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Abstract: Automatically segmenting polyps from colonoscopy videos is crucial for developing
computer-assisted diagnostic systems for colorectal cancer. Existing automatic polyp segmentation
methods often struggle to fulfill the real-time demands of clinical applications due to their substantial
parameter count and computational load, especially those based on Transformer architectures. To
tackle these challenges, a novel lightweight long-range context fusion network, named LightCF-Net,
is proposed in this paper. This network attempts to model long-range spatial dependencies while
maintaining real-time performance, to better distinguish polyps from background noise and thus
improve segmentation accuracy. A novel Fusion Attention Encoder (FAEncoder) is designed in the
proposed network, which integrates Large Kernel Attention (LKA) and channel attention mech-
anisms to extract deep representational features of polyps and unearth long-range dependencies.
Furthermore, a newly designed Visual Attention Mamba module (VAM) is added to the skip con-
nections, modeling long-range context dependencies in the encoder-extracted features and reducing
background noise interference through the attention mechanism. Finally, a Pyramid Split Attention
module (PSA) is used in the bottleneck layer to extract richer multi-scale contextual features. The
proposed method was thoroughly evaluated on four renowned polyp segmentation datasets: Kvasir-
SEG, CVC-ClinicDB, BKAI-IGH, and ETIS. Experimental findings demonstrate that the proposed
method delivers higher segmentation accuracy in less time, consistently outperforming the most
advanced lightweight polyp segmentation networks.

Keywords: polyp segmentation; large kernel attention; visual attention mamba; PSA

1. Introduction

Colorectal cancer (CRC) ranks as one of the most prevalent malignant tumors globally,
with its incidence steadily rising. By 2024, it is expected to become the leading cause of
cancer-related deaths among men under 50 in the United States and the second leading
cause among women of the same age group [1]. Fortunately, early screening significantly
lowers both the incidence and mortality rates of colorectal cancer, boasting a five-year
survival rate of approximately 90% for early-stage patients [2]. Moreover, studies show
that almost 95% of colorectal cancers develop from tumorous polyps on the walls of the
colon or rectum [3]. Therefore, the early detection and excision of tumorous polyps are
vital for the successful treatment of colorectal cancer. Colonoscopy is considered the most
accurate and widely used screening method for colorectal cancer at present.

Colonoscopy can reduce the risk of death from colorectal cancer by 68% [4]. However,
the precision of colonoscopy significantly relies on the physician’s expertise and environ-
mental factors. On one hand, the detection and treatment of polyps in colonoscopy videos
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rely entirely on the doctor’s experience, where prolonged focus and a high level of mental
state also affect the doctor’s operational level and diagnostic rate [5]. On the other hand,
due to the complex structure of polyps and inconsistency in image quality, there is some
subjective variation among different doctors in their observation and judgment during
colonoscopy, leading to inconsistent diagnostic results [6]. Moreover, studies have shown
that about 25% of tumorous polyps are missed in routine colonoscopy examinations [7].
Therefore, it is crucial to develop an accurate and efficient method to assist doctors in
diagnosing colorectal polyps in clinical practice.

However, due to the polyps’ varying sizes, colors, and shapes, developing a seg-
mentation network that suits all types of polyps and consistently achieves satisfactory
performance is very difficult. Additionally, complex environmental factors in colonoscopy
videos, such as inadequate lighting, mucus, or foam residues, make it difficult for the net-
work to effectively extract discriminative features of polyps and accurately demarcate the
fine boundaries between polyps and the surrounding mucosal tissue. Moreover, in clinical
settings, segmentation algorithms need to have high real-time capability so that physicians
can promptly diagnose and treat. Nevertheless, in complex contextual situations, it is ex-
tremely difficult to achieve satisfactory segmentation outcomes while maintaining real-time
performance. Traditional polyp segmentation methods often rely on manually extracted
features, such as geometric and texture features [8], shape context information [9], and
so on. The limited representational ability of manual features leads to poor segmentation
accuracy and fails to adapt to the complex variations in polyps.

Recently, the evolution of deep learning models, especially Convolutional Neural
Networks (CNN) [10] and Transformer [11] architectures, has achieved significant break-
throughs in image segmentation, notably improving segmentation precision. Fully Con-
volutional Networks (FCN) [12] were the first to enable end-to-end training for seman-
tic segmentation, markedly enhancing segmentation accuracy over traditional methods.
Following that, Ronneberger et al. [13] developed the well-known U-Net, based on an
encoder–decoder structure, innovatively introducing skip connections to enhance the
preservation and utilization of feature information at various levels. In 2020, PraNet [14]
proposed a parallel partial decoder to amalgamate high-level features, coupled with a
reverse attention module to refine polyp boundary details. In 2021, MSNet [15] introduced
a subtraction unit to effectively reduce redundant information when merging features from
different levels. In 2022, due to the high computational cost of Transformer architectures,
Polyp-Mixer [16] utilized an MLP-based encoder–decoder architecture to model long-range
dependencies, yet still struggled to meet the real-time requirements of clinical applica-
tions. Following that, PolypSeg+ [17] introduced a lightweight context-aware network
adaptable to polyp morphological variations, balancing real-time performance with seg-
mentation accuracy, though still falling short of clinical requirements. Overall, models
based on CNN struggle to model long-range dependencies, making it difficult to adapt to
the large-scale variations of polyps. Models based on the Transformer architecture often
find it difficult to maintain real-time performance, thus meeting the demands of clinical
applications. Additionally, existing models still cannot adequately balance segmentation
efficiency and accuracy.

