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Abstract: This article presents an innovative approach to analyzing and extracting electrocardiogram
(ECG) signals from the abdomen and thorax of pregnant women, with the primary goal of isolating
fetal ECG (fECG) and maternal ECG (mECG) signals. To resolve the difficulties related to the low
amplitude of the fECG, various noise sources during signal acquisition, and the overlapping of
R waves, we developed a new method for extracting ECG signals using blind source separation
techniques. This method is based on independent component analysis algorithms to detect and
accurately extract fECG and mECG signals from abdomen and thorax data. To validate our approach,
we carried out experiments using a real and reliable database for the evaluation of fECG extraction
algorithms. Moreover, to demonstrate real-time applicability, we implemented our method in an
embedded card linked to electronic modules that measure blood oxygen saturation (SpO2) and
body temperature, as well as the transmission of data to a web server. This enables us to present all
information related to the fetus and its mother in a mobile application to assist doctors in diagnosing
the fetus’s condition. Our results demonstrate the effectiveness of our approach in isolating fECG
and mECG signals under difficult conditions and also calculating different heart rates (fBPM and
mBPM), which offers promising prospects for improving fetal monitoring and maternal healthcare
during pregnancy.

Keywords: ECG; blind source separation; IoT system; fetal ECG; real time implementation; heart
rate; biomedical systems

1. Introduction

Birth defects are a leading cause of infant mortality, chronic disease, and disability
in many countries. The 2010 World Health Assembly resolution encourages Member
States to attach great importance to the prevention and health of children affected by these
anomalies. Fetal death in the womb is an emotionally devastating event that affects parents
and healthcare professionals. Newborn babies must be carefully monitored as congenital
heart disease can manifest itself in the early stages of pregnancy. Rapid diagnosis is
crucial because certain diseases, whether hereditary or not, can have serious repercussions.
Approximately 6000 newborns are born each year in Morocco with cardiac anomalies or
congenital heart disease [1], and prenatal pathology is generally diagnosed only after the
onset of symptoms in the child, which may be too late. For this reason, fetal ECG analysis
and monitoring have become more important than ever.

An electrocardiogram (ECG) is a technique for recording the electrical activities gener-
ated by the heart. Clinicians can assess the heart conditions of a patient through the use of
an ECG and conduct a more thorough analysis or diagnosis. An ECG signal is generally

Bioengineering 2024, 11, 512. https://doi.org/10.3390/bioengineering11050512 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering11050512
https://doi.org/10.3390/bioengineering11050512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0001-5836-1296
https://doi.org/10.3390/bioengineering11050512
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering11050512?type=check_update&version=1


Bioengineering 2024, 11, 512 2 of 12

measured from electrodes placed on the skin. In the case of a pregnant woman, acquiring
fetal ECG becomes challenging because direct contact with the fetus is perilous [2,3]. In
an electrocardiographic signal, the processes of myocardial contraction and relaxation are
seen as a sequence of positive and negative deflections superimposed on a zero potential
line (baseline) that corresponds to the absence of cardiac phenomena. Morphologically,
adults and fetuses have fairly similar ECG patterns, but the relative amplitudes of the
fetal complexes undergo considerable changes throughout gestation and even after birth.
One big change concerns the T waves, which are rather weak for fetuses and newborns.
An ECG not only provides information on heart rate but also on the position of the heart,
the origin of the potentials, and the propagation of the depolarization wave. It is an es-
sential clinical examination for exploring cardiac function and identifying any rhythm or
conduction disorders.

Furthermore, ECG measurements obtained from the surface of a maternal abdomen
contain various bioelectrical potentials, such as maternal cardiac activity, fetal cardiac
activity, maternal muscle activity, fetal activity, noise, etc. These signal differences increase
the difficulty of reconstructing a fetal ECG. Several studies have been conducted in this
field based on different signal separation methods.

Blind source separation, specifically independent component analysis (ICA) [4,5], is
the most widely published and used non-adaptive method for extracting fECG signals. This
method assumes that the components are statistically independent and requires as many
electrodes placed on the maternal abdomen as the number of uncorrelated signal sources.
Therefore, when extracting fetal and maternal components from the abdominal signal, ICA
requires a minimum of two electrodes. It is not necessary to use too many electrodes as
each electrode carries its noise. During ICA preprocessing, centering is applied, making
the vector a zero-mean variable, and whitening is performed, creating a new vector with
uncorrelated components and unit variances [6].

