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Abstract: With the increasing aging population, nursing care providers have been facing a substantial
risk of work-related musculoskeletal disorders (WMSDs). Visual-based pose estimation methods,
like OpenPose, are commonly used for ergonomic posture risk assessment. However, these methods
face difficulty when identifying overlapping and interactive nursing tasks, resulting in missing and
misidentified skeletons. To address this, we propose a skeleton compensation method using improved
spatial temporal graph convolutional networks (ST-GCN), which integrates kinematic chain and
action features to assess skeleton integrity and compensate for it. The results verified the effectiveness
of our approach in optimizing skeletal loss and misidentification in nursing care tasks, leading to
improved accuracy in calculating both skeleton joint angles and REBA scores. Moreover, comparative
analysis against other skeleton compensation methods demonstrated the superior performance of our
approach, achieving an 87.34% REBA accuracy score. Collectively, our method might hold promising
potential for optimizing the skeleton loss and misidentification in nursing care tasks.

Keywords: work-related musculoskeletal disorders; ergonomic posture risk assessment; REBA;
skeleton compensation; ST-GCN

1. Introduction

The nursing industry has consistently exhibited a high prevalence of work-related
musculoskeletal disorders (WMSDs) [1]. Among nursing professionals, the incidence of
work-related musculoskeletal disorders is even more pronounced, particularly in reha-
bilitation and geriatric care settings, reaching a staggering 92% [2,3]. The most effective
preventive approach lies in conducting ergonomic posture risk assessments for nursing
personnel and promptly addressing high-risk postures through corrective measures [4,5].

The predominant methods for assessing ergonomic posture typically rely on field
observation or video monitoring to measure joint angles. These joint angles are then
utilized in scoring tools, such as the Rapid Upper Limb Assessment (RULA) [6] and Rapid
Entire Body Assessment (REBA) [7], to determine the level of postural risk and guide the
implementation of suitable intervention measures. Nevertheless, limitations exist when
conducting posture assessments through field observation. Firstly, subjective judgments
made by assessors are prone to biases influenced by viewing angles and fatigue [8,9].
Secondly, manual observation is time-consuming and inefficient. As a result, researchers
have sought to develop machine-based automated assessment methods as a replacement for
manual evaluation. Initially, some researchers employed contact-based sensors to capture
human posture movements. While this method provides high accuracy and frequently
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serves as a validation benchmark for emerging recognition techniques [10,11], it requires
a significant number of sensors, resulting in increased equipment costs and requiring
extensive sensor calibration. Moreover, the use of sensors may impede the normal work
of healthcare personnel [12,13]. In contrast, vision-based posture motion capture methods
offer a non-contact approach that does not disrupt the tasks of healthcare providers [14].
Currently, this approach primarily relies on machine learning algorithms to recognize
motion pose keypoints from images or videos [15,16], enabling the automatic calculation
of the REBA posture score using these keypoints. Compared to the Microsoft Kinect
camera [17] and various pose estimation networks (e.g., PoseNet [18], DensePose [19],
HRNet [20]), OpenPose [21] is presently recognized as a widely utilized and reliable
algorithm for human pose estimation, demonstrating stable skeletal tracking capabilities
even in non-frontal views and video sequences.

We endeavored to incorporate OpenPose into the automatic REBA assessment of
caregiver postures. However, our findings revealed significant discrepancies in the REBA
scores and substantial fluctuations in joint angles. To explore the underlying reasons for
this issue, we conducted an analysis of caregiver postures. The results revealed that when
healthcare professionals were involved in posture estimation, the overlapping of limbs
between nurses and patients not only led to the loss of skeletal information but also intro-
duced complexities in distinguishing the skeletal structures of both parties. Consequently,
this significantly compromised the accuracy of OpenPose in estimating caregiver postures,
resulting in considerable fluctuations and errors in both REBA scores and joint angles. The
simultaneous estimation of poses for multiple individuals presents inherent challenges
that may compromise the accuracy of joint angle calculations and lead to inaccurate REBA
scores, particularly in scenarios involving overlapping, occlusion, and intricate interactions
among various body parts.

To improve the pose estimation deficiencies caused by body occlusion in nursing
interactions, researchers have utilized the principle of left–right symmetry to compensate
for missing skeleton keypoints [22]. However, this approach is applicable to pose captured
from a frontal camera perspective, and deviations in camera angles result in corrected
skeletal keypoints being positioned outside the body. To overcome this limitation, the
Mask RCNN method has been utilized to detect human boundaries, thereby constraining
the skeletal keypoints within the body’s boundaries [23]. Nonetheless, compensating for
skeletal keypoints using the symmetry principle often encounters challenges when dealing
with complex movements. To restore occluded keypoints, researchers have explored the
utilization of unoccluded skeletal keypoints in a Euclidean distance matrix [24]. This
skeleton compensation method has proven successful in mitigating skeletal occlusion
issues. However, ignoring temporal attributes and their association with skeletal motion
trends leads to disparities between the compensated skeleton and the action dynamics.
Furthermore, certain approaches have introduced the concept of “Human Dynamics” [25],
which predicts future body poses based on multiple frames in the current video, even in
the absence of subsequent frames. This method has demonstrated remarkable effectiveness
in compensating for missing skeletal keypoints. However, limitations still persist regarding
skeletal misidentification.