In this paper, we introduce a novel lightweight long-range context fusion network,
designed to address the challenges of real-time polyp segmentation by modeling long-
range spatial dependencies without compromising real-time capabilities, thereby better
balancing the network’s segmentation accuracy and efficiency. To summarize, the primary
contributions of this paper are as follows:

• A novel and efficient lightweight long-range context fusion network, named LightCF-
Net, has been proposed for real-time polyp segmentation.

• A novel FAEncoder module has been designed, integrating Large Kernel Attention
(LKA) with channel attention mechanisms to extract deep representational features of
polyps and discover long-range relationships.
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• A novel VAM module has been designed within the skip connections to model long-
range contextual dependencies from features extracted by the encoder and to re-
duce background noise interference by focusing on key information through the
attention mechanism.

• Extensive evaluation of the proposed method on four renowned polyp segmentation
datasets showed that it surpasses the most advanced lightweight polyp segmentation
networks in terms of operational efficiency and segmentation accuracy.

The organization of this article is as follows: Section 2 discusses related work,
Section 3 covers the datasets and methods proposed, and Section 4 details the experimental
comparison results and analysis. Lastly, the discussion and conclusions are presented in
Sections 5 and 6, respectively.

2. Related Work

The widespread application of deep learning technologies has significantly improved
the accuracy of polyp segmentation [18]. Akbari et al. [19] used FCN to segment polyps,
achieving superior performance over traditional segmentation techniques. Subsequently,
the U-shaped network based on encoder–decoder architecture has been widely used. AC-
SNet [20] first integrates local and global context information to infer polyps of various
sizes and shapes. A-DenseUNet [21] combines the advantages of UNet++ and DenseNets,
extracting rich multi-scale information between different level encoders. ABC-Net [22] uses
two mutually constrained parallel decoders to simultaneously learn and segment polyp
regions and boundaries. AG-CUResNeSt [23] introduces the ResNeSt backbone network
and attention gates in coupled UNets. SNN [24] simplified the decoder architecture of
UNet and introduced the attention mechanism, further improving segmentation accuracy
and real-time performance. DCRNet [25] extends beyond capturing context from single im-
ages, innovatively exploring inter-image context information. MobileRaNet [26] improved
MobileNetV3 using a coordinated attention module, creating the CaNet backbone network
with fewer parameters. MFRANet [27] developed an innovative multi-scale feature reten-
tion module that effectively preserves base-level spatial features and integrates them with
deeper layers, significantly improving segmentation accuracy. SCR-Net [28] introduced
semantic calibration and refinement modules to narrow the semantic gap during the fusion
of multi-scale features, refining the integrated context information. BUNet [29] focuses on
the uncertain areas of colonoscopy images, using a novel boundary exploration module
to gradually refine the fine boundaries of polyp regions. sECANet [30] uses the obtained
cross-channel interaction information to calibrate channel attention. Chen et al. [31] intro-
duced the self-attention mechanism into the Faster R-CNN architecture, greatly improving
the accuracy of polyp detection. Despite the significant advances made by CNN-based
approaches, the inherent limitations of convolution operations hinder their ability to model
long-range dependencies at higher resolutions, limiting adaptability to large variations in
polyp shapes and sizes.

