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Abstract: Large-scale bioprocesses are increasing globally to cater to the larger market demands
for biological products. As fermenter volumes increase, the efficiency of mixing decreases, and
environmental gradients become more pronounced compared to smaller scales. Consequently, the
cells experience gradients in process parameters, which in turn affects the efficiency and profitability
of the process. Computational fluid dynamics (CFD) simulations are being widely embraced for
their ability to simulate bioprocess performance, facilitate bioprocess upscaling, downsizing, and
process optimisation. Recently, CFD approaches have been integrated with dynamic Cell reaction
kinetic (CRK) modelling to generate valuable information about the cellular response to fluctuating
hydrodynamic parameters inside large production processes. Such coupled approaches have the
potential to facilitate informed decision-making in intelligent biomanufacturing, aligning with the
principles of “Industry 4.0” concerning digitalisation and automation. In this review, we discuss
the benefits of utilising integrated CFD-CRK models and the different approaches to integrating
CFD-based bioreactor hydrodynamic models with cellular kinetic models. We also highlight the
suitability of different coupling approaches for bioprocess modelling in the purview of associated
computational loads.

Keywords: computational fluid dynamics; process optimisation; cell reaction kinetics; digitalisation;
bioprocess modelling

1. Introduction

The global market share of biopharmaceutical products is valued at USD 516.79 billion
in the year 2024 and is expected to grow at a compound annual growth rate (CAGR) of
8.07% to reach USD 761.80 billion by 2029 [1]. It accounted for 27% of the global phar-
maceutical market in 2020, up from 20% in 2015, and is expected to grow faster than the
overall pharmaceutical market, with biopharmaceuticals projected to account for 32% of
the global pharmaceutical market by 2026 [2]. The high sales growth of biologics has
necessitated an increase in the production scale and efforts to achieve higher productiv-
ity, efficiency, and cost-effectiveness. However, the transition to large-scale production is
always complicated due to the fluctuations in the cell’s environment and bioreactor hetero-
geneity [3]. Maintenance of homogeneous culture conditions throughout bioreactor volume
and batch duration at large scale is often infeasible due to the high energy requirement for
the mechanical operation of these bioreactors [4]. This spatial and temporal variation of
physiochemical environmental parameters like substrate gradients [5–7], dissolved oxygen
gradients [8–10], and pH gradients [11,12] disturb the physiological state of cells and their
cellular machinery. These gradients significantly impact the metabolic response of the cell
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and culture performance as the cells are subjected to an incessantly fluctuating environ-
ment [13]. The heterogeneous process parameter profile in the bioreactor also causes cell
population heterogeneity [14].

Both positive and negative effects linked to the presence of environmental gradients
have been documented. Outcomes, such as increased cell viability in the presence of glu-
cose gradients [5,6], lower N-glycolylneuraminic acid derivatives at high partial pressure
due to carbon dioxide (pCO2) accumulation due to mixing gradients [15] and increased
specific antibody production at higher culture osmolality and pCO2 concentration [16] has
been reported in the past. Prior evaluation of the effects of gradients on cellular behaviour
can offer insights into upcoming difficulties at a large scale. Countermeasures can be
taken in advance to avoid a negative impact on process performance. The expression
host’s response to physiochemical gradients can be used to design more robust strains [17].
Traditionally, an experimental approach to address the challenge has been adopted, like
mimicking the gradients in process parameters at the lab scale to evaluate scale-up ef-
fects [18]. Such scale-down bioreactors present limitations, particularly in their inability
to decouple various process parameter gradients, such as dissolved oxygen (DO) and
glucose concentrations or pH and osmolarity. Additionally, the frequency and amplitude
of environmental changes are heavily reliant on the tested parameter and the specific cell
line under examination [19]. The effectiveness of scale-down experiments is significantly
influenced by the chosen configuration as the use of geometrically disparate scale-down
bioreactors would pose challenges in mimicking the extent and distribution of large-scale
gradients. The use of a shake flask and microscale bioreactors as scale-down simulators
can potentially lead to conflicting interpretations as they exhibit different oxygen gradients
and mass transfer patterns compared to large-scale bioreactors. This impacts cellular physi-
ology, gene expression, and product quality [20]. Moreover, information about the local
intensity gradients at large-scale bioreactors is lacking because the addition of multiple
probes to collect the data would be intrusive to the fluid flow, and positioning of multiple
sampling ports for offline analysis would increase the risk of contamination due to frequent
interventions. For these reasons, the design space for scale-down simulators relies heavily
on a trial-and-error approach. Real-time experimental characterisation of physiochemical
gradients in a turbulent multiphase cell culture fermentation process is complicated, given
the system’s complexity, which is influenced by impeller motion, gaseous sparging, feed in-
terventions, foaming-induced mass transfer changes, external heat transfer, and rheological
effects [19].