Previously, only a few studies have been conducted on the real-time implementation
of blind source separation (BSS) to extract the fetal electrocardiographic from the surface
of a maternal abdomen. M. A. Hasan et al. [7] have modeled VHDL-based algorithms
for FPGA implementation to efficiently extract the FECG signal from abdominal ECG
using neural networks. C. Chareonsak and all [8] proposed and implemented a cost-
effective FPGA hardware architecture to enable real-time blind source separation (BSS)
for the separation of fetal ECG signals from maternal ECG interference using a modified
Torkkola’s algorithm based on independent component analysis (ICA). E. Torti and all [9]
present a hardware solution built on the Altera Stratix V FPGA for real-time separation and
accurate detection of fetal ECG from maternal ECG. The proposed system uses blind source
separation for fetal ECG extraction. Danilo Pani and all [10] worked on a block-by-block
tracking algorithm that uses blind source separation (BSS) to digitally and uniquely extract
a fetal ECG from non-invasive real-time recordings, effectively overcoming permutation
ambiguity. The method is implemented in an OMAP L137 embedded processor for real-
time applications. Bhavya Vasudeva et al. [11] presented an FPGA-based fetal heart
rate monitoring system using an adaptive least mean square filter (LMS-AF) for fECG
extraction. Raj, A. et al. [12] presented a new GWO-SA algorithm that combines gray
wolf optimization with sequence analysis to improve non-invasive fetal ECG extraction
from overlapping maternal signals. Dash, S.S. and all [13] presented a robust approach
combining empirical mode decomposition (EMD), independent component analysis (ICA),
and FIR filtering proposed for extracting fetal ECG (fECG) signals from the recordings
of pregnant women. This technique effectively separates maternal ECG (mECG) and
other noise sources, enabling the accurate extraction of fECG, validated on simulated
and real-world data, demonstrating high performance when assessed via API evaluation.
Sarafan, S. et al. [14] described a new algorithm using the Ensemble Kalman Filter (EnKF)
to efficiently extract a fetal electrocardiogram (fECG) from a single-channel abdominal
ECG (aECG), demonstrating superior performance to existing methods, with the results
obtained from PhysioNet clinical data. Shi, X. et al. [15] introduced an unsupervised
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multilevel fetal ECG signal quality assessment method using features based on entropy,
statistics, and ECG signal quality index, as well as an autoencoder-based feature. The results
demonstrated a weighted average F1 score of 90% in the classification of high, medium,
and low-quality fetal ECG signal segments, facilitating fetal heart rate estimation after the
elimination of low-quality signals. Subha T.D et al. [16] presented a method for extracting
fetal electrocardiograms (FECGs) from maternal abdominal signals using an adaptive least-
mean-square (LMS) filter, LabVIEW, and Spartan 3 FPGA. Boudet, S. et al. [17] developed
deep learning models to detect maternal heart rate (MHR) and false signals (FSs) on fetal
heart rate (FHR) recordings, achieving good performance levels and integrated these
models into an open-source MATLAB toolbox for morphological analysis of fetal heart
rates. There are also algorithms based on ANNs designed to process the signal and extract
useful information, as in the case of [18,19].

On the other hand, to date, none of these studies have addressed the challenge of
separating sources in real time using the Arduino card, which is known for being a freely
available, low-energy-consuming, and low-cost material. This work is also limited to
extracting fECG signals and not processing this information to calculate heart rate, for
example, or other parameters related to ECG signals to enhance fetal monitoring by doctors.

Our application aims to separate fetal cardiac activities (fECG), characterized by their
low amplitude, from those of the mother (mECG) in real time. The goal is to extract
specific components of the ECG signal for efficient fetal monitoring during pregnancy
and childbirth. The separation will be performed using the method developed in the
previous article [20] using blind source separation algorithms and the Arduino DUE board.
Additionally, electronic modules will be added to measure blood oxygen saturation (SPO2)
and body temperature, as well as to transmit the data to a web server. The results will be
displayed on a small OLED display and a mobile application.