Initially designed for natural language processing, the Transformer model has been
successfully adapted for computer vision. Its self-attention mechanism, not confined to a
fixed receptive field, enables it to capture long-range spatial dependencies more effectively,
leading to its wide application. Numerous studies are aimed at effectively integrating
CNNs and Transformers, utilizing the unique strengths of each. TransUNet [32] employs
Transformers to re-encode features extracted by CNNs, enhancing its capability for global
context understanding. SwinE-Net [33] uses a dual-branch parallel encoder based on
CNN’s EfficientNet and ViT’s Swin Transformer to extract rich semantic features, and
designs three modules to aggregate and refine the extracted multi-layer features. Polyp-
PVT [34] utilizes a pyramid vision Transformer [35] as the encoder to extract multi-scale
distant dependency features and proposes three modules for calibrating polyp areas. DS-
TransUNet [36] employs a dual-scale encoder made up of two swin transformers to extract
features at varying granularities. Nachmani et al. [37] proposed the ResPVT architecture
based on Pyramid Vision Transformers and residual blocks, achieving good segmentation
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performance. However, due to the large number of parameters and computational load
of Transformer architectures, it is difficult to maintain real-time performance, failing to
meet the needs of clinical applications, prompting researchers to explore methods beyond
Transformers for modeling long-range spatial dependencies. Polyp-Mixer [16] uses an MLP-
based encoder–decoder architecture to model distant dependencies, but it still struggles
to meet the real-time requirements of clinical applications. Recently, state–space models
represented by Mamba, due to their lighter computational load and excellent long-range
spatial modeling capabilities, have become competitive alternatives to CNN and Trans-
former architectures. U-Mamba [38] has designed a hybrid encoder that combines CNNs
and state–space models, reducing computational load compared to Transformers while
capturing long-range dependencies. LightM-UNet [39] employs Mamba blocks in place of
the encoder–decoder blocks in U-Nets, also yielding high segmentation accuracy. Although
these models have achieved good results, they have not been applied to the field of polyp
segmentation. There is still a need to focus on effectively combining local and long-range
context information to further enhance polyp segmentation performance and efficiency.

3. Materials and Methods
3.1. Datasets

To thoroughly evaluate the LightCF-Net proposed in this paper, we conducted ex-
tensive experiments on four well-known polyp segmentation datasets: Kvasir-SEG [40],
CVC-ClinicDB [41], BKAI-IGH [42], and ETIS [43]. The Kvasir-SEG dataset is currently
the largest in the polyp segmentation field, containing 1000 colonoscopy polyp images
with various lesion types and image qualities, and provides pixel-level annotations. The
CVC-ClinicDB dataset includes 612 polyp images from 31 colonoscopy sequences, with
a resolution of 384 × 288 for each image. The BKAI-IGH dataset contains 1000 polyp
images with detailed annotation information, with polyps classified into tumorous and
non-tumorous types. The ETIS dataset includes 196 annotated polyp images, all with a
resolution of 1225 × 966. In the experiments, we employed the widely used dataset setting
as used by Nguyen et al. [44], where the dataset images were resized to 320 × 320 and
then randomly cropped to 256 × 256 as input to prevent overfitting, with a batch size set
to 8. For the validation and test sets, we set the image sizes for the Kvasir-SEG and ETIS
datasets to 320 × 320, for the CVC-ClinicDB dataset to 288 × 384, and for the BKAI-IGH
dataset to 480 × 480. To comprehensively validate the model performance, we randomly
split the datasets into training, validation, and test sets in an 8:1:1 ratio. Furthermore, for a
fair comparison, we adopted the aforementioned dataset configuration during training to
thoroughly evaluate the segmentation capabilities of all models.

3.2. Overall Structure

The overall structure of the proposed LightCF-Net is illustrated in Figure 1, built upon
a U-shaped architecture consisting of encoder–decoder components, mainly comprising
three key modules: (1) FAEncoder; (2) VAM; (3) PSA. The encoder of LightCF-Net consists
of five stages, with the number of channels per stage being {16, 32, 64, 128, 128}. In the initial
stage, to avoid losing excessive image detail and texture information, and to retain more
detailed information when fusing features with the last layer decoder, we start with a resid-
ual block of kernel size 3. Following this are four stages where the proposed FAEncoder
is used to extract deep representational features of polyps. By integrating Large Kernel
Attention (LKA) with channel attention mechanisms, the FAEncoder captures long-range
correlations, adapting to polyps of various sizes, and further refines polyp discriminative
features at the channel level. To further distinguish polyps from the surrounding mu-
cosal tissue, we incorporated the VAM module into the skip connections, which models
long-range contextual dependencies with encoder-extracted features and focuses on key
information through the attention mechanism to reduce background noise interference. The
PSA module is introduced in the bottleneck layer to fully leverage the high-level features
extracted by the encoder, capturing a broader range of multi-scale contextual information.
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Figure 1 illustrates the Decoder Block, with the remaining key components to be detailed
in later sections.

Figure 1. The proposed LightCF-Net network.

3.3. Fusion Attention Encoder (FAEncoder)

Due to complex environmental factors in colonoscopy videos, such as insufficient
lighting, mucus, or foam residues, it is difficult for the network to effectively extract
discriminative features of polyps. Moreover, due to the varying size, color, and morphology
of polyps, traditional convolution operations, which only capture features within a small
fixed receptive field, make it challenging for the network to fully understand the diverse
features of polyps and complex environmental interferences. To address these issues and
enhance the encoder’s capacity for diverse feature extraction, we proposed the FAEncoder
module. A schematic of the FAEncoder module is depicted in Figure 2.

Figure 2. The structure of the proposed Fusion Attention Encoder (FAEncoder).

