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Abstract: Natural killer cells (NKCs) are non-specific immune lymphocytes with diverse morpholo-
gies. Their broad killing effect on cancer cells has led to increased attention towards activating NKCs
for anticancer immunotherapy. Consequently, understanding the motion characteristics of NKCs
under different morphologies and modeling their collective dynamics under cancer cells has become
crucial. However, tracking small NKCs in complex backgrounds poses significant challenges, and
conventional industrial tracking algorithms often perform poorly on NKC tracking datasets. There
remains a scarcity of research on NKC dynamics. In this paper, we utilize deep learning techniques to
analyze the morphology of NKCs and their key points. After analyzing the shortcomings of common
industrial multi-object tracking algorithms like DeepSORT in tracking natural killer cells, we propose
Distance Cascade Matching and the Re-Search method to improve upon existing algorithms, yielding
promising results. Through processing and tracking over 5000 frames of images, encompassing
approximately 300,000 cells, we preliminarily explore the impact of NKCs’ cell morphology, temper-
ature, and cancer cell environment on NKCs’ motion, along with conducting basic modeling. The
main conclusions of this study are as follows: polarized cells are more likely to move along their
polarization direction and exhibit stronger activity, and the maintenance of polarization makes them
more likely to approach cancer cells; under equilibrium, NK cells display a Boltzmann distribution
on the cancer cell surface.

Keywords: natural killer cells; cell polarization; small-object tracking; machine learning; dynamics
analysis

1. Introduction

Natural killer cells (NKCs) are a crucial part of the innate immune system. Despite
their lower killing activity compared to lymphocytes like T cells, NKCs can non-specifically
eliminate tumor and virus-infected cells without the need for prior sensitization [1]. More-
over, NKCs possess the ability to undergo morphological changes upon stimulation [2].
As illustrated in Figure 1, NKCs of different forms exhibit distinct motility traits. Un-
derstanding the morphology of cells and the influence of the cancer cell environment
on the motility of NKCs is becoming increasingly important in academic research [3,4].
By activating NKCs to change their morphology, they can be more effectively utilized for
immune responses against cancer cells [5,6]. Therefore, quantitative analysis of NKCs’
immunological data to understand their group dynamics is necessary, yet this research is
challenging, and related work remains limited [7–10]. Accurate detection, classification,
and stable tracking of NKCs’ coordinates are imperative for such analysis. The two-shot
tracking algorithm, widely used in multi-object tracking (MOT) tasks, offers a promising
solution [11]. This approach divides the MOT process into two independent parts: 1. A
detector for analyzing and identifying objects in single-frame images; 2. A data-association
component that links detected objects across frames, assigning IDs to maintain continuous
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trajectories. Because these two parts operate independently, the detector is interchange-
able, allowing users to select and modify the detector according to their needs. With the
development of deep learning, particularly advancements in image detection processes,
we are better equipped to analyze the morphology of NKCs and extract key points for
analysis [12–15]. This has led to increased accuracy and stability in multi-object tracking
algorithms. For example, tracking methods like DeepSORT and ByteTrack have been
widely applied in industry, demonstrating excellent performance in pedestrian and vehicle
tracking. However, tracking small objects such as NKCs in complex backgrounds still poses
many challenges [16–19].

Figure 1. Examples of different morphologies of natural killer cells: (a) A non-polarized natural
killer cell (NP-NKC), with its intracellular substances roughly evenly distributed, presents a regular
spherical shape overall. (b) A simple polarized natural killer cell (P-NKC), characterized by its
irregular shape, with a visible cell body and a slender black “tail”. This is due to the reorganization of
migratory substances within the cell, causing symmetry to be disrupted, a phenomenon referred to
as polarization, with the tail pointing towards the cell body as the polarization direction. (c) Complex
polarized cells differ from simple polarized cells in that they have multiple tails and multiple
polarization directions.

Firstly, the performance of tracking algorithms highly depends on the accuracy of de-
tectors, leading to the following issues: (1) High-accuracy detectors often require extensive
datasets for training, but, in many experiments, our original datasets are limited; (2) Build-
ing the original training set often consumes a lot of time and effort, and the generalization
ability of deep learning is limited. Experimental conditions or imaging equipment changes
often reveal the variability in datasets, making it difficult to accurately detect with existing
weights. This means that we need to add corresponding training data for weight adjust-
ments, increasing time costs; (3) The small image area occupied by NKCs makes it difficult
to judge cells based on single-frame information in complex backgrounds, especially when
cells are occluded or interfered with, relying instead on context information for judgment.

Secondly, the cell matching issue arises when detecting cells. For small targets like
NKCs, matching presents the following difficulties [19]: (1) Due to the few pixels occupied
by cells in images, their features are few and unstable; (2) In dense scenes, cells easily
overlap and occlude each other, making it challenging for tracking algorithms to maintain
target identity information; (3) In time-lapse photography, the relative speed of P-NKCs is
often significant, meaning that the displacement of the cell itself over two frames relative to
the length of the target is much larger, complicating the capture of trajectories by algorithms.