2. Materials and Methods
2.1. System Architecture

This study proposes a smart solution for monitoring pregnant women and their
fetuses based on the ECG signals recovered from the thorax since this signal presents
a good indicator of the fetus’s state of health while reducing the potential of associated
risks. The developed solution is energy-efficient and includes several stages and systems
(Figure 1):

• Acquisition Block: The acquisition system consists of two electrodes, one placed on
the abdomen and the other on the thorax of a pregnant woman. The signals captured
by these electrodes will be sent in real time to a separation and processing system;

• Separation and Communication System: This block consists of a high-performance
on-board board for extracting the ECG signal from the fetus and its mother based
on blind source separation algorithms, then calculating the heartbeat and extracting
information related to each signal, such as the duration of each ECG wave. The card
also measures blood oxygen saturation using a SpO2 sensor, after which these data
are displayed on an OLED display and sent to an online database to facilitate fetal
monitoring online or via a smartphone application;

• Supervision System: This is a smartphone application that serves as a secure platform,
enabling not only parents but also the family doctor to remotely monitor and supervise
the state of health of the fetus and its mother. Equipped with an alert system and full
tracking of historical data, it provides a real-time overview of vital health parameters,
promoting better care and peace of mind for families expecting a fetus.
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Figure 1. The figure shows the architecture of our intelligent system. Figure 1. The figure shows the architecture of our intelligent system.

2.2. ECG Fetal

Fetal ECG (fECG) is a non-invasive method of monitoring fetal heart activity. It is
particularly useful during pregnancy when evaluating the state of health of the fetus
and detecting any cardiac disorders. fECG can be measured by placing electrodes on
the mother’s abdomen and chest/thorax (Figure 2) [21]. Fetal ECG is a recording that
represents a method of monitoring the electrical activity of the fetal heart. It is a potential
indicator of the state of health of the fetus and can change according to various internal
and external events. These events have a significant influence on the interpretation of the
fECG. That is why it is important to measure it accurately [22,23].
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Figure 2. The figure shows the FECG recording method.

Several sources of noise and interference are added to the fetal ECG. These include fetal
brain activity, the mother’s electromyograms (EMGs), respiratory activity, movement of the
uterus, and disturbances (50 Hz) due to the mains. Furthermore, its variability depends on
gestational age, the position of the electrodes, skin impedance, etc. Nevertheless, the main
contamination is the ECG of the mother (mECG), whose amplitude is much greater than that
of the fetus. The amplitude of the mECG changes during pregnancy, increasing during the
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first 25 weeks, experiencing a marked minimum around the 32nd week, and then increasing
again. Consequently, the basic problem is extracting the fECG from the composite ECG, in
which the fECG accounts for only 25% of the energy of the composite signal.

2.3. Composite ECG of a Pregnant Woman

When the electrocardiogram (ECG) of a pregnant woman is recorded on the abdomen,
the obtained signal is a composite (Figure 3). It includes the mother’s ECG (mECG) to
which the fetal ECG (fECG) is added, along with other signals resulting from uterine
movements. The analysis of fetal ECGs has now become a routine medical procedure
during pregnancy. A non-invasive technique for obtaining FECGs involves extracting it
from the composite ECG of the mother, which is recorded at the abdomen. The challenge
in this process lies in the fact that the fetal ECG is weak and is submerged within that of
the mother [24,25].
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2.4. About Blind Source Separation

Blind source separation (BSS) is a method of extracting the original signals from mixed
signals without prior knowledge of the mixing process or the specific properties of the
signals concerned. This approach applies to a wide range of data, including audio, visual,
and biomedical signals [26].

The term blind denotes the fact that there is no a priori information about the sources
or how they have been mixed. In the general case, three conditions are necessary when
performing this technique:

• The sources are statistically independent;
• The number of sensors is higher or equal to the number of sources;
• A mixing matrix between the sources and the sensors.

An essential aspect of BSS is the identification of an effective measure for assessing
the independence of separate signals. Various strategies have been developed to meet
this challenge, including principal component analysis (PCA), independent component
analysis (ICA), and non-negative matrix factorization (NMF). These techniques use distinct
assumptions and computational approaches to develop a transformation that improves
signal independence.