The FAEncoder module is based on Large Kernel Attention (LKA) [45] and Chan-
nel Attention (CA) [46] mechanisms, merging them to produce features with enhanced
representational capacity. Generally, larger convolution kernels have a larger receptive
field, thus capturing longer dependency relationships. However, large-kernel convolution
incurs significant computational costs. The LKA module mitigates this by decomposing the
large-kernel convolution into three parts: Depth-wise Convolution (DW-Conv), Depth-wise
Dilation Convolution (DW-D-Conv), and Pointwise Convolution (1 × 1 Conv), thus captur-
ing long-range relations and significantly reducing computational complexity. The LKA
module first generates attention maps through three distinct convolution operations, then
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multiplies them with the original input X to produce output features that have captured
long-range correlations. The LKA module can be represented as:

Attention = Conv1×1(DW-D-Conv(DW-Conv(X)) (1)

and
LKA = Attention ⊗ X, (2)

where X ∈ RC×H×W represents the input features, Attention ∈ RC×H×W denotes the
attention map, with the values in the attention map signifying the significance of each
feature. ⊗ indicates element-wise multiplication.

In the FAEncoder module, for a given input X1 ∈ RC1×H×W , it first goes through
a 3 × 3 convolution, resulting in the feature map X2 ∈ RC2×H×W . Then, in one branch,
it passes through the large kernel attention module to capture long-range correlations,
resulting in the output feature Y1 ∈ RC2×H×W . In another branch, it goes through a
1 × 1 convolution to preserve the original feature information, resulting in the output
feature Y2 ∈ RC2×H×W . The outputs from both branches are added, and following attention
adjustment on the channel dimension, the final output Yout ∈ RC2×H×W . The computational
formula for the FAEncoder module is as follows:

Y1 = Conv1×1(LKA(GELU(Conv1×1(X2)))) (3)

and
Yout = CA(Conv3×3(Y1 ⊕ Y2)), (4)

where CA represents the channel attention mechanism, and ⊕ denotes element-wise addi-
tion. By adaptively capturing long-range correlations, obtaining a larger receptive field,
and optimizing channels, the designed FAEncoder module can capture richer image fea-
ture information, facilitating the understanding of diverse polyp features and complex
environmental interferences.

3.4. Visual Attention Mamba Module (VAM)

Models based on CNNs often struggle to model long-range dependencies due to the
fixed receptive field limitation of convolution operations, making it difficult to adapt to
large-scale variations in polyps. Models based on Transformer architecture have an advan-
tage in modeling long-range dependencies, which is beneficial for distinguishing polyps
from the surrounding ambiguous mucosal tissue. However, the substantial computational
cost of the Transformer architecture makes it challenging to meet the real-time requirements
of clinical applications. To model long-range spatial dependencies while ensuring real-time
performance, we designed the Visual Attention Mamba module (VAM), which incorporates
Mamba blocks [47] for long-range spatial modeling, as shown in Figure 3.

Figure 3. The structure of the proposed Visual Attention Mamba (VAM) module.

In the VAM module, the feature Xi ∈ RC×H×W extracted from the i-th layer of the
encoder is taken as input and transmitted to two parallel branches. In the first branch, the
input feature Xi is first flattened and transposed to Wi ∈ RC×L, where L = H × W, and
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then Wi is fed into the Mamba block after LayerNorm. The Mamba block also consists of
two branches, where in each branch, the input feature Wi is expanded to λ × C channels
through a linear layer, with λ being the channel expansion factor. Then, in the first branch
of the Mamba block, 1D convolution, SSM, and SiLU [48] activation function are applied
in sequence, producing output Z1 ∈ Rλ×C×L. In the second branch of the Mamba block,
the SiLU activation function is directly applied, producing output Z2 ∈ Rλ×C×L. Finally,
the outputs of the two branches are multiplied, and after passing through a linear layer to
adjust the channel number back to C, the output feature Wout ∈ RC×L is generated. The
mathematical formula for the Mamba block can be represented as:

Z1 = LayerNorm(SSM(SiLU(1D Conv(Linear(W1))))), (5)

Z2 = SiLU(Linear(Wi)) (6)

and
Wout = Linear(Z1 ⊗ Z2), (7)

where ⊗ denotes element-wise multiplication. Finally, the output Wout of the Mamba
block is reshaped and transposed to the same shape as the original input Xi, resulting
in W ′

out ∈ RC×H×W . In the second branch of the VAM module, a 1 × 1 convolution is
used to retain the original features extracted by the encoder, resulting in the feature map
X2 ∈ RC×H×W . Then, it is channel-concatenated with the output of the Mamba block, and
after optimization through channel–spatial attention, the final output Pout ∈ RC×H×W is
produced. The mathematical formula for the VAM module can be represented as:

Pout = SA
(
CA

(
Conv1×1

(
Concat

([
W ′

out , X2]
))))

, (8)

where SA represents the spatial attention mechanism, CA represents the channel attention
mechanism, and Concat denotes channel concatenation. By ensuring real-time performance
while modeling long-range spatial dependencies, and integrating various attention mech-
anisms, the designed VAM module can better distinguish polyps from the surrounding
ambiguous mucosal tissue, fulfilling the real-time requirements of clinical applications.