Due to these issues, while common industrial algorithms such as DeepSORT and
ByteTrack are capable of tracking conventional targets like pedestrians, they encounter
several challenges when tracking natural killer cells (NKCs) in complex environments.
Therefore, the aim of this paper is to optimize traditional algorithms for the precise tracking
of small targets like NKCs in complex environments. At the same time, we expect to use
this new tracking algorithm to simultaneously complete the morphological analysis and
dynamic tracking of NKCs. By integrating these advancements, we provide a comprehen-
sive examination of NKCs’ behavior, with a particular focus on how their polarized states,
environmental temperature, and proximity to cancer cells influence their motility. This
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dual approach, combining advanced image processing with a meticulous analysis of NKCs’
group dynamics, offers a novel pathway for understanding their role in immune responses
and presents potential strategies for enhancing their effectiveness in cancer immunotherapy.

2. Materials and Detection Process
2.1. Experimental Materials

The experimental materials for this study were supplied by Professor Jue Shi from
Hong Kong Baptist University. The natural killer cells utilized in this study were extracted
from fresh human blood, provided by the Hong Kong Red Cross, and were sustained and
activated outside the body using Interleukin-2 (IL-2). The cancer cells chosen for the study
were U-2 OS, originating from bone cancer. Cell imaging was conducted using a Nikon
TE2000-PFS inverted microscope sourced from Nikon Corporation, Tokyo, Japan, capturing
images every 30 s with a motorized stage and a 20X objective (NA = 0.95). The microscopic
images had a resolution of 2048 × 2048 pixels, each pixel representing 0.65 µm in reality.
A series of experiments were conducted: 1. The migration of natural killer cells in an
environment devoid of cancer cells was observed, measuring cell performance at 30 ◦C
and 37 ◦C, with an average of about 80 cells per frame, and each experimental set observed
601 frames, repeated three times; 2. The movement of natural killer cells in a cancer cell
environment was observed, where the cancer cells were fixed in the culture dish, and their
positions remained almost unchanged, each frame containing about 220 cells, totaling
1080 frames, also repeated in three sets. The images from the second experiment can be
seen in Figure 2. Throughout the experiments, no cell death occurred, and the natural killer
cells maintained good motility. For detailed specifics of the experiments, please refer to
Professor Jue Shi’s paper [20,21].

Figure 2. Example of an image depicting natural killer cells in the cancer cell environment. The small
fluorescent cells represent natural killer cells. In the experiment, the ratio of polarized to unpolarized
natural killer cells is approximately 1:1 (52:48). The irregularly shaped and larger cells in the images
are cancer cells, which do not exhibit movement during the experiment and only show minimal
morphological changes. The only difference observed in the experimental group without cancer cells
in the images compared to the images above is the absence of cancer cells within the field of view.
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2.2. Detection Process

In the context of our experiments with natural killer cells (NKCs), both understanding
their positional data and accurately classifying their morphologies are crucial for processing
their motion data. This necessitates a prior step of cell detection within individual frames
before moving on to cell tracking. With the advancement of deep learning, contemporary
detection algorithms, such as ResNet [22], Faster R-CNN [12], SSD [23], Transform [24],
GCN [25], and YOLO [26], have significantly advanced, offering robust solutions for
complex image analyses. Among these, we have opted for the YOLOv5 framework for cell
detection, renowned for its speed and efficiency. YOLOv5, with its potent capability for
image understanding, not only facilitates the detection of cell morphologies but also allows
for the identification of cell key points through the YOLO-POSE [27] extension.

Due to the large size of the original images (2048 × 2048 pixels) and the small size
of the cell images (around 30 × 30 pixels), training the network with the original images
did not yield good results. To address this, we processed the original images by cropping,
adding random noise, and stitching to enhance the data. Images were extracted from
different experimental datasets, and 150 images were selected, with 100 images depicting
natural killer cells in a cancer cell environment and 50 images depicting natural killer
cells in an environment without cancer cells. These images was expanded to 9000 images.
The YOLOv5x network architecture was chosen, with a batch size of 64, and the model was
trained for 300 epochs using stochastic gradient descent.

The detection accuracy reached 96% in a non-cancer cell environment and 92% in a
cancer cell environment, having reached a relatively high level. However, as shown in
Figure 3, the following two types of errors still occurred: Firstly, the omission of targets due
to a limited training set affected the algorithm’s generalization capabilities and significant
background interference hindered accurate target identification; Secondly, targets were
over-detected in scenarios where NKCs appeared densely or overlapped, and when NKCs’
morphological traits were not distinctive, leading to their misclassification as both P-NKCs
and NP-NKCs. Despite these errors being relatively infrequent, the sheer number of targets
that need to be detected in each frame means that these mistakes can accumulate, leading
to significant challenges for subsequent tracking efforts. This highlights the importance
of refining our detection approach to better manage the complexities of tracking a large
number of small targets within these images.