The principle of the BSS is depicted in Figure 4. In an ideal case, the principle is to find
the matrix A of size Q × P, which provides the output vector:

y(k) = W x(k) = W H s(k) ≈ s(k) (1)

where:

x(k): the vector containing the observations;
s(k): the vector containing N signals emitted by N unknown sources;
y(k): the vector of estimated sources;
H: mixture matrix of size Q × P;
W: the estimated Matrix H = W−1.
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Figure 4. The figure shows the principle of the separation of sources [20].

The estimated sources are obtained from the vector s(k), and their related projections
for the various sensors are determined from the estimated mixture array: H = W−1 [20,27].

3. Implementation Results
3.1. Database

The data used to validate this method were extracted from the FECGSYNDB database [28–30],
a reliable source for testing fetal ECG extraction algorithms. The FECGSYNDB database
contains ECG recordings from a pregnant woman using two electrodes: one placed on the
abdomen and the other on the chest. The sampling duration is four seconds at a sampling
frequency of 250 Hz, resulting in a signal of 1000 samples. The database utilized for the
algorithm is presented in Figure 5. As seen in the samples, the data contain six beats of
maternal ECG (mECG) and eleven beats of fetal ECG (fECG), where the mECG has a much
higher amplitude than the fECG.
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Figure 5. The figure shows an ECG of a pregnant woman (s1 from Thorax; s2 from Abdomen).

The signal of the fECG, if taken from the abdominal region, will exhibit very slight
variations due to the relative distance between each electrode and the center of the fetal
heart. This characteristic is not preserved when dealing with the mECG, as the signal will
change significantly depending on the placement of electrodes on the abdomen.

By utilizing these characteristics, the mECG can be distorted through the combination
of signals from different electrodes while preserving the fECG with minor changes. The
use of a larger number of electrodes would pose a problem for real-life applications of
this method. Thus, it is not necessary to use more than two electrodes for this procedure
to facilitate ease of use and electrode placement. The combination of both signals will
yield a signal with a high power ratio between the fECG and the mECG, simplifying the
isolation process.
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3.2. Hardware Implementation

In real-world applications, ECG signals are captured by electrodes placed on the
abdomen and chest of the pregnant woman and then sent to the Arduino Due board [31]
via the analog pins; alternatively, they can be stored on the board or sent from Matlab using
the ‘from workspace’ block in the ‘external mode’ for simulation. A diagram of the separation,
heart rate, and SpO2 monitoring is shown in Figure 6. The estimated signal (y1 and y2)
and the original recording from the database of signals from the abdomen and maternal
thorax (x1 and x2) are displayed in Figure 7. Signal y1 represents the extracted fetal ECG
from signals x1 and x2 using the proposed algorithm, while signal y2 represents the ECG
signal of the pregnant woman. It can be observed that the proposed method can extract a
clean fetal ECG signal in real time without the loss of R-waves.

Bioengineering 2024, 11, x FOR PEER REVIEW 7 of 12 
 

a signal with a high power ratio between the fECG and the mECG, simplifying the isola-
tion process. 

3.2. Hardware Implementation 
In real-world applications, ECG signals are captured by electrodes placed on the ab-

domen and chest of the pregnant woman and then sent to the Arduino Due board [31] via 
the analog pins; alternatively, they can be stored on the board or sent from Matlab using 
the ‘from workspace’ block in the ‘external mode’ for simulation. A diagram of the separation, 
heart rate, and SpO2 monitoring is shown in Figure 6. The estimated signal (y1 and y2) and 
the original recording from the database of signals from the abdomen and maternal thorax 
(x1 and x2) are displayed in Figure 7. Signal y1 represents the extracted fetal ECG from 
signals x1 and x2 using the proposed algorithm, while signal y2 represents the ECG signal 
of the pregnant woman. It can be observed that the proposed method can extract a clean 
fetal ECG signal in real time without the loss of R-waves. 

 
Figure 6. The figure shows the general connections of the complete setup. 

On the OLED display connected to the electronic board, it can be seen that the sepa-
ration algorithm is SYM-WHITE [32,33] with a performance index [20] of 0.0012. The re-
sults of actual implementation demonstrate superior performance in extracting fECG and 
mECG signals without the need for a computer or separation software. 