3.5. Pyramid Split Attention Module (PSA)

To comprehensively capture abundant multi-scale information, we incorporated the
PSA module [49] into the bottleneck layer of the network. The PSA module, an effective
mechanism for multi-scale feature extraction and channel calibration, is depicted in Figure 4.

Figure 4. The structure of the Pyramid Split Attention module (PSA).

Initially, the PSA module divides the original input feature Xin ∈ RC×H×W into
S parts through channel division, represented as [X0, X1, . . . , XS−1], with each part having
c
S channels. Then, each section undergoes convolution with kernels of varying sizes
to extract multi-scale information. To reduce computational cost, group convolution is
introduced and applied in parallel processing of convolution operations, resulting in S
feature maps containing information of different scales, represented as [F0, F1, . . . , FS−1].
The entire multi-scale feature extraction operation can be represented as:

Fi = Conv(Ki × Ki, Gi)(Xi) i = 0, 1, 2 . . . S − 1, (9)
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where Fi ∈ R
C
S ×H×W represents the feature map containing information of different scales,

Ki denotes different convolution kernel sizes, Gi represents different group sizes of group

convolution, and Ki = 2 × (i + 1) + 1, Gi = 2
Ki−1

2 .
Then, the S feature maps containing different scale feature information are concate-

nated channel-wise to form F ∈ RC×H×W . Afterwards, F is applied to the SEweight module
and Softmax to recalculate channel weights, obtaining the recalibrated channel weight
vector att = [att0, att1, . . . , atts−1]. Finally, the recalibrated weight vector att is multiplied
by the feature map Fi of the corresponding scale, obtaining the optimized multi-scale
feature Tout = [T0, T1, . . . , Ts−1], with the calculation formula as follows:

F = Concat([F0, F1, . . . , FS−1]), (10)

atti =
exp(SEWeight(Fi))

∑S−1
i=0 exp(SEWeight(Fi))

i = 0, 1 . . . S − 1, (11)

att = att0 ⊕ att1 ⊕ ⊕ attS−1 (12)

and
Ti = atti ⊙ Fi i = 0, 1 . . . S − 1, (13)

where Concat represents channel concatenation, and ⊙ denotes channel-wise multiplication.
By incorporating the PSA module in the bottleneck layer, the proposed LightCF-Net can
capture richer multi-scale contextual information, thereby better adapting to the irregular
variations in the size and shape of tumor polyps.

4. Results
4.1. Implementation Details

The proposed LightCF-Net was implemented using Pytorch 2.0.0 and Python 3.8 on
a computer with an RTX 2080Ti having 11GB of memory. For the experiments, the same
learning rate schedule as Zhang et al. [20] was employed, setting the initial learning rate
(Init_lr) to 0.001, power to 0.9, maximum training epochs (max_epoch) to 200, and defining

the learning rate decay as lr = Init_lr ×
(

1 − epoch
max_epoch

)power
. To enhance data availability

and prevent overfitting, we used data augmentation techniques such as horizontal and
vertical flips, random cropping, and random rotations between −90 and 90 degrees. Addi-
tionally, our model employed an Adam optimizer [50] with a weight decay of 1 × 10−5 for
parameter optimization, and the batch size was set to 8. Finally, to ensure a fair comparison
of all model performances, all experiments were carried out under identical experimen-
tal conditions. Additionally, each dataset was partitioned into training, validation, and
test sets in an 8:1:1 ratio, and all models followed this same division approach during
experimentation, thereby further ensuring consistency in training and testing data across
all models.

4.2. Loss Function

In order to address the severe class imbalance issue in polyp segmentation tasks, a
hybrid loss function, the BCE-Dice Loss, combining Dice loss [51] and binary cross-entropy
loss, was employed in the experiments, defined as follows:

BCE-Dice Loss = −∑n
i=1 [Gi ∗ log(Pi) + (1 − Gi) ∗ log(1 − Pi)] + 1 − ∑n

i=1
2 ∗ Gi ∗ Pi + σ

Gi + Pi + σ
, (14)

where Gi and Pi represent the true label and predicted label of the i-th pixel, respectively,
and σ denotes a smoothing constant. Additionally, for fair comparison, all comparative
networks employ the BCE-Dice loss function.
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4.3. Comparative Experimental Results and Analysis