Figure 3. Example of our detection algorithm results, where the blue boxes mark NP-NKCs, and the
red boxes are for P-NKCs. It shows that, although the overall detection accuracy is as high as 92%,
there still exist the following types of errors: (a) Due to insufficient training samples, the algorithm’s
generalization ability is limited, resulting in a small number of NKCs not being successfully detected;
(b) The complexity of the background makes it difficult to detect NKCs near cancer cells using only
the current frame; (c) Targets are redundantly boxed, a frequent occurrence in densely populated
cell areas.
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3. Improvements in Tracking Process

Once the detection process is completed, we need to perform data association to
correlate the detection results across frames for target tracking. This involves associating
the targets detected in consecutive frames and assigning them continuous IDs to achieve
persistent tracking of the targets. The need for accurate and continuous tracking of targets
has led to the evaluation of two widely used metrics for tracking algorithms: MOTA and
IDF1. MOTA primarily considers the accuracy of the tracking algorithm, providing a
comprehensive assessment of missed detections, false positives, and mismatches, focusing
more on whether the targets are successfully “tracked”. In contrast, the IDF1 metric focuses
on maintaining target continuity, meaning it concerns whether the tracked trajectories
are continuous for a particular target. For these metrics, achieving a score of 1 signifies
the optimal tracking performance of an algorithm, with higher scores reflecting better
effectiveness in tracking.

3.1. Analysis of Tracking Algorithm Limitations for NKCs

Before we delve into the principles and analysis of multi-object tracking (MOT) algo-
rithms, it is crucial to introduce two commonly used tracking metrics: MOTA [28] and
IDF1 [29]. These metrics evaluate the performance of an algorithm from two distinct per-
spectives. MOTA is an indicator that integrates the algorithm’s performance in terms of
missed detections, false positives, and identity switches, offering a measure of whether
targets are accurately represented in their trajectories by accounting for misses and false
alarms. In contrast, the IDF1 metric focuses on maintaining target continuity and accurately
tracking the movement of targets, paying closer attention to the consistency and stability
of the tracking identities. For these metrics, achieving a score of 1 signifies the optimal
tracking performance of an algorithm, with higher scores reflecting better effectiveness
in tracking.

We integrate these two MOT tracking metrics with the target-tracking trajectory plots
to assess the tracking performance of DeepSORT [30] and ByteTrack [31], two commonly
employed algorithms in industrial settings, on NKCs. Additionally, we analyze the perfor-
mance of the tracking algorithms by comparing their performance on the standard target
dataset MOT17 and examining their underlying principles.

3.1.1. DeepSORT

The DeepSORT algorithm, developed by Wojke et al. [30], is a multi-object track-
ing algorithm that has demonstrated excellent performance on many common tracking
datasets, such as MOT15 and MOT17, thus finding widespread application in the industry.
The innovation of this algorithm lies in the integration of a ReID (Person Re-identification)
network and cascaded matching for multi-object tracking. ReID is a feature extraction
algorithm based on convolutional neural networks, and, despite its name implying “Per-
son Re-identification”, its scope extends beyond humans to encompass the extraction of
appearance features from various objects. In DeepSORT, the ReID network is utilized to
compress target images into feature vectors, and the similarity of appearance between
targets is compared by calculating the cosine distance of vectors. Subsequently, DeepSORT
matches the most visually similar targets between consecutive frames through cascaded
matching. Cascaded matching involves optimizing the overall matching effect by com-
paring and matching targets layer by layer, thereby reducing the possibility of incorrect
matches. For targets lost during tracking, DeepSORT retains their appearance features,
but the probability of relocating these targets decreases with the increase in loss time. There-
fore, for those lost targets, DeepSORT arranges their appearance matching with detection
frames later, and the priority of matching gradually decreases with the increase in loss time
until matching ceases.

We applied DeepSORT to our self-labeled dataset of NKCs in cancer cell environments,
using manually labeled data as ground truth for metric calculation, and compared it with its
performance on the conventional pedestrian dataset MOT17. The trajectory plots of target
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tracking are shown in Figure 4, and the results of detection metric calculations are presented
in Table 1. From the trajectory tracking plots, we observed numerous erroneous trajectories,
and the computed metrics indicated significantly poorer accuracy and continuity compared
to its performance on the conventional pedestrian dataset MOT17. The subpar performance
of DeepSORT in tracking NKCs can be attributed to two main reasons: 1. The limited
cellular morphology information of NKCs makes it challenging to extract information,
with the ReID network achieving only 79.2% accuracy after training; 2. The morphology of
NKCs is not fixed, with the cell’s morphology constantly changing, making the approach
of using appearance information for matching impractical.

Figure 4. (a) The trajectory images obtained by the DeepSORT algorithm after tracking the same
100 frames show a large number of crossing lines in the trajectories. These errors are due to its
adoption of appearance similarity matching. (b) The trajectory images obtained by the ByteTrack
algorithm after tracking the same 100 frames do not exhibit the apparent matching errors seen with
DeepSORT, thanks to its use of IoU matching. However, the tracks it produces are shorter, and the
continuity of tracking is weaker. We provide a more detailed demonstration of ByteTrack’s tracking
deficiencies in Figure 5.