After separation, essential parameters such as the maternal heart rate (mBPM), the 
fetal heart rate (fBPM), the blood oxygen saturation level (SpO2), and the body tempera-
ture (T) of the pregnant woman are calculated. In addition, a sub-algorithm analyzes the 
ECG signal to determine critical intervals, such as the time between the R wave and the T 
wave (QT interval) and the variation in time between each R-R heartbeat (RR). This com-
plete set of data is not only displayed on an OLED screen for immediate observation but 
also transmitted to a web server for remote access and continuous monitoring. By provid-
ing this detailed information, the system facilitates proactive healthcare interventions and 
ensures the well-being of both mother and baby throughout pregnancy and childbirth. 
The information sent includes the following: 
• Maternal heart rate (mBPM); 
• Fetal heart rate (fBPM); 
• Oxygen saturation level (SpO2); 
• Pregnant woman’s body temperature (T); 

Figure 6. The figure shows the general connections of the complete setup.

Bioengineering 2024, 11, x FOR PEER REVIEW 8 of 12 
 

• The time interval between the R wave and the T wave (QT Interval); 
• Variation in time between each R-R heartbeat (RR). 

 
Signal source s1 

  
Signal source s2 

 
Signal estimé y1 (fECG) 

 
Signal estimé y2 (mECG) 

Figure 7. The figure shows the real-time extraction result. 

Figure 8 shows the architecture of the system developed in our laboratory, with a 
wristband integrated with a SpO2 sensor and an OLED screen, which is elegantly housed 
in a 3D-printed watch case. This portable system is complemented by modules dedicated 
to data acquisition and transmission. The communication module facilitates connectivity 
to Wi-Fi networks, enabling the real-time transmission of the acquired data to a desig-
nated web server. Users can easily access these data via a dedicated mobile application, 
improving the monitoring and management of vital health parameters. 

 
Figure 8. The figure shows the hardware setup for our system. 

Figure 9 provides an illustration of both the data structure and the real-time data 
within our Firebase database. The ‘RT_DATA’ table is designed to present the information 
obtained from the Wi-Fi module on a real-time basis, refreshing itself every minute. Con-
currently, the data gathered each minute is systematically archived in the ‘*_history’ table. 

Figure 7. The figure shows the real-time extraction result.



Bioengineering 2024, 11, 512 8 of 12

On the OLED display connected to the electronic board, it can be seen that the separa-
tion algorithm is SYM-WHITE [32,33] with a performance index [20] of 0.0012. The results
of actual implementation demonstrate superior performance in extracting fECG and mECG
signals without the need for a computer or separation software.

After separation, essential parameters such as the maternal heart rate (mBPM), the
fetal heart rate (fBPM), the blood oxygen saturation level (SpO2), and the body temperature
(T) of the pregnant woman are calculated. In addition, a sub-algorithm analyzes the ECG
signal to determine critical intervals, such as the time between the R wave and the T wave
(QT interval) and the variation in time between each R-R heartbeat (RR). This complete
set of data is not only displayed on an OLED screen for immediate observation but also
transmitted to a web server for remote access and continuous monitoring. By providing
this detailed information, the system facilitates proactive healthcare interventions and
ensures the well-being of both mother and baby throughout pregnancy and childbirth. The
information sent includes the following:

• Maternal heart rate (mBPM);
• Fetal heart rate (fBPM);
• Oxygen saturation level (SpO2);
• Pregnant woman’s body temperature (T);
• The time interval between the R wave and the T wave (QT Interval);
• Variation in time between each R-R heartbeat (RR).

Figure 8 shows the architecture of the system developed in our laboratory, with a
wristband integrated with a SpO2 sensor and an OLED screen, which is elegantly housed
in a 3D-printed watch case. This portable system is complemented by modules dedicated
to data acquisition and transmission. The communication module facilitates connectivity
to Wi-Fi networks, enabling the real-time transmission of the acquired data to a designated
web server. Users can easily access these data via a dedicated mobile application, improving
the monitoring and management of vital health parameters.
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Figure 9 provides an illustration of both the data structure and the real-time data
within our Firebase database. The ‘RT_DATA’ table is designed to present the information
obtained from the Wi-Fi module on a real-time basis, refreshing itself every minute. Con-
currently, the data gathered each minute is systematically archived in the ‘*_history’ table.
These stored data are subsequently utilized for display purposes in the ‘History’ section of
our application.
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In order to make our data more accessible and easy to manipulate and to enable
real-time monitoring, we have created a mobile application that runs on both the iOS and
Android platforms. This application was created using Flutter’s Dart language and consists
of two main pages. The first page is dedicated to user authentication, requiring a login and
password. The second page displays real-time data on three tabs. These tabs are equipped
with buttons for sharing data or contacting a doctor. The first tab displays ECG information
for pregnant women. The second tab is dedicated to displaying fetal ECG information.
Finally, the third tab, entitled ‘History’, displays the history of heartbeats (‘BPM’) over time.
Figure 10 shows the real-time monitoring of results on the mobile interface, which offers
the user three options:

• The first option enables exporting and sharing all data related to the ECG signals and
the history of fBPM and mBPM.

• The second option enables sharing a screenshot of the real-time results, including the
graph, via various connectivity tools, such as email or social media.

• The third option provides information about the mother and her fetus and technical
support details.
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The mobile application has been developed to send notifications and alerts to parents
and the family doctor in emergencies or scenarios predefined by the doctor.

Based on the results obtained, this real-time ECG signal separation and monitoring
system guarantees safe, reliable, and efficient fetal monitoring, and the separation and
calculation history relating to the ECG signal can be monitored.
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4. Discussion

The initial results have demonstrated that our developed IoT-based system provides
users with a simple and comprehensive real-time monitoring system for the fetus and its
mother. As today’s families are widely equipped with smartphones, this facilitates the
use of our system. Given the importance of fetal monitoring to take measures in case
of problems during childbirth and pregnancy, our system has low power consumption,
making it environmentally friendly. The system prototype was successfully created and
tested on a real database. These data are uploaded to the card via the USB port and will
be processed in the same way if the data are received by the analog pins of the Arduino
Due card (ADC1 and ADC2). Subsequently, the ECG signals will be separated by a set of
blind source separation algorithms. In our case, the SYM-WHITE algorithm showed good
separation performance, with a performance index equal to 0.0012.

After obtaining the fECG and mECG signals, digital filtering was applied to both
signals to help smooth the curve so that the P, Q, R, S, and T waves were visible. Once
the wave of the QRS complex is detected, peak counting is started to calculate the BPM.
When counting peaks, it was a bit difficult to determine which peaks were being monitored
and counted by the code, as some peaks were too low compared to others for each ECG
signal. To facilitate detection, an autonomous horizontal reference line that calculates every
10 s was added. The duration of the RR and QT intervals was then calculated using an
algorithm we developed to analyze the ECG signal. After calculating all parameters on
several databases, we found that for a pregnant woman, the RR interval is between 600
and 1200 ms, the QT interval is between 350 and 450 ms, and the BPM is between 60 and
100. Similarly, for a fetus, the RR interval is between 300 and 600 ms, the QT interval is
between 250 and 340 ms, and the BPM is between 105 and 150. Therefore, the program
can also check whether the intervals fall within the health parameters. The smartwatch
displays all of the calculated data in real time, along with the performance index. These
data are updated every minute in a cycle to present the data of both the fetus and its
mother. Likewise, the application presents the data with all the results shown, be it for
separation or the calculation of parameters. Our system has consistently demonstrated
good performance in real-time fetal monitoring.

5. Conclusions

This paper investigates the optimal configuration of a fetal growth monitoring system,
using an integrated electronic card linked to a web server for online data storage and
presentation on a mobile application to help the family physician diagnose fetal conditions.

A mobile application has been developed to facilitate tracking and history manage-
ment. The proposed system is being extensively tested and validated using electrodes,
sensors, and other display and data transmission modules via Wi-Fi.

The results showed that the system could successfully extract the fetal ECG signal
from mixed signals with high accuracy and quality. The implemented algorithm can also
estimate fetal heart rate, detect cardiac arrhythmias, and adapt to changes in fetal position
and orientation, which can affect the mixing process.

The development and implementation of this blind separation and tracking system
represent an important contribution to the field of biomedical engineering and signal pro-
cessing. It represents a novel and effective solution for non-invasive fetal ECG monitoring
during pregnancy. It has the potential to improve prenatal diagnosis and the management
of various fetal cardiac pathologies. It can also improve the bond and communication
between mother and fetus by enabling future parents to listen to their baby’s heartbeat.
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