Process modelling techniques like Computational fluid dynamics (CFD) and cell
reaction kinetic (CRK) models allow us to predict the occurrence of gradients and assess-
ment of their effect on cellular metabolic behaviour, respectively. CFD facilitates cost and
time-effective prediction of the bioreactor hydrodynamics and fluid mixing [21–23], mass
transfer [24,25], shear stress zones [26,27], and dissolved oxygen profile [27]. Even with
the significant success of CFD in bioprocess design and optimisation, the inclusion of
all aspects prevalent inside a bioreactor in a simulation space often leads to complicated
models. Moreover, their experimental validation is even more challenging [28]. This calls
for simplification steps in simulating bioreactor hydrodynamic behaviour. Such simplifica-
tion mandates prior knowledge and force balance analysis to reveal acting forces with a
low magnitude that can be neglected to approach realistic approximations. The trade-off
between the use of a simplified model in place of more realistic ones is based upon inher-
ent physical phenomena, the required level of detail, and an acceptable range of errors
during validation. Studies utilising CFD as the sole means of bioprocess investigation
have only made an indicative impact on process improvement by unravelling the presence
of non-ideal behaviour in flow parameters and have aided bioreactor redesign [29,30] as
well as process scale-up [31] and scale down [32]. The knowledge gained has led to the
identification of hydrodynamic causes of yield loss, but process improvement is still left
to rigorous experimentation, as full use of the extensive data generated by CFD cannot be
achieved if it is unable to capture cellular responses to spatiotemporal flow information.
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On the other hand, standalone cellular kinetic models are unable to predict the com-
plete picture of biological processes as the exclusion of dynamic bioreactor hydrodynamics
amounts to confounding of different causes of cell death [33]. Consequently, standalone
CRK models do not possess satisfactory predictive capabilities and demand feedback from
the surrounding environment to which cells are exposed during the cell culture process [34].
Without this feedback, as is the case with the existing kinetic models, their predictions do
not account for scale and its implications, whether a cell culture process is run in shake
flasks or in bioreactors of any scale. These models consider all causes of cell death using
one parameter, e.g., growth rate. Hence, the performance of the CRK models deteriorates
when the model is applied outside the calibration range or when the process conditions
change, as the kinetic parameters are highly dependent on the cell line, culture medium,
and other bioreactor conditions [35].

Recently, CFD models have been integrated with dynamic CRK modelling to generate
valuable information about the cellular response to fluctuating hydrodynamic parameters
inside large production processes [36,37]. With the advancement in computing capabil-
ities, including a multitude of factors affecting cellular production has become possible,
and bioreactor modelling studies have gradually shifted towards interlinking structured
cellular models with CFD simulations using either Eulerian or Lagrangian approaches.
In the Lagrangian approach, dispersed entities such as particles, droplets, and bubbles
are represented by virtual particles. These virtual particles have tracked properties like
positions and velocities, while the continuous phase is represented by a field. This method
differs from the Eulerian approach, which utilises concentration and velocity fields to mon-
itor the concentration of dispersed entities. The Eulerian approach is computationally less
expensive and more suited for transient simulations. The integration of CFD-CRK for tran-
sient analysis of the system has the potential to provide real-time and predictive insights
into the dynamic cellular responses, enabling quick decision-making in biomanufacturing
processes [38]. It also allows for the creation of digital twins (virtual representations of the
bioprocess), enabling simulation and prediction of the impact of various parameters on
cellular behaviour. The digitalised approach enhances the efficiency of experimentation,
reduces the need for extensive physical trials, and accelerates the development and optimi-
sation of bioproduction processes. Such coupled approaches have the potential to facilitate
informed decision-making in intelligent biomanufacturing, aligning with the principles of
“Industry 4.0” concerning digitalisation and automation [39].

There have been valuable contributions made in the literature for the application of
CFD to model volumetric mass transfer coefficient (kLa) [40–42], power density
(P/V) [43–45], mixing time [46–48], Kolmogorov length (λk) [49,50], shear stress (τ) [51–53]
and sedimentation [54,55] in bioreactors. Cell culture dynamics, metabolism and product
glycosylation have been modelled in the past using mechanistic models [56–58], statistical
models [59–61], and hybrid models [61,62]. The application of CFD for hydrodynamic
characterisation and scale-up and CRK for cell metabolism modelling has been extensively
reviewed recently [63–66]. In this review, the focus is on the research articles wherein both
the CFD and CRK modelling approaches have been integrated as this strategy has the
potential to optimise the whole bioprocess rather than optimisation advances in just unit
steps involved in bioprocessing. Special emphasis has been given to the methodology used
to integrate the CFD and CRK models along with the process information extracted from
such coupling. The literature search methodology has been described in Section 2. A brief
about Eulerian and Lagrangian methods and their application in the literature is discussed
in Section 3 followed by a discussion on the suitability of these methods for different
use cases in Section 4. The state-of-the-art in CFD-CRK literature has been summarised
in Section 5. Ultimately, a case has been presented in favour of the coupled CFD-CRK
techniques with the rationale of using the benefits of both while being able to cut down on
their respective downsides (Section 6).
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2. Literature Search Methodology

The article selection in this study adheres to the structure outlined by the PRISMA
framework [67]. This framework encompasses four key phases: identification, screen-
ing, eligibility, and inclusion. The search was executed in April 2024 using the Scopus
database. This database was chosen due to its demonstrated ability to effectively retrieve
data and ensure the replicability of searches [68]. A total of 77 articles were identified
in the literature search based on search criteria mentioned in Table 1. The articles were
further screened using Microsoft Excel to curate the final list of eligible articles (26 research
articles) to be included for evaluation. Only articles coupling biological reactions relevant
to biotherapeutics with CFD have been identified as eligible to match the scope of the
current study.