Figure 5. Two kinds of distance. In this figure, trajectory refers to the historical movement information
of targets. Prediction refers to the inferred position of the target in frame N + 1, which is derived
through Kalman filtering using the trajectory data—specifically, the known position and velocity
from frame N. Detection refers to the actual position of targets in frame N + 1, as determined by the
detection algorithm. At this point, we need to match the detection in frame N + 1 with the trajectory
in frame N. Here, we propose distance “a”, which is the difference between the actual position and
the predicted position, and distance “b”, which is the displacement of the actual position compared
to the previous frame.
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Table 1. The performance of DeepSORT, ByteTrack, and our new tracking algorithm on NKCs’ data
and MOT17.

MOT17 NKCs’ Data

Tracker MOTA IDF1 IDs MOTA IDF1 IDs

DeepSORT 75.4% 77.0% 238 68.7% 42.7% 1948
ByteTrack 76.3% 80.5% 216 79.0% 66.6% 411
NEW TRACKING / / / 83.6% 81.5% 149

3.1.2. ByteTrack

In contrast to the appearance-based matching used by DeepSORT, ByteTrack focuses
solely on the movement of targets. It employs Kalman filtering to predict the likely position
of a target in the next frame (predicted box) and associates trajectories with the latest
detected targets by calculating the Intersection over Union (IoU) values between predicted
boxes and detection boxes. The innovation of ByteTrack lies in categorizing targets detected
by the detection algorithm into two types: low-confidence targets and high-confidence
targets. It considers high-confidence targets as definitely existing, while low-confidence
targets might have low detection scores due to reasons such as occlusion. ByteTrack
ingeniously uses low-confidence detection boxes, allowing the algorithm to better utilize
information from the detection algorithm and effectively mitigate the tracking issues of
partially occluded targets.

For ByteTrack, unlike DeepSORT, we observed from the target tracking trajectory
plots that it did not exhibit a large number of unreasonable trajectories. Moreover, it
outperformed the DeepSORT algorithm in various tracking metrics. However, ByteTrack
still fell short of our expectations. Although its performance on the MOTA metric was
similar to that on the MOT17 dataset, the IDF1 metric was significantly worse, indicating
poorer stability and continuity in tracking despite the detection algorithm being relatively
qualified. This situation can be attributed to the following three reasons: 1. As shown in
Figure 6b, ByteTrack only utilizes the motion information of targets for prediction. Due
to the small size of NKCs, even slight positional deviations can significantly affect the
Intersection over the Union (IoU) value of the match, making it difficult to track NKCs with
irregular or high-speed movements. Additionally, due to the short preservation time of
target feature information, NKCs lost in the middle of tracking will be identified as new
cells rather than being re-associated with past trajectories; 2. As illustrated in Figure 6d,
in areas of target overlap, the detection algorithm produced multiple detections, with these
erroneous bounding boxes being considered as trajectories; 3. As depicted in Figure 6g,
ByteTrack relies on the low confidence of occluded targets for identification. However,
in the case of small-target detection, often the confidence of the targets becomes close to
zero when they are occluded or deformed. With limited training data, it becomes difficult
to handle cells in complex backgrounds.
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Figure 6. This image demonstrates how our algorithm has enhanced tracking performance: (a) Byte-
Track loses track of fast-moving NKCs, missing parts of the trajectory lines, and identifies them
as new targets upon re-tracking; (b) Our use of distance-based cascade matching effectively tracks
these fast-moving NKCs; (c) The detection algorithm produces redundant detection boxes in densely
populated cell areas; (d) Due to detection errors, ByteTrack generates redundant and broken trajectory
lines; (e) After incorporating Overall Suppression, we eliminate incorrect trajectory lines, resulting
in more stable tracking outcomes; (f) The detection algorithm fails to detect relevant cells against a
background of cancer cells; (g) Due to missed detections by the detection algorithm, NKCs passing
over the surface of cancer cells are not tracked; (h) After employing the Re-Search algorithm, we
successfully achieve better tracking of NKCs in complex environments by searching for prominent
areas near cells.

3.2. New Tracking Network

Through the analysis of the shortcomings of DeepSORT and ByteTrack, we propose
the following three improvement strategies.