To tackle the challenges of skeleton loss and misidentification caused by body contact
in nursing tasks, we proposed an enhanced spatial temporal graph convolutional network
(ST-GCN) method that incorporated action feature weighting for skeleton time series. Ad-
ditionally, we introduced a skeleton discrimination method based on kinematic chains,
which identified skeletal loss and misidentification by combining skeleton and action fea-
tures. This information was then utilized to provide feedback to the skeleton interpolation
compensation network and skeleton correction network, enabling the reconstruction of
missing and misidentified skeletal structures. The following are the main contributions of
this study:

(1) An improved ST-GCN framework is proposed for skeleton action prediction.
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(2) A kinematic-chain-based method for missing and misidentified skeletons is pro-
posed for skeleton compensation in scenes with limb overlapping.

(3) Our results illustrate that the skeleton compensation and correction methods can
effectively improve the calculation accuracy of skeleton joint angles and REBA score.

2. Methods
2.1. Overview

In our study, we introduced a novel kinematic chain skeleton discrimination method
to assess the integrity of the pose skeleton, distinguishing loss and misidentification. By
analyzing the heterogeneity of action features obtained from the ST-GCN network and their
corresponding skeleton mappings within a predefined temporal threshold, we identified
instances of skeleton misidentification from a pose-based kinematic chain perspective. To
optimize skeletal loss, we proposed a temporal-based skeleton interpolation compensation
method. This involved utilizing temporal features, traversing complete skeletons preceding
and subsequent to the temporal sequence, and employing interpolation algorithms to rectify
missing skeleton data. In cases of skeleton misidentification, we presented a method to
optimize action feature heterogeneity. This technique involved optimizing action features
with lower weights within the predefined temporal range, compensating for gaps by utilizing
consistent action features from previous and subsequent temporal sequences, and updating
the corresponding skeletons mapped with the action features to rectify misidentification of
the pose skeleton. The overview of our skeleton compensation method is shown in Figure 1.
The following supporting information can be downloaded at: https://github.com/Nicxhan/
Skeleton-compensation-and-correction (accessed on 1 January 2024).
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Figure 1. Overview of our skeleton compensation method.

2.2. ST-GCN

The ST-GCN has demonstrated its extraordinary ability to extract dynamic skeletal
features from both spatial and temporal dimensions by capitalizing on a sequence of
skeletal graphs [26]. Our adjusted ST-GCN structure comprises the spatial and spatial
temporal feature layer (Figure 2a). Through the fusion of spatial temporal features of the
skeleton, it enables the allocation of distinct action labels and weights to the temporal
variations of skeletal features, redefining posture with actions.

The construction of the Spatial Feature layer entailed the integration of multiple Spatial
Conv layers through residual structures. Each Spatial Conv layer was complemented by
batch normalization (BN) and ReLU modules (Figure 2b), thereby bolstering the stabil-
ity and facilitating the capture of intricate non-linear linkages among joints. The Spatial
Feature layer aimed to discern the interconnected features that manifested between skele-
tal nodes and their neighboring counterparts, originating from the spatial information
encapsulated within the pivotal nodes of the skeletal graph. Consequently, it exerted a
discernible influence on the estimation of human poses by representing localized attributes
of individual skeletal joints alongside the distinctive characteristics exhibited by adjacent
nodes [27]. The Spatial–Temporal Feature layer, constructed by intricately interweaving
multiple spatial temporal feature extraction units, manifested as a dense connection struc-
ture [28]. Encompassing a stack of Temporal Conv and Spatial Conv (Figure 2c), each
Spatial–Temporal Conv aimed to extract motion trend features from skeletal joint nodes
that exhibited correspondence across frames in the skeletal graph. This extraction process

https://github.com/Nicxhan/Skeleton-compensation-and-correction
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facilitated the depiction of motion trends between matched joint nodes in consecutive
frames. By acquiring a comprehensive understanding of these features, the prediction of
pose actions within the skeletal structure was enhanced.
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2.3. Kinematic Chain for Skeleton Discrimination

The integration of spatial and temporal features within the label mapping framework
enables the determination of action weights for postures, with the highest-weighted ac-
tion label signifying each unique posture. To address challenges related to missing or
misidentified skeletons in complex scenarios, we introduced a Kinematic Chain Skeleton
Discrimination Network in the extra layer of the ST-GCN. This novel approach evalu-
ated both skeletal pose completeness and the comparison of fused action weight features,
distinct from prior research [29]. Anomalous action weights within a defined temporal
sequence were identified as misidentified actions and skeletons, and corrective feedback
was provided for both. Skeletal connections, denoting the links between adjacent keypoints
in the human skeletal structure, form a 2 × M matrix K, where M represents the prede-
fined number of skeletal keypoints. Matrix Ψ = KTK acts as a feature for discriminating
skeletal integrity, with diagonal elements in Ψ representing squared joint lengths, while the
remaining elements signify weighted angles between pairs of skeletal keypoints, serving
as internal indicators. Inspired by kinematic chains, we introduced a temporal kinematic
chain, defined as Equation (1).