Table 1. Search criteria for research article screening on Scopus database.

Database CFD
Modelling

CRK
Modelling System Limit to

Scopus

“Computational
Fluid

Dynamics”
OR

“CFD”

AND

“Cell Reaction
Kinetics”

OR
“Kinetic

modelling”

AND

“Fermentation”
OR

“Bioreactor”
OR

“Bioprocess”
OR

“Bioprocess
development”

Source Type:
Journals

Document
Type: Articles,

Conference
papers

Language:
English

3. CFD-CRK Coupling Approaches
3.1. Eulerian Approach

This method is also referred to as the Euler–Euler (EE) approach, as the fluid and
particulate phases (cells and/or gas bubbles) are not individually tracked. In this approach,
all the phases (including the biophase) are treated mathematically as interpenetrating
continuums (continuous systems where erratic changes do not occur) and are described in
terms of their volume fractions [69]. The assumption of a biological entity as a continuum
is an oversimplification and does not consider the individual nature of the cell factory,
particularly in the case of unstructured cellular models being used as a counterpart in
the coupling process for large-scale bioreactors with longer mixing times. Thus, this
methodology is unable to account for the individual response of the cells [70].

In order to consider cells as individual entities, Population Balance Models (PBMs) can
be used, which can account for the population adaption dynamics of cells [71,72]. Rather
than assuming equilibrium between internal and external state parameters of cells, PBMs
allow for capturing local non-equilibria by using a distribution function for intrinsic cellular
parameters based on the principle of segregation. Most studies have used specific growth
rates as the representative parameter to differentiate between individual cells [72,73]. By
using PBMs for an Escherichia coli fermentation process, glucose gradient-induced acetate
overflow zones were identified [72]. The biggest advantage of using this approach is its
scalability to large domains [70]. This approach has also been demonstrated viable to
model cell culture processes for the entire batch duration (assuming pseudo-steady state
hydrodynamics) and in the identification of decreased process yield causes for macro-mixed
bioreactors [71]. Most studies assume one-dimensional heterogeneity (captured by specific
growth rate), which may be insufficient in cases where the adaptation time for cells is
much greater than the reaction time, as this will require resolution of heterogeneity across
two-time scales. One limitation of PBM is the inclusion of high-dimension functions when
combined with structured kinetic models, which is computationally expensive. Also, the
particle (cells) travel history inside the fluid domain cannot be accounted for.
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3.2. Lagrangian Approach

The Lagrangian approach emphasises tracking the fate of each particle individually.
Consequently, this approach results in a substantial number of ordinary differential equa-
tions to be solved and, therefore, is highly computationally intensive. Due to computational
expense, Euler-Lagrange (EL) simulations with Eulerian reaction coupling were initially
adopted to model the extracellular environment of the cells but failed to describe the
interaction of extracellular and intracellular culture phenomena [74,75].

A more practical approach to model fluid dynamics and cellular physiology inter-
actions is to apply the Lagrangian view to the cells while using an Eulerian framework
for fluid dynamics. This modelling strategy is called Euler–Lagrange simulations with
Lagrangian reaction coupling or agent-based methodology [76]. In this case, the biotic
phase is viewed as clusters of cells and is represented by computational particles (parcels).
To describe cellular metabolism, a structured kinetic model is formulated by lumping
important intracellular metabolites and enzymes in different pools. Within each parcel,
the intracellular composition is tracked by assigning a composition vector for each pool
using the Lagrangian approach. In this way, each pool is quantified by a single value for
the defined composition vector, making the pool interactions straightforward. However,
unlike PBM, there are no pseudo-steady states for the Lagrangian phase, requiring a tran-
sient solution with short timesteps to capture parcel motion and pool dynamics. A 9-pool
metabolic model characterised by five metabolite pools: glycolytic intermediates, amino
acids, Adenosine triphosphate, Phenylacetic acid, and stored carbohydrates; and four path-
way enzyme pools (glucose uptake, Phenylacetic acid export, penicillin production, and
storage conversion) for Penicillium chrysogenum, showed sufficient accuracy in predicting
extracellular concentrations and reaction rates [77].

The first application of this approach was the study of temporal oscillations in gly-
colysis pathway metabolites in the presence of heterogenous glucose concentrations at
the single-cell level for Saccharomyces cerevisiae cells [78]. The authors acknowledged the
computational burden of three-dimensional discretisation and the inclusion of a sufficient
number of cells in each control volume in the modelling step. Hence, the agent-based
modelling method can accommodate intracellular pools and structured cellular kinetic
models, but it is not computationally tractable to combine spatially resolved transient
multiphase bioreactor models with structured segregated cellular kinetic models [78].