3.2.1. Distance Cascade Matching

From the results discussed earlier, it is apparent that, in the process of linking frames
for NKCs, motion information proves to be a more suitable criterion for matching than
appearance data. However, due to the complexity of NKCs’ movement, Kalman filtering
struggles to predict cell positions accurately, making the Intersection over Union (IoU)
metric too stringent and less effective. Therefore, a more lenient matching criterion than
IoU is required. We adopt a weighted distance calculation as the final matching criterion,
as illustrated in Figure 5. Distance “a” represents the distance from the trajectory position
predicted by Kalman filtering to the position of the detection box, whereas distance “b” is
the distance between the target’s position in the previous frame and the current detection
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box. If a target’s movement is highly predictable, we can expect distance “a” to be smaller,
making it a primary basis for matching. Conversely, distance “b” makes no assumptions
about the target’s movement and is more suitable for matching when the movement
lacks regularity. Our weighting method allocates a total weight of 1 to distances “a”
and “b”, increasing the weight of distance “a” in proportion to the velocity of NKCs
calculated by Kalman filtering. Finally, we obtain a distance matrix between detection
boxes and trajectory boxes. We aim to find an optimal matching that minimizes the total
distance among matched targets while ensuring that the matching adheres to physical
constraints. Therefore, we first set a distance threshold as three times the cell’s side length,
considering detection boxes beyond this threshold as unlikely to be matched. Subsequently,
we employed the Hungarian algorithm to compute the optimal matching for the targets.

After employing motion information for matching, we opted for a cascaded matching
algorithm in our tracking process. The purpose of this approach is to temporarily retain
trajectories that have lost tracking, enabling them to be further tracked when the target
reappears in the field of view. This method records the time t when a trajectory loses
tracking and matches trajectories with the same loss time t to detection boxes on the same
level. Trajectories with shorter loss times t are given higher priority for matching, while
trajectories with t > 30 are abandoned. We considered that, with increasing t, the predictive
reliability of trajectories gradually decreases. Hence, in the distance weighting, we linearly
decrease the weight of distance a from 0.8 to 0. Additionally, as t increases, the distance
threshold for cell movement should also increase. Under the conditions of two-dimensional
Brownian motion, the displacement of cells within a time interval ∆t follows a normal
distribution with 2D∆t. Setting the distance threshold to the reference distance of Brownian
motion is one of the main improvements of our algorithm. We calculate the diffusion
coefficient for the current time based on the statistics of all cells in the previous three frames
and set the distance threshold to

√
2D∆t. As show in Figure 6b, we can see that, after

employing Distance Cascade Matching, we are able to effectively track fast-moving targets.

3.2.2. Overall Suppression

When detecting small targets, especially in densely populated scenarios, we encounter
false-positive detections, as illustrated in Figure 3c. The IoU value of this erroneous
detection box, when compared individually with other correctly detected boxes, is relatively
low. However, the sum of the IoU values of this erroneous detection box with the two other
correct boxes is quite large. This observation has inspired us to implement a method called
Overall Suppression in our tracking process.

Considering the nature of our tracking targets, NKCs neither suddenly appear nor
disappear. When a highly overlapping detection box suddenly appears near an established
trajectory, it is likely a false positive. Thus, in our tracking algorithm process, after target
matching, we obtain established trajectories. We do not immediately designate unmatched
detection boxes as “potential new trajectories”. Instead, we calculate the IoU with all
successfully matched detection boxes, summing up the total IoU values. Detection boxes
exceeding a threshold are directly removed. Only after this round of deletion can they be
set as “potential new trajectories”. As shown in Figure 6e, this step effectively reduces
erroneous tracking trajectories.

3.2.3. Re-Search

As shown in Figure 3c, when cells are on the surface of cancer cells, we cannot predict
their positions based solely on the current frame; instead, contextual information is required
for inference. Therefore, we adopt a Re-Search strategy, inspired by the mechanism of
human visual tracking. When tracking blurry small targets in the field of view, we do not
globally search for the targets; instead, we scan the vicinity of the target’s location to find
objects that significantly contrast with the background.

The implementation steps on our computer are illustrated in Figure 7. Firstly, we
extract an 80 × 80 region near the area where the target was lost (approximately three
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times the size of the target). We then apply the Sobel operator for initial edge detection.
Subsequently, a dilation algorithm is used to create an initial mask, effectively separating
the foreground from the background. In cases where the target may be partially connected,
further segmentation is required. Therefore, we employ an adaptive threshold segmentation
method to achieve more precise boundaries. We calculate the intersection of edges and
masks, and then utilize the watershed algorithm for the final segmentation of the image.

Figure 7. This image shows how we search for prominent objects near the target. From left to right,
the images represent the original cell image, the cell boundary obtained through Sobel segmenta-
tion, the image mask formed after dilation, the boundary obtained through the adaptive method,
the overlap between the mask and the boundary, the segmented image using the watershed algorithm,
and the final drawn bounding box.

3.2.4. Framework of Tracking Network

The entire tracking process combines the aforementioned methods, and the overall
program framework is illustrated in Figure 8, explaining how we match the detection of
frame I + 1 with the existing tracks up to frame I to update track information. We first
classify the tracks in frame I into two categories based on the “time_since_update” value.
A “time_since_update=1” indicates that the track has just been updated in frame I, meaning
that it is present in this frame (as opposed to being lost from view). We prioritize matching
these tracks. If this matching fails, we Re-Search near the track to locate significant targets
and update successfully matched tracks, then compute the Intersection over Union (IoU)
for Overall Suppression. Next, for tracks with “time_since_update>1”, we match them
with unmatched detections through a distance-based cascading process. At this stage,
successfully matched tracks will have their status updated. However, since these tracks do
not have a corresponding detection in the frame I and retain only the previous track record,
we do not Re-Search for them. At the same time, for tracks with continuous records over
three or more frames, we mark them as confirmed tracks. Even if they are temporarily lost
from view, their track information will be retained.

