Dynamic and Static Assistive Strategies for a Tailored Occupational Back-Support Exoskeleton: Assessment on Real Tasks Carried Out by Railway Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exoskeleton Comparison: Laevo v2.56 and StreamEXO
2.2. Lab Validation
2.3. Gravity Compensation Control Strategy Evaluation
3. Realistic Task Assessment: Experimental Protocol
- (1)
- noExo: activities performed without any type of exoskeleton
- (2)
- laevo: activities performed with assistance provided by the passive Laevo v2.56 exoskeleton
- (3)
- stream: activities performed with assistance provided by the StreamEXO
3.1. Data Collection
3.2. Data Processing and Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toxiri, S.; Näf, M.B.; Lazzaroni, M.; Fernández, J.; Sposito, M.; Poliero, T.; Monica, L.; Anastasi, S.; Caldwell, D.G.; Ortiz, J. Back-support exoskeletons for occupational use: An overview of technological advances and trends. Iise Trans. Occup. Ergon. Hum. Factors 2019, 7, 237–249. [Google Scholar] [CrossRef]
- Nussbaum, M.A.; Lowe, B.D.; de Looze, M.; Harris-Adamson, C.; Smets, M. An introduction to the special issue on occupational exoskeletons. Iise Trans. Occup. Ergon. Hum. Factors 2019, 7, 153–162. [Google Scholar] [CrossRef]
- Toxiri, S.; Koopman, A.S.; Lazzaroni, M.; Ortiz, J.; Power, V.; De Looze, M.P.; O’Sullivan, L.; Caldwell, D.G. Rationale, implementation and evaluation of assistive strategies for an active back-support exoskeleton. Front. Robot. 2018, 5, 53. [Google Scholar] [CrossRef] [PubMed]
- Baltrusch, S.J.; Van Dieën, J.H.; Bruijn, S.M.; Koopman, A.S.; Van Bennekom, C.A.M.; Houdijk, H. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking. Ergonomics 2019, 62, 903–916. [Google Scholar] [CrossRef] [PubMed]
- Alemi, M.M.; Geissinger, J.; Simon, A.A.; Chang, S.E.; Asbeck, A.T. A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting. J. Electromyogr. Kinesiol. 2019, 47, 25–34. [Google Scholar] [CrossRef]
- Koopman, A.S.; Näf, M.; Baltrusch, S.J.; Kingma, I.; Rodriguez-Guerrero, C.; Babič, J.; de Looze, M.P.; van Dieën, J.H. Biomechanical evaluation of a new passive back support exoskeleton. J. Biomech. 2020, 105, 109795. [Google Scholar] [CrossRef]
- Theurel, J.; Desbrosses, K. Occupational exoskeletons: Overview of their benefits and limitations in preventing work-related musculoskeletal disorders. Iise Trans. Occup. Ergon. Hum. Factors 2019, 7, 264–280. [Google Scholar] [CrossRef]
- Kermavnar, T.; de Vries, A.W.; de Looze, M.P.; O’Sullivan, L.W. Effects of industrial back-support exoskeletons on body loading and user experience: An updated systematic review. Ergonomics 2021, 64, 685–711. [Google Scholar] [CrossRef]
- Kaupe, V.; Feldmann, C.; Wagner, H. Exoskeletons: Productivity and ergonomics in logistics: A systematic review. In Hamburg International Conference of Logistics (HICL); epubli: Berlin, Germany, 2021; pp. 527–561. [Google Scholar]
- Health. US Department of Health and Human Services, Public Health Service and Centers for Disease Control, National Institute for Occupational Safety and Health, Division of Biomedical and Behavioral Science. Work Practices Guide for Manual Lifting; (No. 81-122). Available online: https://www.cdc.gov/niosh/docs/81-122/default.html (accessed on 20 December 2023).