Since the Lagrangian approach is computationally intensive, appropriate approxima-
tions are mandated in both the CFD modelling as well as in the metabolic models. However,
the argument of using lumped cellular models to reduce the computational cost is challeng-
ing to implement, as it is difficult to determine the number of particulates (cells) required
to avoid gradients in cell concentration [77]. If local variations in metabolite consumption
rates are to be included, the required number of particles will increase. An alternative
approach is to compartmentalise the CFD computational domain. This strategy has offered
good results in syngas fermentation applications [79] and avoiding non-essential details
in the model based on prior knowledge can yield better simulation results [80]. Table 2
provides a comparison of the non-compartmentalised CFD modelling approaches to the
compartmentalisation-based modelling approach [81].

Table 2. Non-compartmentalised CFD modelling approaches vs. compartmentalisation-based
approach [81].

Factors
CFD Approach Compartmentalisation-

Based Modelling ApproachEulerian Approach Agent-Based Methodology

Computational effort High High Low

Level of accuracy High High Low

Prediction accuracy of
flow regime High High Low
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Table 2. Cont.

Factors
CFD Approach Compartmentalisation-

Based Modelling ApproachEulerian Approach Agent-Based Methodology

Single-cell tracking No Yes Yes

Integrable model size Coarse-grained small-scale Coarse-grained small-scale Genome-scale

Number of particles High Low (<10%) High

4. Selecting a Suitable Coupling Strategy

When there is no limitation on computational cost, the Lagrangian description of
a system is the most potent method and provides a more detailed description of the
process. However, the order of particles that need to be tracked can range upwards
of 106 (especially in CHO cell culture processes [82]). Hence, it becomes a necessity to
rationally select the coupling strategy as the simulation can become infeasible otherwise.
The decision to opt for full Lagrangian coupling depends on how the metabolic (uptake)
reactions are affected by the intracellular activities. If the effect of the intracellular state
of a cell on the extracellular reactions is negligible, also referred to as one-way coupling,
then the intracellular environment can be assumed to be homogeneous, and the Eulerian
approach will be able to provide satisfactory results. If there is a heterogenous intracellular
environment, uptake rates will be affected (two-phase coupling or interphase coupling),
and, hence, the fate of each particle is expected to affect the process dynamics [77]. Particle
loading and Stokes number can be used as derived parameters to serve as guiding factors
to select whether a phase (fluid/particles/cells) should be tracked using the Lagrangian
method [76], as detailed below.

Most bioreactors operate with at least 1% (percentage by volume, v/v) gas (which is
equivalent to an L/dp value of 3.74—still considerably less than high gas loading for which
the L/dp value is 8) [76]. This indicates that the gas loading is at least an intermediate
parameter (i.e., not low) in nature, increasing two-way interphase coupling between the
gas and liquid (i.e., the bubbles also influence the carrier liquid via a reduction in mean
momentum and turbulence). So, the Lagrangian approach should be applied to gas bubbles
here. Similarly, a 1 × 106 cells/mL suspension of CHO cells with an approximate cell
diameter of 15 µm equates to a volume fraction (percentage by volume, v/v) of 0.2% and a
corresponding L/dp value of 6.7, suggesting an intermediate particle loading for which the
Lagrangian approach is required [76]. Thus, Euler–Lagrange simulations with Lagrangian
reaction coupling should be adopted. This decision is further supported by the Stokes
number (St), which is defined as the ratio of particle response time to system response time
(Equation (1)).

St =

[
(ρ−ρ′)dp

2

18

]
(

L
v

) , (1)

where ρ is the density of the liquid, ρ′ is the density of the dispersed or particulate phase,
dp is the particle diameter, µ is the dynamic viscosity of the liquid, L is the characteristic
system length, and v is the characteristic velocity.

If the characteristic length for a stirred-tank bioreactor is estimated as Di (the im-
peller diameter), the characteristic velocity as NDi (the tip speed), a bubble size of 5 mm