The corresponding pseudocode is provided in Appendix A. We evaluated the tracking
performance of the new algorithm incorporating these three improvements. As shown in
Table 1, its IDF1 score increased from 66.6% with ByteTrack to 81.5%. This indicates a signif-
icant improvement in the continuity and stability of the tracking algorithm. Additionally,
the inclusion of the Re-Search and Overall Suppression mechanisms allows us to reduce
detection errors to some extent, resulting in a slight increase in MOTA from 79.0% to 83.6%.
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Figure 8. This figure illustrates how we perform the tracking process. “Tracks[i]” in the figure refers
to the collection of target trajectory information up to the ith frame, including the position, velocity,
and “time_since_update” information for each target. As the number of frames increases, we need to
continuously update the motion status of each target. The “time_since_update” value reflects how
long it has been since a target’s motion status was last updated, which can be understood as the
time a target trajectory has been lost. “Detections[i + 1]” refers to the collection of targets detected in
the (i + 1)th frame. Our algorithm process involves matching “Detections[i + 1]” with the historical
trajectories “Tracks[i]” to update the targets’ status data. “Confirmed tracks” in the figure refer to
the trajectories successfully tracked for more than three consecutive frames. Even if there are brief
unsuccessful matches along the way, we retain the status of these trajectories. For “unconfirmed
tracks”, if they lose their matches midway, we directly delete their trajectory information.

4. Results
4.1. Kinematic Differences between P-NKCs and NP-NKCs

Our initial analysis focused on the motility characteristics of P-NKCs and NP-NKCs
in an environment devoid of cancer cells. By examining the velocity distribution of natural
killer cells, shown in Figure 9, we noted that P-NKCs demonstrated enhanced motility,
with a significant presence in the high-speed region. This higher activity level of P-NKCs
was also reflected in the mean square displacement (MSD, χ̄2) versus time plot, as illus-
trated in Figure 10a, where we performed regression analysis on both cell types. Both
of them exhibited a highly linear correlation, with correlation coefficients (R2) of 0.98 for
P-NKCs and 0.97 for NP-NKCs. We observed that the diffusion coefficient D of P-NKCs
(59.62 µm2/s) was significantly higher than that of NP-NKCs (19.1 µm2/s).
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Figure 9. (a) The velocity distribution of NP-NKCs at different temperatures, showing a slight
decrease in the proportion of cells in the low-speed region as the temperature rises. (b) The velocity
distribution of P-NKCs at different temperatures, with a noticeable decrease in the proportion of cells
in the low-speed region as the temperature increases. (c) The velocity deviation angle of NP-NKCs at
different temperatures, where only the average of the deviation angles between consecutive frames
is recorded. As the temperature rises, the distribution of deviation angles becomes more uniform.
(d) The velocity deviation angle of P-NKCs at different temperatures, where, contrary to NP-NKCs,
the deviation angles tend to concentrate more around 0◦ as the temperature increases.

Further investigation into the directional consistency of these cells’ movement revealed
intriguing patterns in the velocity deviation angles, depicted in Figure 10b. It is observable
that P-NKCs have a higher probability of maintaining their original direction of motion,
whereas the velocity deviation distribution of NP-NKCs is more uniform. This result seems
to indicate that the movement of NP-NKCs is nearly random, while the movement of
P-NKCs is non-random. However, further analysis of the data suggests otherwise.

We measured the average angle between the polarization direction and velocity direc-
tion for these morphologically simple P-NKCs cells, resulting in a mean angle of 24◦ with a
standard deviation of 31◦. Subsequently, we measured the distribution of the duration for
which polarized cells maintain their velocity. Here, we consider the direction of velocity
to be consistent between two frames if the deviation is within 30◦; deviations beyond
30◦ are considered a change in velocity direction. The distribution results, as shown in
Figure 10c, indicate that the direction of velocity of polarized cells is maintained for an
average duration of 4 min.

Lastly, by assessing the average cosine of the velocity deviation angle over time,
illustrated in Figure 10d, we observed a notable decay in directional consistency over time.
Combining these observations, we believe that polarized cells tend to move along the



Bioengineering 2024, 11, 540 13 of 19

polarization direction, and, in the absence of external stimuli, the polarized state of natural
killer cells is maintained for a certain period. This maintenance of polarization explains
why P-NKCs exhibit a consistent direction of velocity over time. However, over longer
periods, the direction of velocity of polarized cells remains random and disorderly, which
is also evident from the MSD–time regression curves.