Φ = KT
t+iKt+i − KT

t Kt (1)

where i represents the temporal interval between successive frames within the temporal
kinematic chain. The diagonal elements within matrix Φ depict alterations in skeletal
joint lengths, while the remaining elements signify changes in angles between pairs of
skeletal keypoints.

We established the prediction of temporal kinematic chains by connecting the coordi-
nates of skeletal keypoints, which were subsequently input into a Temporal Convolutional
Network (TCN) to construct a posture discrimination network. This methodology not only
accounted for the integrity of posture skeletons across frames but also ensured the coher-
ence of weight variations in action feature changes across frames. It optimized abnormal
action weights and provides feedback for skeleton compensation or correction. Building
upon the framework of a Generative Adversarial Network [30], we constructed the posture
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discrimination network and employed this framework to generate regularization loss for
pose estimation.

2.4. Skeleton Interpolation Compensation

In the case of missing skeleton states detected in the pose estimation results, the
skeleton interpolation compensation network initiated the process by considering the
current time sequence of the missing skeleton as the starting point. Subsequently, it
traversed through the skeletal information of the preceding and succeeding time sequences
to identify complete skeletons. In terms of temporal proximity to the missing skeleton,
the nearest preceding and succeeding complete skeletons were chosen as references for
interpolating the missing skeleton. Based on the spatial and temporal features offered
by the complete skeletons, the linear interpolation algorithm was employed to fill in the
missing skeletal keypoints. Simultaneously, the motion characteristics of the temporal
sequence were taken into account to ensure alignment between the generated skeleton and
the actual kinematic features, the process of skeleton compensation is depicted in Figure 3.
To determine the temporal features within the interpolation compensation process, the
traversal range for the preceding and succeeding temporal skeletons was set to 10 frames.
This selection of a 10-frame range, sampled at a frequency of 50 Hz, provided the optimal
interpolated data for motion skeleton interpolation [31].
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Assuming that the motion velocity of skeletal keypoints remained independent and
constant within the missing region, when there were n missing skeletal keypoints between
the temporal sequences Ps(xs, ys), Pe(xe, ye), Ps and Pe represented the starting and end-
ing points of the complete skeletal information with a temporal distance of 10 frames,
respectively. The missing point was denoted as P1(x1, y1), P2(x2, y2), . . . , Pn(xn, yn). The
equation for computing the interpolated compensatory coordinates of the missing skeleton
keypoints was determined by Equations (2)–(4).

xi = (1 − t)xs + txe (2)

yi = (1 − t)ys + tye (3)

t = i/(n + 1) (i = 1, 2, . . . , n) (4)

2.5. Skeleton Correction

In the case of pose estimation results indicating skeletal misidentification states, we
proposed a novel approach termed heterogeneous action feature optimization. By leveraging
the inherent action features associated with each stage of the skeleton, we could rectify
the misidentified skeleton by focusing on the correction of action features. The process of
skeleton correction is depicted in Figure 4. The skeleton correction network commenced the
process using the current time sequence of the misidentification skeleton as the starting point.
It subsequently traversed the action features of the preceding and succeeding 10 frames
within the temporal sequence. Following this, the weight proportions of the action features
were calculated in the predefined time thresholds. For example, if the skeleton action features
were denoted as A and B, within the specified time threshold, a comparison was made
between the weights of action features A and B. Dominant action features were identified as
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those with a weight proportion exceeding 60%, while the remaining action features were
considered heterogeneous. Consequently, the heterogeneous features were replaced with
the dominant features, and the skeleton was accordingly updated. This approach effectively
rectified the misidentified skeleton, demonstrating its efficacy in practice.
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action features.

To prevent the disregard of preceding and succeeding frames due to estimation errors
in the current frame, we incorporated the Kalman filtering algorithm to perform noise
smoothing on the time series of coordinates for each skeletal point [32]. This procedure
enhanced the congruity between the corrected skeleton and the actual movement. As-
suming the independent calculation of each skeletal point, without considering skeletal
constraints, we observed a natural correlation between the horizontal and vertical actions of
the skeleton. Additionally, when disregarding action trends, the preceding and subsequent
temporal states exhibited the same characteristics. Hence, Equations (5)–(9) were met.

x̂−k = Ax̂k−1 + Buk (5)

P̂−
k = APk−1 AT + Q (6)

Kk =
(

P−
k CT

)
/
(

CP−
k CT + R

)
(7)

x̂k = x̂−k + Kk
(
yk − Cx̂−k

)
(8)

Pk = (I − KkC)P−
k (9)

where x̂k and x̂k−1 represent the posterior state estimates of the skeleton points at time
series k − 1 and k, respectively. x̂−k represents the prior state estimate of the skeleton point
at time series k. Pk−1 and Pk represent the posterior estimated covariance values at time
series k − 1 and k, respectively. P̂−

k represents the a priori estimated covariance value at
time series k. C represents the transformation matrix from state variables to measured
values. yk represents the input value. Kk represents the Kalman coefficient. A represents
the state transition matrix. B represents the control input matrix. Q represents the process
excitation noise covariance value. R represents the measurement noise covariance value.