(corresponds to (ρ−ρ′)d2

18 = 1.3), and for an agitation rate of 50 rpm ( L
v = 1 s), St is estimated

to be 1.3 [76], which favours the use of the Lagrangian approach because particles will
move independently of the fluid flow at Stokes number greater than 1 [83]. Particles with a
Stokes number greater than one do not follow the fluid streamline as they are dominated
by their inertia and tend to continue along their initial trajectory [84]. Figure 1 depicts a
performance evaluation diagram for building a CFD-CRK coupled model, which can be
computationally feasible and serve optimum prediction accuracy to make informed deci-
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sions regarding cell culture process development. The suitability of a particular coupling
strategy, graphically represented in Figure 1, is explained in Table 3.
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Figure 1. Computation time vs. Prediction accuracy for small scale cell culture process (except (7))
(1) Eulerian integration for spatiotemporally heterogeneous bio-phase, i.e., cellular parameters at
position 1 (C1), position 2 (C2) and position 3 (C3) are different during bioproduction phase, requires
low computational cost but results in low prediction accuracy (2) Prediction accuracy of Eulerian
approach increases for temporally heterogenous but spatially homogenous systems (3) Eulerian
approach is best suited for homogeneous cellular behaviour offering high prediction accuracy while
maintaining low computational cost (4) Multizonal compartmentation based Lagrangian integration
is faster and feasible while offering comparable model accuracy to full Lagrangian coupling (5) Phase
ensemble average based Lagrangian integration for heterogeneous bio-phase is able to accommodate
the time variance in cellular states via averaging but cannot capture the spatial heterogeneity associ-
ated with the cells (6) Full Lagrangian coupling for heterogeneous systems with particle (cell) tracking
yields high prediction accuracy of optimising parameters but is computationally intensive and suited
for reduced and stable cellular kinetic models (7) Large scale bioreactors require high computational
time for the fluid phase, which makes the integration of the bio-kinetic phase unfeasible and awaits
technology enhancement to prove its utility. Note: The post-processed simulation results are for
representative purposes and do not indicate the exact distribution of parameters.

Table 3. Applicability of CFD-CRK coupling strategy for different bioprocess conditions scenarios.

Bioreactor Physical
Conditions CFD-CRK Coupling Strategy Computational

Load
Model Prediction

Accuracy Remarks

Small-scale bioreactor with
heterogenous culture

parameters in spacetime
Eulerian integration Low Low

The application of Eulerian integration to a
heterogeneous bioprocessing environment is an

oversimplification of the system, which leads to poor
prediction of culture parameters [76]. This coupling

strategy can be used to integrate complex and
unstable cellular models to formulate the sample

space for the process conditions to be
further evaluated.

Small-scale bioreactor with
temporally heterogeneous but

spatially homogeneous
culture parameters

Eulerian integration Low Medium

The assumption of spatially homogeneous culture
parameters represents an ideally mixed system, which

can be loosely approximated to be the scenario in
small-volume bioreactors with ample agitation and

aeration. In such cases, model prediction is postulated
to increase as cellular behaviour is only

temporally impacted.
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Table 3. Cont.

Bioreactor Physical
Conditions CFD-CRK Coupling Strategy Computational

Load
Model Prediction

Accuracy Remarks

Small-scale bioreactor with
homogeneous culture

parameters in spacetime
Eulerian integration Low High

The assumption of homogeneous culture parameters
in spacetime is a hypothetical case. The closest

example of such a case is the production phase of a
small-scale, continuously perfused cell culture

process, as the nutrient availability and distribution
happen in a close to uniform environment. For this

duration of steady state, Eulerian coupling can
provide higher prediction accuracy.

Small-scale bioreactor with
heterogenous culture

parameters in spacetime

Phase ensemble
average-based

Lagrangian integration
Medium Medium

Phase ensemble average-based Lagrangian integration
ignores the spatial heterogeneity of the parameters

and uses a time-averaged approach to account for the
temporal variation of culture parameters. This
increases the computational time as well as the

accuracy of the predicted model compared to the
Eulerian approach, which completely ignores the

presence of heterogeneous culture parameters
in spacetime.

Small-scale bioreactor with
heterogenous culture

parameters in spacetime

Grid cell average-based
Lagrangian High High

Grid cell average-based Lagrangian approach tracks
the cells for the variations in cell behaviour in

spacetime. Clearly, this approach is computationally
expensive but offers high-quality resolution in terms
of prediction accuracy. Such a coupling approach can

be applied to small-scale bioreactors with reduced
cellular models.

Small-scale bioreactor with
heterogenous culture

parameters in spacetime

Multizonal grid cell
average-based Lagrangian Medium to High Medium to High

The multizonal grid cell average-based Lagrangian
approach divides the bioreactor 3D space into
multiple compartments and assumes spatial

uniformity within these zones. This approach reduces
the computational burden as compared to the

non-compartmentalised grid cell average-based
Lagrangian approach, and the appropriate selection of

multizone ensures medium to high
prediction accuracy.

Large-scale bioreactor with
heterogenous culture

parameters in spacetime
Eulerian integration Low Low

For large-scale bioreactors, CFD models are less
computationally tractable, thereby increasing the

simulation time [78]. Eulerian coupling is the only
feasible approach currently, and technological

advancements in computing are required to move to
better coupling approaches capable of providing more

realistic prediction accuracy.