Combining all the data mentioned above, we conclude that, when there is no external
stimulus, the movement of natural killer cells follows a random Brownian motion, governed
by the Langevin equation:

d
dt

u(t) = −γu(t) +
1
m

R(t)

where u is the cell velocity, m is the mass, γ is the viscous drag coefficient, and R(t) is
the random force following a Gaussian distribution. For P-NKCs, due to changes in their
morphology, they have a smaller γ in their polarized direction, causing them to tend to
move along the polarization direction during motion, with a higher velocity compared
to NP-NKCs [32]. However, the polarization direction of P-NKCs is not fixed but ran-
domly changes. Over a longer period, both follow the solution of the Langevin equation:
χ2 = 2D∆t, where ∆t represents the time interval and D is the diffusion coefficient. Addi-
tionally, P-NKCs have a higher D.

Figure 10. (a) presents the diffusion of P-NKCs and NP-NKCs, demonstrating that p-cells have a
higher diffusion coefficient. (b) displays the frequency distribution of changes in the angle of velocity
for the cells, indicating that P-NKCs are more likely to maintain their original direction of movement.
(c) depicts the duration for which p-cells maintain their direction of velocity. (d) is the relationship
between the angle of deviation in velocity direction between two instances and the current state with
the time difference between the two velocities.

4.2. Impact of Temperature

In the experiment, we compared the motion of immune cells at 30 degrees Celsius
and 37 degrees Celsius, both in environments without cancer cells. At these temperatures,
cells were able to maintain basic activity. First, we measured the velocity distribution of
cells at different temperatures, and the results are shown in Figure 9. We observed that, as
the temperature increased, both P-NKCs and NP-NKCs exhibited an increase in velocity.
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However, compared to NP-NKCs, P-NKCs showed a more significant increase in velocity.
It can be seen that the distribution of cells in the low-speed region decreased significantly.

Interestingly, as the temperature increases, the distribution of velocity deviation angles
for NP-NKCs becomes more random, aligning with classical thermodynamic laws. How-
ever, the distribution of velocity deviation angles for P-NKCs becomes more concentrated
around 0, indicating a tendency to maintain their original direction of velocity. We believe
this is what distinguishes polarized cells from non-living molecular phenomena. Due
to their inclination to move along the polarization direction, the activity and persistence
of this polarization are enhanced with rising temperatures, increasing the probability of
maintaining their direction of motion.

4.3. Impact of Tumor Cell

We first measured the average distance of NKCs to the cancer cell surface within 2 h
after introduction into the cancer cell environment, with a total of 241 frames captured.
The results, depicted in Figure 11e, show that the average distance of NP-NKCs to the
nearest cancer cell surface oscillated around 75 µm over time. In contrast, the average
distance of P-NKCs to the nearest cancer cell surface gradually decreased over time, indi-
cating a tendency to approach the cancer cells. However, when observing the data after
sufficient mixing of NKCs with cancer cells, the tracked statistical results, as shown in
Figure 11a, indicate that the average distances of both NP-NKCs and P-NKCs oscillated
within the range of 30 to 60 µm over time, with no significant difference observed in their
distributions. As there was no longer a trend of increasing or decreasing average distances,
we conclude that the motion of NKCs under cancer cells reached a dynamic equilibrium
state at this point.

Subsequently, we further analyzed the data of NKCs in the equilibrium state. We
calculated the total number distribution of natural killer (NK) cells in the cancer cell
environment, as depicted in Figure 11c. It is noticeable that NKCs are concentrated in areas
that are densely populated with cancer cells. We quantified this by plotting the relationship
between the distribution ratio of NKCs and their distance, as shown in Figure 11b. We
can see that the log-transformed number distribution of NKCs shows a significant linear
correlation with distance. However, we further considered that the areas enclosed by
different distance intervals to cancer cells have different areas, necessitating the calculation
of cell density distribution rather than just the number distribution, with the results shown
in Figure 11d. We can see that the density distribution exhibits an irregular smooth
distribution, and the effect of linear fitting after log transformation is not good.

We posit that this phenomenon occurs because, in the cancer cell environment, cancer
cells can secrete certain chemicals. In a state of equilibrium, these chemicals have a distri-
bution V(x), which can attract NKCs. This gradient distribution can generate a directed
driving force on natural killer cells:

K(x) = −∇V(r)

In this way, the Langevin equation can be writen as

d
dt

u(t) = −γu(t) +
1
m
[R(t) + K(x)]

We can deduce that, in the equilibrium state, the distribution of natural killer cells should follow

n(r) = n0e−
V(r)
kBT

The distribution frequency of NKCs conforms to our Boltzmann distribution hypothesis,
while the distribution density of NKCs has no obvious pattern. We believe that this is
because, in each individual frame, the number of cells compared to the area they occupy is
still very sparse. When the number of cells is divided by the vast area, the impact of the
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number of cells is flattened, and what absolutely affects the value of cell density is instead
the size of the area (this can also be seen from the sudden increase in the density curve
later on).