To thoroughly evaluate the segmentation performance of the proposed LightCF-Net,
we used five evaluation metrics: Intersection over Union (IoU), Dice Similarity Coefficient
(DSC), Sensitivity (SE), Specificity (SP), and Accuracy (ACC). Then, we further compared
the proposed LightCF-Net against ten advanced models in segmentation efficiency and
accuracy, including five large-scale models (U-Net [13], U-Net++ [52], CE-Net [53], Dilated-
SegNet [54], and Polyp-PVT [34]) and five lightweight models (UNeXt [55], AttaNet [56],
LW-IRSTNet [57], DCSAU-Net [58], and PolypSeg+ [17]). Specifically, for a relatively fair
comparison, we adopted the same strategy as Wu et al. [17], appropriately reducing the
channel numbers of large-scale models to achieve a comparatively smaller size. Secondly,
for smaller-sized LW-IRSTNet, we increase their channel numbers to match ours, thus
preventing unfairness in comparative experiments due to their smaller sizes. Within an
identical computing environment, we applied the same data partitioning and augmen-
tation methods to implement ten competing models on four datasets. All models were
retrained with the same iteration count, batch size, loss function, and optimizer, without
any pre-trained weights, which maximally reduced training discrepancies. The comparison
results on the Kvasir-SEG and CVC-ClinicDB datasets are presented in Table 1.

Table 1. Comparison results on the Kvasir-SEG and CVC-ClinicDB datasets, with the best outcomes
in bold.

Method
Kvasir-SEG CVC-ClinicDB

IoU (%) DSC (%) SE (%) SP (%) ACC (%) IoU (%) DSC (%) SE (%) SP (%) ACC (%)

U-Net 75.98 86.35 85.01 97.49 95.32 81.33 89.70 87.82 99.06 98.28
U-Net++ 76.10 86.43 85.11 97.50 95.34 82.47 90.39 88.56 98.94 98.39
CE-Net 76.74 86.84 84.30 97.92 95.54 83.89 91.24 93.69 98.91 98.46

DilatedSegNet 77.16 87.11 85.36 97.48 95.54 84.16 91.40 93.15 99.00 98.50
Polyp-PVT 77.75 87.48 82.79 98.23 95.87 85.27 92.05 88.48 99.05 98.69

UNeXt 72.42 84.00 80.04 97.78 94.69 78.87 88.19 88.99 98.80 97.96
AttaNet 72.51 84.07 81.43 97.40 94.62 80.48 89.19 91.76 98.69 98.10

LW-IRSTNet 76.25 86.52 82.76 98.20 95.51 83.95 91.27 92.97 99.00 98.48
DCSAU-Net 76.74 86.84 83.37 98.17 95.59 83.80 91.19 90.67 99.13 98.50
PolypSeg+ 77.14 87.03 83.28 98.32 95.70 84.27 91.48 90.95 99.04 98.55

Ours 78.65 88.05 84.83 98.34 95.99 86.09 92.52 93.81 99.16 98.70

The experimental results in Table 1 show that our proposed method surpasses other
methods on the Kvasir-SEG and CVC-ClinicDB datasets in terms of evaluation metrics.
Specifically, on the Kvasir-SEG dataset compared to large-scale models, our method leads
the second-place Polyp-PVT by 0.90% in IoU and 0.57% in DSC, and is only slightly behind
DilatedSegNet by 0.53% in SE. On the Kvasir-SEG dataset, against lightweight models,
our method is ahead of the second-placed PolypSeg+ by 1.51% in IoU and 1.02% in DSC.
Against large-scale models on the CVC-ClinicDB dataset, our method surpasses the second-
ranking Polyp-PVT by 0.82% in IoU and 0.47% in DSC. On the CVC-ClinicDB dataset, in
comparison with lightweight models, our method outperforms the second-best PolypSeg+
by 1.82% in IoU and 1.04% in DSC. The comparison results on the BKAI-IGH and ETIS
datasets are presented in Table 2.

The experimental results in Table 2 show that our proposed method surpasses other
methods on the BKAI-IGH and ETIS datasets in terms of evaluation metrics. Specifically, on
the BKAI-IGH dataset compared to large-scale models, our method leads the second-place
Polyp-PVT by 3.24% in IoU and 2.06% in DSC, and is only slightly behind U-Net++ by
0.11% in SE. On the BKAI-IGH dataset, against lightweight models, our method is ahead
of the second-placed PolypSeg+ by 1.83% in IoU and 1.14% in DSC. Against large-scale
models on the ETIS dataset, our method surpasses the second-ranking Polyp-PVT by 1.26%
in IoU and 0.9% in DSC. On the ETIS dataset, in comparison with lightweight models, our
method outperforms the second-best PolypSeg+ by 2.34% in IoU and 1.74% in DSC. The
experimental findings reveal that our method exhibits superior segmentation performance
compared to other methods, particularly when compared to other lightweight models.
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Moreover, this also shows that the proposed lightweight feature extraction and optimization
modules can effectively address the main challenges in polyp segmentation tasks.