5. State of the Art

The foundation of CFD-CRK coupling to achieve additional process information was
laid with the integration of CFD models and unstructured kinetic models to describe
fed-batch Saccharomyces cerevisiae culture [85]. The authors attempted to demonstrate the
presence of glucose gradients within the bioreactor (total volume 30 m3) and found that
the nature of gradients varied with the location of feeding points: more homogenous
glucose concentration was observed in the bottom fed process than in the top fed one.
Deviations across time and position were observed between simulated and measured
glucose concentrations, in particular at higher cell densities. These discrepancies could
have been due to errors in kinetic parameters for glucose balance (e.g., the yield coefficient
of cells on glucose) or lower axial mixing predicted with the CFD model [85]. Although
this type of integrated model was able to offer insights into bioreactor hydrodynamics, it
failed to decipher the response of cells to such conditions because the adaptation of cellular
physiology to the bioreactor surroundings was not included [85]. The same problem
persisted when simplistic empirical models were used to correlate the Reynolds number to
the integral viable cell density of CHO-320 cells producing interferon-γ in a stirred tank
bioreactor [86]. Consequently, no unifying correlation could be formulated to capture the
physiological response to the changing bioreactor hydrodynamics.

Recently, Nadal-Rey et al. [87], the particle lifeline methodology was employed to
assess the impact of reactor design on the conditions encountered by two frequently
utilised industrial microorganisms, Escherichia coli and Saccharomyces cerevisiae. The findings
revealed that cells in the stirred tank reactor were more likely to undergo extended periods
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of both starvation and overflow metabolism compared to those in the bubble column.
This pattern was attributed to the differences in mixing characteristics between the two
reactor designs. Remarkably, a substantial portion (60%) of the population in the stirred
tank reactors was found to be in starvation conditions for a majority of the time (>70%),
a situation that could potentially influence cellular metabolism. In a similar study [36],
the authors evaluated the effect of carbon monoxide gradients on Clostridium ljungdahlii
in a 125 m3 bubble column bioreactor. It was found that 97% of cells faced substrate
limitations, while 84% were prone to transcriptional changes after prolonged exposure to
stress-inducing conditions (over 70 s). Bacterial movement primarily occurred between
regions of low and moderate product biomass yield, with longer residence times in the
latter. The circulation time, determined through mixing time analysis, resembled the
average circulation time of a single bacterium. These findings were inferred from regime
transition studies, which also identified maximum residence times exceeding 100 s and
minimum regime crossing times of 10 s. Since the experimental data for the effect of these
stress-inducing conditions on Clostridium ljungdahlii was not available, the application of
lifeline analysis data was not utilised for optimising the cell culture process. Also, it is
difficult to draw an inference obtained from process snapshots which can be generalised for
the whole duration of the batch. Such information can be used to design bioprocess vessels,
manipulate operating conditions and even adjust bioreactor configuration to optimise the
process [87]. The development of scale-down simulators using this approach holds promise
for process life-cycle management and process scaling [70].

If the impact of process parameter gradients on cellular behaviour can be predicted
for the entire duration of the production process, significant leads can be gained for the
development of strategies to enhance productivity [37], increase efficiency [38], and reduce
costs [81], contributing to the goals of process intensification. In one of the studies, for
optimisation of vanillin production from ferulic acid using recombinant Escherichia coli
cells, Yeoh et al. [37] evaluated the impact of mass transfer and aeration rate on the process
performance. A coupled CFD-CRK model in transient mode was applied for the entire batch
duration to optimise the batch process which resulted in a highly optimised bioprocess
achieving 94% bioconversion yield. However, due to computational challenges, applying
the transient CFD-CRK model for mammalian cell culture fed-batch process or perfusion
process is not possible currently [77,87]. A limited number of integrated CFD-CRK models
have been developed for mammalian cells [38,88], likely because modelling of their cellular
kinetics requires a more detailed description of metabolic reactions which increases the
computational cost. Farzan et al. studied the effect of dissolved oxygen (DO) concentration,
bubble diameter, and turbulent eddies on the growth, viability and productivity of CHO
cells via coupling Ansys Fluent simulated flow information with a biokinetic model using a
non-linear solver (details of the solver not specified) [38]. The focus of this study was more
on exemplifying the coupling algorithm for CHO cells and the identification of optimal
operating conditions. Hence, experimental validation of the proposed optimal operating
schemes was not included. Recently, Oliveira et al. successfully applied and experimentally
validated an integrated CFD-CRK model to demonstrate optimal PID controller embedding
to predict changes in oxygen and pH in the cell culture system [88]. This study was
conducted in the GE XcellerexTM XDR 200 bioreactor using a proprietary mammalian cell
line. The authors emphasised the need for advancements required in GPU architecture to
apply such a real-time coupling between reactor operating conditions and process outcomes
for large-scale bioreactors.