Finally, we investigated whether cancer cells exert a deflecting effect on NKCs by
measuring the average deviation angle of NKCs at varying distances from the cancer cell
surface. Negative values indicate NKCs deviating towards cancer cells, while positive
values signify moving away, as illustrated in Figure 11d. There is a clear attraction at close
distances to cancer cells, which rapidly diminishes as the distance increases.

Figure 11. (a) The relationship between the average distance of NKCs and time, where blue corre-
sponds to P-NKCs and red corresponds to NP-NKCs. The same color scheme applies to the other
figures. (b) The relationship between the average number distribution of NKCs per frame and
distance, with the standard deviation calculated across different frames. The y-axis is logarithmically
scaled and regressed. (c) The total number distribution of NKCs in the cancer cell environment,
where the dashed black lines in the figure represent equidistant lines to the surface of the cancer cells.
Note that this figure does not represent the average number distribution of cells in a single frame
but is formed by overlaying the cell numbers from all time points. (d) The relationship between
the average density distribution of NKCs per frame and distance. (e) This figure shows the change
in average distance over time for two types of cells. It can be observed that P-NKCs reduce their
distance to cancer cells more quickly as time progresses. (f) The relationship between the velocity
deviation angle of NKCs and their distance to cancer cells.
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5. Conclusions

In this study, we focused on the different morphologies’, temperatures’, and cancer
cell environments’ impact on natural killer cell motion. Leveraging machine learning
techniques, we process time-lapse microscopy images of NKCs provided by Professor Jue
Shi from the Hong Kong Baptist University to efficiently acquire corresponding immuno-
logical data for analysis. In our program design, we divide the cell tracking process into
single-frame target detection and data association between multiple frames, enabling both
cell morphology analysis and cell tracking. For single-frame target detection, we employ
YOLOv5 to process NKCs images, achieving over 92% target detection accuracy. Address-
ing the challenges of small NKC targets, blurry morphologies, and complex backgrounds,
we improve upon existing data association methods like DeepSORT and ByteTrack by
introducing Distance Cascade Matching, Overall Suppression, and Re-Search methods for
multi-frame data association. Ultimately, our algorithm achieved a MOTA (Multiple Object
Tracking Accuracy) of 83.6% and an IDF1 (ID F1 score) of 81.5%, representing significant
improvements compared to previous algorithms, which enable precise tracking of NKCs.

We observed that P-NKCs exhibited stronger motility and could maintain their polar-
ization direction for a certain period in the absence of cancer cell stimulation. A moderate
increase in temperature enhanced the motility of natural killer cells, especially under po-
larizing conditions. In the presence of cancer cells, at equilibrium, the number of natural
killer cells shows an exponential decay distribution with distance, and cancer cells exert
an attractive effect on the motion of natural killer cells. However, this influence is limited,
and it becomes less pronounced beyond a distance of 30 micrometers.

This article has some limitations. While we observed a correlation between the motion
direction of simple polarized cells and their polarization direction, and this polarization
direction could be maintained to some extent, this explains well why, with the increase in
temperature, the velocity consistency of polarized cells is actually higher. However, we
were unable to analyze the morphology of more complexly polarized cells. When there are
multiple polarization directions, this may indicate that they are simultaneously stimulated
by chemotactic factors from multiple directions. At this point, the choice of polarization
direction for polarized cells is worth investigating, and this will be the direction of our
further research in the future.
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Appendix A

Here is the pseudocode that showcases our overall tracking process.

Algorithm A1: Pseudo-code of NKCs tracking
Input: video sequence V ; object detector DET
Output: tracks T of video

1 Initialization: T← ∅;
2 for frame fk in v do
3 /*detecting boxes*/;
4 Dk ← DET;
5 /*predict new locations of tracks*/;
6 for t in Tk−1 do
7 t = kf.predict(t);

8 T1 ← confirmed tracks in t which time_since_update = 0;
9 /*first matching*/;

10 Associate T1 and Dk with distance;
11 Dremain1 ← remaining object boxes from Dk;
12 Tremain1 ← remaining object boxes from T1;
13 Tmatched1 ← boxes get matched in T1;
14 do overall suppression in Dremain;
15 /*second matching cascade*/;
16 i = 1;
17 for i < max age do
18 Distance threshold =

√
4D ∗ i;

19 T2 ← confirmed tracks in t which time_since_update = i;
20 Associate T2 and Dremain with distance;

21 Dremain2 ← remaining object boxes from Dremain1;
22 Tremain2 ← remaining object boxes from Tremain1;
23 Tmatched2 ← boxes get matched in T2;
24 /*third matching*/;
25 T3 ← unconfirmed tracks in t;
26 Associate T3 and Dremain2 with distance;
27 Dremain3 ← remaining object boxes from Dremain2;
28 Tmatched3 ← boxes get matched in T3;
29 /*re-search*/;
30 for t in Tremain1 do
31 re-search t;
32 if get d← prominent objects near t then
33 Tmatched4 append t;

34 T = Tmatched1 ∪ Tmatched2 ∪ Tmatched3 ∪ Tmatched4 ∪ Dremain3;

35 return T
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