- Di Natali, C.; Chini, G.; Toxiri, S.; Monica, L.; Anastasi, S.; Draicchio, F.; Caldwell, D.G.; Ortiz, J. Equivalent Weight: Connecting Exoskeleton Effectiveness with Ergonomic Risk during Manual Material Handling. Int. J. Environ. Res. Public Health 2021, 18, 2677. [Google Scholar] [CrossRef] [PubMed]
- Zelik, K.E.; Nurse, C.A.; Schall, M.C., Jr.; Sesek, R.F.; Marino, M.C.; Gallagher, S. An ergonomic assessment tool for evaluating the effect of back exoskeletons on injury risk. Appl. Ergon. 2022, 99, 103619. [Google Scholar] [CrossRef]
- Lanotte, F.; McKinney, Z.; Grazi, L.; Chen, B.; Crea, S.; Vitiello, N. Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks. IEEE Trans. Robot. 2021, 37, 2193–2209. [Google Scholar] [CrossRef]
- Poliero, T.; Sposito, M.; Toxiri, S.; Di Natali, C.; Iurato, M.; Sanguineti, V.; Caldwell, D.G.; Ortiz, J. Versatile and non-versatile occupational back-support exoskeletons: A comparison in laboratory and field studies. Wearable Technol. 2021, 2, e12. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, X.; Wang, S.; Li, R. Adaptive Switching Control Based on Dynamic Zero Moment Point for Versatile Hip Exoskeleton under Hybrid Locomotion. IEEE Trans. Ind. Electron. 2022, 70, 11443–11452. [Google Scholar] [CrossRef]
- Crea, S.; Beckerle, P.; De Looze, M.; De Pauw, K.; Grazi, L.; Kermavnar, T.; Masood, J.; O’Sullivan, L.W.; Pacifico, I.; Rodriguez-Guerrero, C.; et al. Occupational exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces. Wearable Technol. 2021, 2, e11. [Google Scholar] [CrossRef]
- Schwerha, D.; McNamara, N.; Kim, S.; Nussbaum, M.A. Exploratory field testing of passive exoskeletons in several manufacturing environments: Perceived usability and user acceptance. Iise Trans. Occup. Ergon. Hum. Factors 2022, 10, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Kopp, V.; Holl, M.; Schalk, M.; Daub, U.; Bances, E.; García, B.; Schalk, I.; Siegert, J.; Schneider, U. Exoworkathlon: A prospective study approach for the evaluation of industrial exoskeletons. Wearable Technol. 2022, 3, e22. [Google Scholar] [CrossRef]
- Di Natali, C.; Mattila, J.; Kolu, A.; De Vito, P.; Gauttier, S.; Morata, M.; Garcia, M.; Caldwell, D. Smart tools for railway inspection and maintenance work, performance and safety improvement. Transp. Res. Procedia 2023, 72, 3070–3077. [Google Scholar] [CrossRef]
- De Bock, S.; Ghillebert, J.; Govaerts, R.; Elprama, S.A.; Marusic, U.; Serrien, B.; Jacobs, A.; Geeroms, J.; Meeusen, R.; De Pauw, K. Passive shoulder exoskeletons: More effective in the lab than in the field? IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 29, 173–183. [Google Scholar] [CrossRef]
- Pesenti, M.; Antonietti, A.; Gandolla, M.; Pedrocchi, A. Towards a functional performance validation standard for industrial low-back exoskeletons: State of the art review. Sensors 2021, 21, 808. [Google Scholar] [CrossRef]
- Zheng, L.; Lowe, B.; Hawke, A.L.; Wu, J.Z. Evaluation and test methods of industrial exoskeletons in vitro, in vivo, and in silico: A critical review. Crit. Rev. Biomed. Eng. 2021, 49, 1–13. [Google Scholar] [CrossRef]
- Hoffmann, N.; Prokop, G.; Weidner, R. Methodologies for evaluating exoskeletons with industrial applications. Ergonomics 2022, 65, 276–295. [Google Scholar] [CrossRef]
- Madinei, S.; Alemi, M.M.; Kim, S.; Srinivasan, D.; Nussbaum, M.A. Biomechanical assessment of two back-support exoskeletons in symmetric and asymmetric repetitive lifting with moderate postural demands. Appl. Ergon. 2020, 88, 103156. [Google Scholar] [CrossRef]
- Madinei, S.; Alemi, M.M.; Kim, S.; Srinivasan, D.; Nussbaum, M.A. Biomechanical evaluation of passive back-support exoskeletons in a precision manual assembly task: “Expected” effects on trunk muscle activity, perceived exertion, and task performance. Hum. Factors 2020, 62, 441–457. [Google Scholar] [CrossRef]