Table 2. Comparison results on the BKAI-IGH and ETIS datasets, with the best outcomes in bold.

Method BKAI-IGH ETIS

IoU (%) DSC (%) SE (%) SP (%) ACC (%) IoU (%) DSC (%) SE (%) SP (%) ACC (%)

U-Net 73.52 84.74 82.30 99.40 98.58 61.35 76.04 67.17 99.14 98.87
U-Net++ 74.62 85.47 85.90 99.17 98.58 63.90 77.97 77.25 99.03 98.84
CE-Net 74.89 85.64 82.11 99.51 98.67 64.28 78.25 79.05 99.17 98.83

DilatedSegNet 75.12 85.79 83.53 99.44 98.67 65.47 78.96 86.67 99.13 98.82
Polyp-PVT 75.78 86.22 83.09 99.45 98.80 66.74 80.05 86.15 99.19 98.89

UNeXt 66.19 79.66 78.52 99.06 98.08 56.33 72.06 76.33 99.03 98.42
AttaNet 70.06 82.40 82.77 99.09 98.30 60.48 75.37 87.63 98.77 98.47

LW-IRSTNet 73.65 84.83 84.16 99.37 98.58 63.78 77.88 86.37 99.01 98.68
DCSAU-Net 74.70 85.52 85.75 99.25 98.61 64.81 78.64 76.34 99.16 98.89
PolypSeg+ 77.19 87.14 85.26 99.28 98.61 65.66 79.21 87.09 99.18 98.85

Ours 79.02 88.28 85.79 99.57 98.91 68.00 80.95 86.41 99.26 98.92

The visual comparison results are depicted in Figure 5. Figure 5 shows the segmenta-
tion comparison results of the proposed LightCF-Net and other comparative models on
some challenging polyp examples, including polyps with varying shapes, sizes, colors,
and those with low contrast against the surrounding mucosal tissue. Figure 5 reveals
that, with a relatively fixed receptive field, other networks have difficulty adapting to
complex environmental disruptions, as shown in the 4th row with darker lighting and
the 5th and 12th rows with stronger lighting in Figure 5. Furthermore, compared to other
models, LightCF-Net can capture longer-range spatial dependency information and more
accurately distinguish between polyps and unclear mucosal tissues, as shown in rows 3,
9, and 11 of Figure 5. In addition, LightCF-Net also has advantages in identifying small
polyps, as shown in rows 7, 8, and 10 of Figure 5. On some relatively easier-to-distinguish
polyp examples, LightCF-Net also performs well, producing smoother and more accurate
edge contours that are closer to the true boundaries, as illustrated in the first, second, and
sixth rows of Figure 5.

More importantly, we calculated the parameters, FLOPs, and FPS for each method
on the common NVIDA GeForce 3060 Laptop GPU and CVC-ClinicDB dataset to assess
their segmentation efficiency, as shown in Table 3. As seen in Table 3, our method is second
only to AttaNet and U-Net, outperforming other lightweight models, indicating that our
method can produce better segmentation results in less time, which is more beneficial for
clinical applications.

Table 3. Comparison of segmentation efficiency among various advanced models, with the best
results shown in bold.

Method Params (M) FLOPs (G) FPS

U-Net [13] 7.24 12.16 36
U-Net++ [52] 9.16 34.7 31
CE-Net [53] 3.12 3.32 29

DilatedSegNet [54] 2.88 10.14 23
Polyp-PVT [34] 3.65 1.79 25

UNeXt [55] 1.47 0.57 32
AttaNet [56] 1 1.64 43

LW-IRSTNet [57] 2.48 8.91 22
DCSAU-Net [58] 2.59 13.83 18
PolypSeg+ [17] 2.54 7.23 28

LightCF-Net (Ours) 1.52 3.25 33

Moreover, to highlight the superiority of the proposed model, we compared the DSC
and FPS metrics of all models on the CVC-ClinicDB test set, as illustrated in Figure 6.
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As evident from Figure 6, our proposed LightCF-Net achieves a better balance between
segmentation efficiency and precision.

Figure 5. Visual comparison of segmentation performance of the compared networks (TP and FP
pixels are represented in blue and green, respectively, while FN pixels are represented in red).

Figure 6. Comparative performance of the networks in DSC and FPS metrics. The proposed LightCF-
Net network is represented by a red dot. The closer to the direction of the arrow, the better the
performance of the model.

Additionally, we calculated the Area Under the ROC Curve (AUC) and Receiver
Operating Characteristic (ROC) values for different models on the Kvasir-SEG and CVC-
ClinicDB datasets to further assess the segmentation performance of each model, as illus-
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trated in Figure 7. Figure 7 shows that our model possesses the highest AUC values on
both datasets, and its ROC curve is nearest to the top-left corner, signifying the superior
overall accuracy of LightCF-Net.