2.6. Study Design

The data used in this study was acquired by recruiting volunteers to simulate the task
of patient transfer. The recruited volunteers had no history of musculoskeletal disorders in
the past year. Volunteers were tasked with transferring the standard patient from the bed
to the wheelchair.
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A single monocular RGB camera was employed for recording the nursing care task
videos. A motion capture system comprising multiple inertial sensors was utilized to
measure the angles of various joints in the body [33], with a high correlation observed
between the results obtained from this system and those obtained from optical motion
capture systems, making it suitable for joint angle measurement research. Additionally,
inertial sensors possess strong occlusion resistance and find extensive application in fields
like rehabilitation medicine and ergonomic analysis [34,35]. Hence, the joint angle mea-
surements obtained from the inertial sensors can be employed as a ground truth value to
assess the precision of visually based angle measurements [36].

Statistical analysis was conducted using SPSS v27 software (SPSS Inc., Chicago, IL, USA)
and GraphPad Prism 9 (GraphPad Inc., San Diego, CA, USA). Paired t-tests were employed
for paired continuous data, mean values and standard deviations were reported for all
statistical tests. A p-value less than 0.05 was considered statistically significant.

2.7. Joint Angle and Scoring Tool

The nursing task videos were processed by OpenPose and our method to predict the
human body skeleton and compute the skeleton joint angles. A total of 25 skeletal keypoints
were identified for each participant (Figure 5), and based on the scoring criteria of the
REBA, a total of eight joint angles were calculated. The computation of joint angles and
their corresponding skeletal keypoints were summarized in Table 1. Due to the wrist being
in a nearly fixed position during the nursing tasks, the wrist angle was considered constant
for the purpose of angle measurement and posture risk assessment in this study.
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Figure 5. Pose estimation skeleton key points numbers. OpenPose detects 25 key skeletal points on
the human body for joint construction and skeleton analysis. Numbers 0 to 24 represent different
bone points.

Table 1. Joint angles list.

Joint Angle Involved Skeletal Points

Trunk flexion angle ∠1, 8, 8′

Neck flexion angle ∠0, 1, 1′

Left leg flexion angle ∠12, 13, 14
Right leg flexion angle ∠9, 10, 11

Left upper arm flexion angle ∠5′, 5, 6
Right upper arm flexion angle ∠2′, 2, 3
Left lower arm flexion angle ∠5, 6, 7

Right lower arm flexion angle ∠2, 3, 4

The REBA method was chosen as a tool for evaluating ergonomic risks in the work-
place. Its objective was to swiftly assess the WMSD risk of postures to determine which
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work positions require additional attention and improvement, thereby reducing the risk
of bodily discomfort and injury associated with work. The REBA algorithm involved
evaluating the angle changes of key joints (trunk, neck, legs, upper arms, lower arms,
wrists), external loads, and hand coupling capability. REBA scores range from 1 to 12, with
higher scores indicating greater WMSD risk (Table 2).

Table 2. REBA risk level list.

Action Level REBA Score Risk Level Correction Suggestion

0 1 Negligible None necessary
1 2–3 Low Maybe necessary
2 4–7 Medium Necessary
3 8–10 High Necessary soon
4 11–15 Very high Necessary now

2.8. Accuracy Verification

To validate the accuracy of our approach in posture risk assessment, a comparison
was conducted among OpenPose, inertial sensors, and our method in terms of joint angles
and REBA scores. The nursing task videos were separated into individual frames, and for
each frame, the joint angles and REBA scores were calculated independently, as shown
in Table 3. The mean absolute error (MAE) of the joint angles and the precision of the
REBA scores were used to assess the performance of our method. The MAE measured the
absolute difference between the joint angles computed by different methods. Although
it did not distinguish between positive and negative errors, this value represented the
actual magnitude of the error. The mathematical equation for MAE was determined by the
Equations (10) and (11).

MAE1 =

(
n

∑
i=1

|Ai − Asi|
)

/n (10)

MAE2 =

(
n

∑
i=1

|Aoi − Asi|
)

/n (11)

where MAE1 was measured by our method and the inertial sensors; MAE2 was measured
by OpenPose and the inertial sensors. Assuming the number of frames with consistent
REBA scores between the inertial sensors and our method was denoted as Fm, and the total
number of frames was denoted as F, the REBA precision calculation was determined by
Equation (12).

Acc = Fm/F × 100% (12)

Table 3. Accuracy calculation parameters.