The majority of the studies mentioned in Table 4 have considered unstructured growth
models for microbial cell lines with the hydrodynamics solved using commercial CFD
software such as Ansys Fluent (https://www.ansys.com/products/fluids/ansys-fluent,
accessed on 25 April 2024) [36,38,75], Ansys CFX (https://www.ansys.com/products/
fluids/ansys-cfx, accessed on 25 April 2024) [37,87], M-Star CFD (https://mstarcfd.com/,
accessed on 25 April 2024) [88,89], COMSOL Multiphysics (https://www.comsol.com/
comsol-multiphysics, accessed on 25 April 2024) [90], and PHOENICS (https://www.cham.

https://www.ansys.com/products/fluids/ansys-fluent
https://www.ansys.com/products/fluids/ansys-cfx
https://www.ansys.com/products/fluids/ansys-cfx
https://mstarcfd.com/
https://www.comsol.com/comsol-multiphysics
https://www.comsol.com/comsol-multiphysics
https://www.cham.co.uk/phoenics.php
https://www.cham.co.uk/phoenics.php
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co.uk/phoenics.php, accessed on 25 April 2024) [78]. It is interesting to note that open-
source platforms like OpenFOAM and OpenLB (https://www.openlb.net/, accessed on
25 April 2024) have not been applied yet to integrate kinetic models with CFD mod-
els. Most of the studies have used the finite volume method for modelling the biore-
actor hydrodynamics that was integrated with mechanistic models describing the cul-
ture metabolic dynamics. Since simulation time for transient modelling is currently a
challenge, these software support parallel computing using Graphics processing units
(GPU) in their latest versions. By default, computational software like COMSOL (https:
//www.comsol.com/, accessed on 25 April 2024), Autodesk CFD (https://www.autodesk.
com/products/cfd/overview, accessed on 25 April 2024), Ansys CFX, and OpenFOAM
(https://www.openfoam.com/, accessed on 25 April 2024) are not configured to utilise
GPUs for calculations. However, there exist several modifications, one of which is MixIT
(https://tridiagonal.com/mixit/, accessed on 25 April 2024), that enable OpenFOAM to
leverage the computational power of GPUs [91].

Validation of the CFD-CRK model results with experimental data is critical to assess
the extent to which a model accurately mirrors reality. However, current technologies in ex-
perimental measurement of spatiotemporal variation of process parameters are limited [92].
Most of the studies of the work described in Table 4, have used validation approaches
wherein either the hydrodynamic parameters from CFD simulations have been validated
using thermal anemometry [85], Laser Doppler Velocimetry (LDV) [86], and Particle Image
Velocimetry (PIV) [71] data. The mean concentrations of metabolites and products have
been also validated against experimental data acquired from the experiments [37,88,93].
However, only a few studies have used multiple sensors placed at different locations within
the bioreactor space to validate the results [85,94]. It is important to acknowledge that
the experiments are not exempt from measurement inaccuracies, and these errors must be
factored into the statistical analysis especially when multiple sensors are used to extract
the same data. A few studies involving detailed kinetic models for cell metabolism have
not been available to validate the results and have presented in silico results as proof-
of-concept [36,38,75,87,95,96]. Table 4 summarises relevant available year-wise research
outputs, studied cell culture system, adopted approaches, and validation strategy.

Table 4. Summary of CFD-CRK integrated models in cell culture.

Reference System Description Integration Approach Validation Method Year

[88] Proprietary mammalian cell line,
200 L bioreactor

Euler–Lagrange (EL) simulations with Eulerian
reaction coupling. The only reaction to model oxygen

and pH profile has been coupled

Modelled Oxygen and pH
concentrations verified experimentally 2024

[87]
Escherichia coli and Saccharomyces

cerevisiae, 90 m3 bubble column and a
stirred tank bioreactor

Euler–Euler simulations with Lagrangian particle
tracking approach for cells. Unstructured kinetic

model for growth and nutrient uptake rates
Results were completely in silico 2023

[90] S. cerevisiae, 22 m3 stirred tank reactor
Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. Unstructured model for nutrient

uptake rates

Glucose concentration field data
validated against data from

literature [85]
2023

[95] Cell line not mentioned, Perfusion
bioreactor volume not mentioned

Euler–Euler simulations with unstructured kinetic
model for growth and substrate uptake Results were completely in silico 2022

[93] P. chrysogenum, 54 m3 stirred
tank reactor

Euler–Lagrange (EL) compartment-based CFD
simulations with Lagrangian reaction coupling.
Unstructured and structured cellular model for

growth rate distribution

The kinetic model was validated
against literature data [97], and the

CFD-CRK model was validated against
mean specific growth rate data from

industrial experimental data

2022

[37] E. coli, 1.5 L stirred-tank bioreactor
Euler–Lagrange (EL) simulations with Eulerian

reaction coupling. Unstructured cellular model for the
effect of dissolved oxygen on cell growth

Volume average of substrate and
product concentrations were validated

against experimental data
2021

[94] Streptococcus thermophilus, 700 L stirred
tank reactor

Euler–Euler simulations with unstructured kinetic
model for growth and pH change

pH gradient results generated from the
CFD-CRK model were experimentally
validated using 6 multiple probes at

different locations

2019

[36] Clostridium ljungdahlii, 125 m3

bubble column

Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. stoichiometry model for carbon

monoxide uptake
Results were completely in silico 2019

https://www.cham.co.uk/phoenics.php
https://www.cham.co.uk/phoenics.php
https://www.cham.co.uk/phoenics.php
https://www.openlb.net/
https://www.comsol.com/
https://www.comsol.com/
https://www.autodesk.com/products/cfd/overview
https://www.autodesk.com/products/cfd/overview
https://www.openfoam.com/
https://tridiagonal.com/mixit/
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Table 4. Cont.