Figure 7. The ROC curves and AUC values for the networks compared on the Kvasir-SEG dataset
(left) and CVC-ClinicDB dataset (right).

4.4. Ablation Study

To evaluate the effectiveness of modules in the proposed LightCF-Net, we conducted
ablation studies on the Kvasir-SEG dataset, with the results shown in Table 4. The channel
count for each layer of the U-Net was configured as {16, 32, 64, 128, 128}, establishing it as
the baseline network.

Table 4. Ablation study results on the Kvasir-SEG dataset, with the best results in bold.

Method Params (M) FLOPs (G) IoU (%) DSC (%) SE (%) SP (%) ACC (%)

Baseline 0.97 2.67 74.49 85.38 82.29 97.79 95.09
Baseline + FAEncoder_w/o_CA 1.15 2.97 75.61 86.11 82.87 97.97 95.34

Baseline + FAEncoder 1.16 2.97 76.65 86.78 83.83 98.02 95.55
Baseline + VAM 1.21 2.91 76.67 86.80 84.28 97.63 95.48

Baseline + FAEncoder + VAM 1.40 3.22 77.83 87.53 84.60 98.16 95.80
Baseline (PSA) + FAEncoder + VAM 1.52 3.25 78.65 88.05 84.83 98.34 95.99

From Table 4, it can be seen that the baseline network had IoU and DSC values of
74.49% and 85.38%, respectively. The inclusion of the FAEncoder module without channel
attention mechanism resulted in increases of 1.12% in IoU and 0.73% in DSC. With the
addition of the complete FAEncoder module, IoU and DSC values increased by 2.16% and
1.4%, respectively. Adding the VAM module led to increases of 2.18% in IoU and 1.42% in
DSC, respectively. When both FAEncoder and VAM modules were added, IoU and DSC
values increased by 3.34% and 2.15%, respectively.

Finally, with all modules incorporated, all metrics demonstrated optimal results, high-
lighting the effectiveness of the proposed modules. To further visualize the effectiveness of
the different modules, we displayed the attention heatmaps of the baseline network with
added FAEncoder and VAM modules in Figures 8 and 9, respectively. Figure 8 reveals that
with the FAEncoder module added, the network can concentrate more on the polyp area,
minimizing background noise interference. Figure 9 shows that with the incorporation
of the VAM module, the network can more precisely differentiate between polyps and
unclear mucosal tissues. The above experiments fully demonstrate the effectiveness of the
extracted modules.
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Brighter colors indicate greater levels of concern.
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Figure 9. Visual comparison of the ablation study for the VAM module: (a) represents the original
image, (b) the ground truth, (c) the heatmap extracted by the baseline network, and (d) the heatmap
extracted by the baseline network with VAM. Red indicates that the network is paying more attention
to the area, while blue indicates that the network is paying less attention to the area. Brighter colors
indicate greater levels of concern.

5. Discussion

Based on the comparative results from Table 1 and Figure 5, the proposed LightCF-
Net model performs well in addressing the challenges of polyp segmentation, adapting
effectively to tumors of various sizes and shapes, yet the method still has some limitations.
Firstly, although our method achieves good segmentation accuracy, the complexity of the
clinical environment and the limitations of the labeled data during training mean that
it still struggles to perfectly meet the challenges of clinical applications; in the future,
we will consider semi-supervised and unsupervised networks. Secondly, the real-time
performance of the proposed method still requires further enhancement. Improving the
network’s generalization capabilities and real-time performance will be the focus of our
future research.

6. Conclusions

Complex environmental factors in colonoscopy videos, such as insufficient lighting,
mucus, or foam residues, make it difficult for existing networks to effectively extract
discriminative features of polyps. Furthermore, due to the varying size, color, and shape
of polyps, developing a segmentation network that is suitable for all types of polyps and
consistently achieves satisfactory performance is very challenging. Moreover, in clinical
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settings, segmentation algorithms need to have high real-time capability so that physicians
can promptly diagnose and treat. To address these issues, this paper proposes a novel
lightweight long-range context fusion network for real-time polyp segmentation, named
LightCF-Net. Initially, the LightCF-Net uses the FAEncoder, which integrates Large Kernel
Attention (LKA) and channel attention mechanisms, to extract deep semantic features and
discover long-range correlations. Secondly, a newly designed Visual Attention Mamba
module (VAM) is incorporated into the network’s skip connections, modeling long-range
contextual dependencies in the features extracted by the encoder and focusing on key
information through the attention mechanism to reduce background noise. Lastly, a
Pyramid Split Attention module (PSA) is added to the bottleneck layer of the network, to
capture richer multi-scale contextual feature information. Extensive experiments on the
renowned polyp segmentation datasets Kvasir-SEG and CVC-ClinicDB have demonstrated
that LightCF-Net achieves higher segmentation accuracy in less time compared to other
state-of-the-art networks, making it more suitable for clinical applications.
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