Nursing
Task Video Frame 1 Frame 2 Frame i Frame n

OpenPose Joint angle Ao1 Ao2 Aoi Aon
REBA Ro1 Ro2 Roi Ron

Inertial
sensors

Joint angle As1 As2 Asi Asn
REBA Rs1 Rs2 Rsi Rsn

Ours
Joint angle A1 A2 Ai An

REBA R1 R2 Ri Rn

Accuracy

Joint angle
error [Ao1, As1, A1] [Ao2, As2, A2] [Aoi, Asi, Ai] [Aon, Asn, An]

REBA score
error [Ro1, Rs1, R1] [Ro2, Rs2, R2] [Roi, Rsi, Ri] [Ron, Rsn, Rn]



Bioengineering 2024, 11, 127 9 of 16

3. Results
3.1. Missing and Misidentified Skeletons

During the application of OpenPose for posture risk assessment in nursing tasks,
notable challenges arise from complex interactions and overlapping body configurations
between nurses and patients. These challenges often lead to incomplete or erroneous
skeletal estimations, resulting in deviations and fluctuations in joint angles (Figure 6a).
For instance, as depicted in Figure 6b, when a skeleton corresponding to the upper arm
was misidentified, substantial fluctuations in the upper arm angle occurred, resulting in
discontinuous states. In contrast, our method optimized the misidentification problem
(Figure 6c), maintaining a stable and continuous state for the joint angles of the upper arm.
Likewise, in scenarios where the skeleton was missing, such as the legs, there might be
deviations or even a complete absence of leg angles. However, our method optimized the
identification of the skeleton, achieving the continuity of leg angle measurements.
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Figure 6. (a) The utilization of OpenPose for pose estimation in the nursing task gave rise to issues
concerning missing and misidentified skeletons. (b) The variations in the angles of the upper arm and
leg in the presence of skeleton loss and misidentification (Orange represents the angle data obtained
by OpenPose) and subsequent skeleton compensation (Green represents the angle data obtained by
our method). (c) The effect of our skeleton compensation method.

We compared the overall skeleton missing rate and misidentification rate for all frames
(Table 4). The results revealed that our approach achieved a skeletal misidentification rate
of 2.18%. Regarding the skeleton missing rate, except for the right lower arm (Lower arm-
R) caused by limb occlusion, significant skeleton compensation effects were observed for
all other missing skeletons. These outcomes highlighted the efficacy and potential of our
approach in optimizing missing skeletons and misidentification the field of skeletal analysis.

Table 4. Overall skeleton missing rate and misidentification rate for all frames.

Joints
Skeleton Missing Rate Skeleton Misidentification Rate

OpenPose Ours OpenPose Ours

Trunk 0.18% 0.07%

20.60% 2.18%

Leg-R 16.79% 5.96%
Upper arm-R 22.42% 10.36%
Lower arm-R 64.68% 51.67%

Neck 22.06% 7.01%
Leg-L 8.47% 1.78%

Upper arm-L 11.19% 0.29%
Lower arm-L 12.75% 0.58%
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3.2. Joint Angles Error

To assess the accuracy of our approach in measuring joint angles, we conducted
a comparative analysis of angle errors among various methods. The analysis involved
three distinct groups, each focused on evaluating the errors within a specific context.
Eangle1 = Aoi − Asi represented the error between the joint angles obtained from OpenPose
and the ground truth values; Eangle2 = Ai − Asi represented the error between our method
and the ground truth values; Eangle3 = Ai − Aoi represented the error in joint angle errors
between our method and OpenPose (Table 5).

Table 5. Errors between different joint angles.

Joints Eangle1
(N = 8)

p-Value
p1

Eangle2
(N = 8) p-Value p2 Eangle3

(N = 8)
p-Value

p3

Trunk −0.166 ± 18.526 p = 0.628 −0.019 ± 2.345 p = 0.659 −0.017 ± 18.800 p = 0.961
Leg-R 3.880 ± 18.591 p < 0.001 −0.060 ± 2.324 p = 0.160 0.882 ± 6.090 p < 0.001
Upper
arm-R 3.145 ± 10.742 p < 0.001 −0.186 ± 4.475 p = 0.025 0.755 ± 10.136 p < 0.001

Lower
arm-R 3.969 ± 30.840 p < 0.001 −0.226 ± 4.427 p = 0.006 −0.108 ± 18.481 p = 0.752

Neck −1.956 ± 14.891 p < 0.001 −0.072 ± 2.281 p = 0.087 1.963 ± 14.436 p < 0.001
Leg-L −1.069 ± 7.174 p < 0.001 −0.125 ± 4.512 p = 0.134 −4.098 ± 30.771 p < 0.001
Upper
arm-L −1.014 ± 10.605 p < 0.001 −0.059 ± 2.292 p = 0.165 0.773 ± 9.903 P < 0.001

Lower
arm-L 2.473 ± 27.971 p < 0.001 0.006 ± 4.586 p = 0.942 −3.001 ± 27.793 p < 0.001

We presented a detailed analysis of joint angle errors based on comprehensive experi-
mental results (Table 5). When comparing joint angle errors between OpenPose and ground
truth values (Eangle1), all angles, except Trunk angles (p1 = 0.628), displayed significant statis-
tical differences (p1 < 0.001), indicating substantial joint angle deviations. Conversely, our
method exhibited minimal errors compared to ground truth values (Eangle2), with significant
statistical differences observed only in Upper arm-R (p2 = 0.025) and Lower arm-R (p2 = 0.006)
joint angles. This highlighted the reliability of our method in calculating skeletal joint angles.
Additionally, significant differences were found in joint angle errors (p3 < 0.001) between
our method and OpenPose (Eangle3), except for Trunk (p3 = 0.961) and Lower arm-R angles
(p3 = 0.752), demonstrating the effectiveness of our approach in enhancing pose estimation
accuracy and improving the precision of skeletal joint angle calculation.

