before and after harmonization
in the external validation set. Each image is displayed with a window width of 300 and
a level of 40 to ensure consistent visualization across the comparison. In the external
validation, all the voxels in the four protocols (M40, M70, FBP, IR) had the same pixel-
wise correspondences. Therefore, by calculating the pixel-wise differences across the
four protocols and visualizing their standard deviations, we can clearly illustrate the
harmonization effect. Six combinations were used to calculate the pixel-wise differences
among the four protocols, and the standard deviations of these six differences were used to
visualize the effect. The results of the standard deviation map are shown in Figure 4.
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4. Discussion

The results of our study demonstrate that the developed deep learning model can
improve the reproducibility of radiomics features in real human CT images. Using a deep
learning-based image conversion approach, we successfully reduced the variability in
radiomics features resulting from differences in CT machines and post-processing methods.
The results of this study indicate an enhancement in the reproducibility of radiomics
features extracted from CT images. This improvement raises the prospect of a more
extensive application of radiomics in practical clinical settings.
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Most radiomics models published to date are limited by the lack of large, standardized
datasets and the absence of clinical validation [20]. Ideally, radiomics features should be
independent of image acquisition parameters or protocols [20]. However, several previous
studies have pointed out the poor reproducibility of CT radiomics features across different
CT acquisition parameters, reconstruction methods, and CT scanners [4,8,10,21].

In our previous study, we developed an image conversion algorithm using a residual
feature aggregation network to harmonize images from varying CT protocols and evaluated
the algorithm to improve the reproducibility of radiomics features extracted from CT scans
across different protocols, reconstruction techniques, and scanners [13]. The algorithm was
developed, and its performance was validated using an abdominal phantom in the previous
study [13]. However, to facilitate its application in real clinical settings, it was necessary
to adjust the algorithm using actual patient abdominal images and to test its performance
accordingly. In the prior phantom-based study, the deep learning model demonstrated a
substantial improvement in reproducibility, achieving an 83.3% increase in the concordance
correlation coefficient (CCC) for synthetic images compared to the original [13]. In this
current study, using real patient abdominal CT images, we observed an increase in the
proportion of features with an ICC value ≥ 0.85 from 18% to 65%. This finding underscores
the potential of the previously developed algorithm for application in clinical settings.

Several studies on enhancing the reproducibility of radiomics using deep learning,
particularly GANs, have compared radiomics features with a CCC ≥ 0.85 before and after
applying deep learning to demonstrate reproducibility improvement [22–24]. However,
Robert et al. revealed that intra-CT analysis showed a wide range of reproducibility, de-
pending on parameter adjustments [8]. This indicates that several radiomics features exhibit
redundant properties. Therefore, it is crucial to focus on improving the reproducibility of
essential features, excluding redundant features, rather than enhancing their reproducibility
across all radiomics features. Unlike other studies and our previous phantom study, this
study excluded redundant features and assessed reproducibility improvement solely for
the necessary radiomics features [13].

In this study, we used ICCs to evaluate the reproducibility of radiomics features.
However, there are concerns about the use of ICC to assess reproducibility and agreement
of radiomics features [25]. When utilizing ICC as a reliability metric, researchers should
pay close attention to selecting the most appropriate ICC form, as an inappropriate choice
may yield numerically similar ICC values but lead to significantly different or misleading
interpretations. Additionally, none of the reviewed studies conducted sample size estima-
tion for ICC calculations, which, while not mandatory, could improve the precision of ICC
measurements. Furthermore, confidence intervals for ICC values should be reported, as
they are essential for assessing the precision and reliability of the estimates. These intervals
are necessary to estimate the precision of the reliability estimates.

Efforts to enhance the reproducibility of CT radiomics can be divided into image
and feature domain strategies. [20]. The harmonization strategy in the image domain
includes the development of standardization guidelines and the utilization of raw image
datasets [20]. By creating guidelines that regulate the type of scanner, protocol, imaging pa-
rameters, and reconstruction method, standardized image acquisition can be achieved. For
example, the Food and Drug Administration released imaging guidelines to optimize the
quality of imaging data for clinical trials supporting the approval of drugs and biological
products [26]. The EARL (the European Association of Nuclear Medicine Research Ltd.,
Vienna, Austria) program, initiated by the EANM (the European Association of Nuclear
Medicine, Vienna, Austria), encompasses workflow, including scan acquisition, image
processing, and image interpretation [27]. Pfaehler et al. explored the effects of harmo-
nizing image reconstructions on the reproducibility of radiomics features, revealing that
adopting EARL-compliant image reconstruction successfully standardized the radiomics
features [28]. However, while such standardized protocols may work for specific projects,
they lack flexibility for broader applications in heterogeneous, retrospective datasets com-
monly used in radiomics studies. Additionally, evolving hardware and software for image
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acquisition limit the practicality of strictly standardized guidelines. Another approach is to
use raw sensor-level image data, such as sonograms in CT or k-space data in MRI, which
may reduce radiomics variability introduced during image reconstruction [29]. However,
this approach is challenging for retrospective studies and does not fully address vari-
ability from acquisition parameters. Feature-domain harmonization strategies, including
reproducible feature selection and normalization techniques, aim to stabilize radiomics
features [6,30–34]. Collaborative efforts like the Image Biomarker Standardization Initiative
(IBSI) have established protocols to standardize radiomics computations, although these
methods cannot fully account for variations caused by differences in scanners, protocols,
or reconstruction methods [34]. Furthermore, robust radiomics features may vary across
diseases or organs, limiting their universal application in research and clinical settings.

In this study, we developed a deep learning model for harmonizing CT images to
improve the reproducibility of CT radiomics features. Image harmonization using a deep
learning model has several advantages. As multicenter retrospective studies are increas-
ingly being conducted, there is a growing need for post hoc harmonization rather than
harmonization in the early steps of image acquisition and analysis. AI-based techniques
are promising post hoc image harmonization techniques aimed at mitigating the influences
arising from the utilization of center-specific devices and imaging protocols. The Compre-
hensive Analysis of Bioinformatics Toolbox (ComBat) is a statistical method developed to
correct for batch effects. ComBat is specifically designed to reduce batch effects caused
by various factors. It is widely used in harmonizing medical imaging; however, there are
several limitations to deep learning-based image conversion. Owing to the inherent charac-
teristics of statistical techniques, the ComBat method requires information regarding the
sources of variation [35]. Therefore, it may not exhibit adequate performance on unknown
datasets. By contrast, deep learning-based image conversion can adapt to diverse datasets,
although it requires substantial amounts of training images.

Our study has some limitations. First, our external validation was conducted using
a single type of CT scanner and image reconstruction methods. Therefore, our findings
may not be generalizable to other types of CT machines or imaging protocols. Further
studies are required to expand the external validation of our image conversion model to
include multiple types of CT machines and various imaging protocols. Second, we did
not assess the reproducibility of radiomics features across true pathologies. Third, we did
not evaluate interobserver variability in this study. Considering that lesion segmentation
affects radiomics features, it is necessary to evaluate reproducibility when real lesions are
extracted by multiple observers.

5. Conclusions

This study is the first to precisely improve radiomics feature reproducibility by exclud-
ing redundant features and experimentally demonstrating reproducibility enhancement
with internal and external validations. In conclusion, deep learning-based CT image harmo-
nization can improve the reproducibility of radiomics in abdominal CT and may enhance
the development and clinical application of radiomics.
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