- Poliero, T.; Fanti, V.; Sposito, M.; Caldwell, D.G.; Di Natali, C. Active and passive back-support exoskeletons: A comparison in static and dynamic tasks. In Proceedings of the 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), Seoul, Republic of Korea, 21–24 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 01–08. [Google Scholar]
- Dempster, W.T.; Gaughran, G.R. Properties of body segments based on size and weight. Am. J. Anatomy 1967, 120, 33–54. [Google Scholar] [CrossRef]
- Diffrient, N.; Tilley, A.D.; Bardagjy, J.C. Humanscale 1-2-3: Dreyfuss and Associates; M.I.T. Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Adolphe, M.; Clerval, J.; Kirchof, Z.; Lacombe-Delpech, R.; Zagrodny, B. Center of mass of human’s body segments. Mech. Mech. Eng. 2017, 21, 485–497. [Google Scholar]
- McGill, S.M. Electromyographic activity of the abdominal and low back musculature during the generation of isometric and dynamic axial trunk torque: Implications for lumbar mechanics. J. Orthop. Res. 1991, 9, 91–103. [Google Scholar] [CrossRef]
- Jonsson, B. Measurement and evaluation of local muscular strain in the shoulder during constrained work. J. Hum. Ergology 1982, 11, 73–88. [Google Scholar]
- Sochopoulos, A.; Poliero, T.; Caldwell, D.; Ortiz, J.; Di Natali, C. Human-in-the-Loop Optimization of Active Back-Support Exoskeleton Assistance Via Lumbosacral Joint Torque Estimation. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 6090–6096. [Google Scholar]
- Zhang, J.; Fiers, P.; Witte, K.A.; Jackson, R.W.; Poggensee, K.L.; Atkeson, C.G.; Collins, S.H. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 2017, 356, 1280–1284. [Google Scholar] [CrossRef]
- Díaz, M.A.; Voß, M.; Dillen, A.; Tassignon, B.; Flynn, L.; Geeroms, J.; Meeusen, R.; Verstraten, T.; Babič, J.; Beckerle, P.; et al. Human-in-the-Loop Optimization of Wearable Robotic Devices to Improve Human–Robot Interaction: A Systematic Review. IEEE Trans. Cybern. 2022, 53, 7483–7496. [Google Scholar] [CrossRef] [PubMed]
Stability Error [m/s2] | Standard Deviation [m/s2] | |
---|---|---|
0° | ||
30° | ||
50° | ||
60° | ||
70° | ||
90° |
noExo | laevo | StreamEXO | ||
---|---|---|---|---|
Dynamic | ES median [%MVC] | 26.31 ± 7.52 | 24.76 ± 7.46 (6%) | 21.41 ± 5.49 (19%) |
ES peak [%MVC] | 67.37 ± 23.15 | 63.02 ± 22.08 (6%) | 49.64 ± 14.87 (26%) | |
Tmed [deg] | 56.36 ± 14.04 | 43.62 ± 17.11 (23%) | 51.03 ± 17.37 (9%) | |
Static | ES median [%MVC] | 19.85 ± 13.70 | 14.66 ± 6.42 (26%) | 13.28 ± 4.97 (33%) |
ES peak [%MVC] | 50.07 ± 16.46 | 44.74 ± 14.56 (11%) | 36.99 ± 13.06 (26%) | |
Tmed [deg] | 54.30 ± 11.88 | 43.71 ± 15.40 (20%) | 51.21 ± 15.9 (6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Natali, C.; Poliero, T.; Fanti, V.; Sposito, M.; Caldwell, D.G. Dynamic and Static Assistive Strategies for a Tailored Occupational Back-Support Exoskeleton: Assessment on Real Tasks Carried Out by Railway Workers. Bioengineering 2024, 11, 172. https://doi.org/10.3390/bioengineering11020172
Di Natali C, Poliero T, Fanti V, Sposito M, Caldwell DG. Dynamic and Static Assistive Strategies for a Tailored Occupational Back-Support Exoskeleton: Assessment on Real Tasks Carried Out by Railway Workers. Bioengineering. 2024; 11(2):172. https://doi.org/10.3390/bioengineering11020172
Chicago/Turabian StyleDi Natali, Christian, Tommaso Poliero, Vasco Fanti, Matteo Sposito, and Darwin G. Caldwell. 2024. "Dynamic and Static Assistive Strategies for a Tailored Occupational Back-Support Exoskeleton: Assessment on Real Tasks Carried Out by Railway Workers" Bioengineering 11, no. 2: 172. https://doi.org/10.3390/bioengineering11020172
APA StyleDi Natali, C., Poliero, T., Fanti, V., Sposito, M., & Caldwell, D. G. (2024). Dynamic and Static Assistive Strategies for a Tailored Occupational Back-Support Exoskeleton: Assessment on Real Tasks Carried Out by Railway Workers. Bioengineering, 11(2), 172. https://doi.org/10.3390/bioengineering11020172