MAE was employed to evaluate the stability and accuracy of measuring joint angles.
A smaller MAE value indicated better measurement accuracy. Our method consistently
achieved an overall MAE (MAE1) below 10◦, demonstrating superior accuracy in mea-
suring joint angles (Figure 7). In contrast, OpenPose exhibited an MAE exceeding 10◦

for all joints, except the trunk, indicating significant error fluctuations. Both MAE1 and
MAE2 showed statistically significant differences across all joint angles (p < 0.05). These
discrepancies could be attributed to the skeleton loss and misidentification issues encoun-
tered in OpenPose during estimation of nursing care poses, resulting in frequent variations
in angle differences and increased error fluctuation. In contrast, our proposed method
addressed these challenges by optimizing skeleton loss and misidentification and reducing
error fluctuations. This significantly enhanced the accuracy of joint angle calculations, as
evidenced by the lower MAE values and reduced error fluctuations observed in Figure 7.

3.3. REBA Score Error

To verify the performance of our method in REBA scoring, we conducted a compara-
tive analysis of the error in REBA scores among different skeletal joints. EREBA1 = Roi − Rsi
denoted the error between OpenPose and the ground truth values, while EREBA2 = Ri − Rsi
signified the error between our method and the ground truth values. The results, in accor-
dance with the REBA scoring rules, are presented in Table 6.
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Table 6. Errors between joint angle score and REBA score.

Joints EREBA1 (N = 8) p-Value EREBA2 (N = 8) p-Value

Trunk −0.001 ± 0.207 p = 0.788 0 ± 0.159 p = 1
Leg-R 0.255 ± 0.568 p < 0.001 0.015 ± 0.465 p = 0.066

Upper arm-R −0.176 ± 0.644 p < 0.001 −0.005 ± 0.302 p = 0.296
Lower arm-R −0.154 ± 0.635 p < 0.001 0.235 ± 0.448 p < 0.001

Neck 0.003 ± 0.132 p = 0.124 −0.003 ± 0.395 p = 0.638
Leg-L −0.027 ± 0.282 p < 0.001 0.012 ± 0.506 p = 0.186

Upper arm-L 0.013 ± 0.282 p = 0.013 0.001 ± 0.186 p = 0.619
Lower arm-L 0.098 ± 0.309 p < 0.001 0.234 ± 0.508 p = 0.325

REBA 0.116 ± 1.128 p < 0.001 −0.003 ± 0.208 p = 0.373

Based on the comprehensive results presented in Table 6, notable differences (p < 0.001)
were observed in the joints scores and REBA scores between the OpenPose and the ground
truth values (EREBA1), except for Trunk (p = 0.788) and Neck (p = 0.124). These observations
indicated that the reliability of REBA scores derived from the OpenPose method for assess-
ing nursing care task postures was suboptimal, with considerable deviations. Conversely,
when considering the REBA scores obtained through our proposed method (EREBA2), a
significant difference was only observed for the Lower arm-R score (p < 0.001) compared
to the ground truth values, while no significant differences were detected for other joint
scores. Moreover, the final REBA scores showed no significant discrepancy compared to
the ground truth values (p = 0.373). These outcomes demonstrated that the REBA scores
computed using our method closely aligned with the ground truth values, highlighting the
substantial feasibility and reliability of our approach for assessing nursing task posture.

Moreover, to evaluate the effectiveness of our method in tackling the issues of skeleton
loss and misidentification within nursing care task scenarios, we conducted a comprehensive
performance comparison against several existing methods, including that of Tsai et al. [23], a
left–right skeletal symmetry skeleton compensation method; Guo et al. [24], a Euclidean dis-
tance matrix skeleton compensation method; and Kanazawa et al. [25], a Human-Dynamics-
based temporal skeleton compensation method. The evaluation metric employed for this
analysis was the precision of REBA scores. To uphold the scientific integrity of the compara-
tive results, all assessments of the methods were conducted using standardized hardware
configurations and nursing care posture datasets. Nonetheless, it was vital to exercise caution
when interpreting these findings, as discrepancies in algorithmic parameters and model
metrics might introduce variations that require careful consideration [37]. The summarized
results of this comparative evaluation can be found in Table 7.
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Table 7. Accuracy of REBA score by different methods in nursing care tasks.

Joints Acc

OpenPose Tsai et al. [23] Guo et al. [24] Kanazawa et al. [25] Ours

Trunk 91.92% 90.34% 92.36% 95.32% 95.65%
Leg-R 81.43% 86.61% 86.42% 88.33% 87.47%

Upper arm-R 71.61% 72.41% 72.98% 75.79% 76.95%
Lower arm-R 47.76% 59.87% 60.14% 62.87% 64.31%

Neck 76.96% 82.86% 87.95% 86.97% 87.96%
Leg-L 82.94% 83.14% 89.76% 91.61% 90.81%

Upper arm-L 80.25% 85.27% 92.31% 91.89% 92.13%
Lower arm-L 84.26% 87.35% 91.14% 95.57% 91.68%

REBA 58.33% 63.29% 76.63% 80.46% 87.34%

The findings in Table 7 indicated that OpenPose achieved an accuracy exceeding 90%
for specific skeletal joints, yet its final accuracy in REBA scoring remains at 58.33%. This
was associated with the issues of skeleton loss and misidentification, which caused low
accuracy of REBA. In contrast, our approach attained an accuracy of 87.34%, outperforming
alternative methods and improving the skeleton loss and misidentification in nursing
care tasks. Importantly, our method exhibited promising potential for pose assessment in
interaction-based nursing tasks.

4. Discussion
4.1. Main Findings and Contributions

In this study, we identified concerning accuracy issues in the integration of Open-
Pose with the REBA assessment for nursing postures. This inadequacy stemmed from the
inherent challenges posed by motion interactions and limb occlusions in nursing tasks,
resulting in skeleton missing and misidentification in the OpenPose pose estimation. Con-
sequently, these deviations and fluctuations in skeletal joint angles had a direct impact on
the accuracy of REBA scoring. To address this problem, we have devised an innovative
method that built upon the ST-GCN framework by incorporating action feature inverse
skeleton compensation and correction. Hence, we enhanced the tracking of pose skeletons
in scenarios involving overlapping bodies and interactive movements during nursing tasks.
This improvement ensured the continuity and stability of skeletal joint angle calculations,
ultimately resulting in an enhanced accuracy of REBA scoring.

To validate the reliability and feasibility of our proposed method, we conducted
a comprehensive comparison of skeleton missing rate, skeleton misidentification rate,
joint angles, REBA score, and REBA scoring accuracy. We have identified significant
differences between the joint angles and scores obtained from OpenPose and the inertial
sensors, primarily due to the influence of skeleton loss and misidentification. In contrast,
our method yielded joint angles and scores that did not differ from the ground truth
values, demonstrating the effectiveness of our approach in mitigating skeleton loss and
misidentification challenges (Tables 5 and 6). Furthermore, it was important to highlight
that substantial angle errors were observed in the right upper and lower arm joints (Table 5,
Upper arm-R (p2 = 0.025), Lower arm-R (p2 = 0.006)). This discrepancy could be attributed
to the interaction between the arms and patients during the caregiving process, resulting
in the loss of arm joint tracking features. It is important to note that such limitations are
commonly encountered in vision-based pose estimation algorithms. It could be overcome
by employing marker-based wearable sensor measurement methods, but the use of sensors
itself may impede the normal work of healthcare personnel [12]. It seems that improving
the performance of pose estimation algorithms is more convenient and effective [10]. While
our method showed smaller error fluctuation (Figure 7), improvements could be made in
the future studies, particularly in addressing errors related to the Leg, Upper arm, and
Lower arm joints on the side that is occluded by the limb. These joints experience significant
challenged in terms of skeleton loss during the pose estimation process within multi-person
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interaction nursing care tasks. Therefore, future research efforts should prioritize enhancing
the recognition accuracy of these specific joints.

While numerous studies have demonstrated the reliability of OpenPose in calculating
joint angles for simple poses [38,39], its performance in complex scenarios involving over-
lapping bodies and interactions among multiple individuals remains suboptimal. Skeletal
compensation methods that rely on left–right skeletal symmetry are often proved to be
highly dependent on camera perspective settings [22]. Additionally, when employing Mask
RCNN to confine the boundaries of compensated skeletal points in scenes with multiple
individuals, the accuracy of pose skeleton estimation is not ideal enough [23]. Existing
methods that compensate for occluded skeletons based on a Euclidean distance matrix [24]
or that predict future pose skeletons using Human Dynamics [25] share a common limi-
tation: they fail to address the problem of skeletal misidentification, leading to a uniform
compensation approach for both correctly identified and misidentified skeletons. Conse-
quently, the compensated skeletons fail to match the target pose skeleton, exacerbating
differences in pose skeleton angles and REBA scores. Taking inspiration from skeleton kine-
matics, we proposed a novel skeleton discrimination method based on skeleton kinematic
chains, which effectively distinguished different states of skeletal misidentification. Fur-
thermore, we introduced a heterogeneous action feature optimization method that updated
heterogeneous action features at the temporal sequences level. Leveraging the ST-GCN
network’s ability to assign action labels to different temporal skeletons, we could focus on
updating the action features to correct misidentified skeletons. Comparative analysis of the
accuracy of REBA scores demonstrated the distinct advantages of our method compared to
alternative approaches (Table 7).

Furthermore, the primary objective of this study was to conduct a comparative analysis
between our method and the OpenPose in terms of the predictive accuracy of skeletal joint
angles at the algorithmic level of 2D pose estimation. It is important to note that the
REBA scoring criteria encompasses not only joint angle assessment but also incorporates
additional scores for joint rotation and extra points. To ensure consistency across all
methods, we manually defined the parameters for rotation and extra point interventions.
While previous research has explored posture risk assessment based on monocular camera
3D pose estimation [40,41], achieving good recognition accuracy, it is essential to recognize
the inherent limitations of 3D pose evaluation. The computational demands associated
with 3D pose estimation make it less suitable for real-time pose estimation, and the reliance
on depth cameras or specialized sensors to capture depth data introduces complexities in
terms of hardware and data collection. In contrast, 2D pose estimation algorithms exhibit
greater resilience to challenging conditions such as lighting variations and occlusions in
comparison to their 3D counterparts. Significantly, most existing monocular camera 3D
pose estimation techniques primarily focus on simple pose estimation scenarios, while
the complexities arising from multi-person interactions and limb occlusions present more
substantial obstacles for accurate 3D pose estimation.

Collectively, our approach initially explored solutions for multi-person pose estimation
from a 2D perspective before transitioning to 3D pose estimation research. The current re-
search findings underscored the feasibility of our method, which might hold wide-ranging
applicability in popular mobile devices or surveillance cameras through the utilization of
lightweight models. Moreover, our method could be integrated into Internet of Things (IoT)
devices equipped with RGB cameras, including smartphones and surveillance systems.
Leveraging neural network models and image processing techniques, our method enables
the inference of posture information, facilitating risk assessment and visual guidance for
WMSDs associated with nursing postures. Looking ahead, the realization of an integrated
intelligent nursing posture assessment system becomes a tangible possibility, driven by the
advancements achieved through our method.
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4.2. Limitations

It is important to acknowledge that our skeletal compensation and correction mech-
anisms rely on traversing temporal features over a span of 10 frames. Any instances of
skeleton loss beyond this range might increase the skeleton miss rate of our method, re-
sulting in our method’s REBA score accuracy being limited to 87.34%. As such, future
investigations should focus on mitigating these limitations and exploring a suitable travers-
ing temporal scope for improving accuracy. Furthermore, exploring the application of
monocular camera 3D caregiving pose evaluation would be merited to improve the perfor-
mance in the limb occlusion scenario, as investigating the effectiveness of 3D compared to
2D approaches would carry significant implications and contribute to the advancement of
the field.

4.3. Directions for Further Research

In light of the demonstrable benefits associated with the capture of temporal features
over a 10-frame interval in nursing care action interaction actions, the accuracy of skeleton
compensation within this temporal range is influenced by the speed and complexity of
these actions across diverse application scenarios. Consequently, it is imperative for future
research to prioritize the investigation of pose actions’ intricacy and subsequently deter-
mine the optimal time span required to match these actions accurately. The development of
a model that establishes the relationship between action complexity and time span would
significantly enhance the efficiency and effectiveness of skeleton compensation, thereby
unlocking the substantial potential for intelligent selection of time intervals in various
pose estimation scenarios. Furthermore, augmenting the precision of monocular-camera-
based 3D techniques in multi-person pose skeleton estimation is pivotal for improving the
accuracy of caregiving posture assessment, particularly in scenarios involving rotational
movements and changes in perspective. Exploring the integration of skeleton compen-
sation and correction techniques derived from 2D approaches into 3D scenes represents
a promising avenue for future research, as it addresses the challenge of compensating
for skeleton occlusion during rotational maneuvers and visual alterations. Additionally,
proactive exploration of the integration of our approach into Internet of Things (IoT) de-
vices equipped with RGB cameras, such as smartphones and monitoring systems, holds
substantial potential. Leveraging neural network models and image processing techniques
to infer pose information can facilitate risk assessment and visual guidance pertaining to
work-related musculoskeletal disorders (WMSDs), offering significant opportunities for
the implementation of integrated intelligent pose assessment systems.

5. Conclusions

This study introduced an enhanced ST-GCN-based skeletal compensation method that
effectively optimized skeletal occlusion and misidentification in nursing care tasks. Our
approach integrated distinct action features and weights for posture skeletons, utilizing
a skeletal discrimination network to evaluate skeleton integrity. To mitigate occlusion,
we employed a skeletal interpolation compensation network that utilized adjacent tem-
poral contexts. In instances of misidentification, a skeletal correction network optimized
abnormal action features and updated skeletons accordingly. Our method improved joint
angle calculations and enhanced the accuracy of REBA scores, which exhibited higher
accuracy compared to the traditional OpenPose, achieving high precision in REBA scores
for nursing task postures. Such improvements are crucial in mitigating the risk of WMSDs
in the nursing profession.

Supplementary Materials: A demo could be found at https://github.com/Nicxhan/Skeleton-
compensation-and-correction, accessed on 1 January 2024.
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