Reference System Description Integration Approach Validation Method Year

[98] P. chrysogenum, 54 m3 stirred
tank reactor

Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. Structured cellular model for

growth rate distribution

The kinetic model was validated
against the literature data [97], and the
CFD-CRK model was validated against

mean specific growth rate data from
industrial experimental data

2018

[38] CHO cell, 3 L bioreactor
Euler–Lagrange (EL) simulations with Lagrangian

reaction coupling. Unstructured cellular model for the
effect of DO on cell growth

Results were completely in silico 2018

[77] P. chrysogenum, 98 m3 hypothetical
reactor

Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. Unstructured model for nutrient

uptake rates

Mean concentration profiles were
compared against the literature data 2017

[74] S. cerevisiae, 22 m3 stirred
tank reactor

Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. Unstructured model for nutrient

uptake rates

Glucose concentration field data
validated against data from the

literature [85]
2017

[75] Pseudomonas putida, 54 m3 stirred
tank reactor

Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. An unstructured cellular model

involving logistic equation for growth
Results were completely in silico 2017

[96] HFN 7.1 murine hybridoma cells, 0.01 m3

stirred tank reactor

Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. Unstructured cellular model for the

distribution of cells over cell cycle and effect of pH,
dissolved oxygen, gas holdup and energy dissipation

rate on cell metabolism

Results were completely in silico 2017

[99] Carthamus tinctorius L., 5 L–15 L stirred
tank reactor

Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. Unstructured model for

death kinetics

CFD results were validated by Particle
Image Velocimetry (PIV) measurements,

and death kinetics was validated
experimentally by viability data.

2016

[100] S. cerevisiae, 0.24 m3 bubble column
reactor

Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. Unstructured model for nutrient

uptake rates

CFD and kinetic models were validated
against the literature data [101,102]. No

validation of the glucose
concentration field.

2016

[70] Penicillium chrysogenum, 54 m3 stirred
tank reactor

Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. Unstructured model for nutrient

uptake rates

Mean substrate concentrations were
validated against simulated average

substrate concentrations from the
Eulerian method.

2016

[72] E. coli, 22 m3 stirred tank reactor
Euler–Euler simulations with Population balance

models for cells. Structured model for growth
rate distribution

The volume average of substrate and
product concentrations was validated

against experimental data and data
from the literature [103].

2015

[71] Cell line not mentioned, 0.07/70 m3

stirred tank reactor

Euler–Euler simulations with Population balance
models for cells. Unstructured model for growth

rate distribution

Fluid flow validation from Particle
Image Velocimetry (PIV) measurements

from the literature [104,105]. No
validation for the spatial distribution of

specific growth rates.

2014

[73] Hypothetical aerobic bacteria (like
Candida tropicalis), 3-L reactor

Euler–Euler simulations with Population balance
models for cells. Unstructured model for nutrient

uptake rates

Results generated from the CFD-CRK
model were validated against the

literature data from [106]
2013

[107] Aspergillus niger, 5 dm3

stirred-tank bioreactor

Euler–Euler simulations with Eulerian reaction
coupling. Unstructured cellular model for growth and

product formation

Numerical results are validated against
experimental data for a batch time of

60 h
2013

[86] CHO 320 producing interferon-γ, 1.4 L
regulated stirred tank reactor

Empirical Methodology:
experimental data fitting to correlate hydrodynamic
parameters (mean turbulent energy dissipation rate
and Reynolds number) to integral viable cell density

The fluid flow field was validated by
Laser Doppler Velocimetry (LDV)

measurements. Experimental validation
of empirical correlation for

hydrodynamic parameters to integral
viable cell density

2010

[108]

Fibroblast growth factor-2
(FGF-2) producing endothelial cells,
FiberCell® hollow-fibre (bioreactor

volume not mentioned)

Euler–Euler simulations with Eulerian reaction
coupling. Unstructured cellular model for

protein production

Concentration of protein till 600 s at the
boundary wall of fibre validated against

the experimental data
2010

[83] Escherichia coli, 0.9 m3 stirred
tank reactor

Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. Structured cellular model applied

for sugar uptake

CFD simulations and kinetic model
validation with experimental data from

literature [109,110]. Glucose
concentration field data is qualitatively
verified from experimental observations

from the literature [85].

2006
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Table 4. Cont.

Reference System Description Integration Approach Validation Method Year

[78] Saccharomyces cerevisiae, 68 L and 900 L
stirred tank reactor

Euler–Lagrange (EL) simulations with Lagrangian
reaction coupling. Structured cellular model applied

for glycolysis pathway

Lagrange strategy validation by mixing
time experiment with tracer substance.
No validation for oscillating yeast cells

in spacetime

2004

[85] Saccharomyces cerevisiae, 30 m3 stirred
tank reactor

Euler–Euler simulations with Eulerian reaction
coupling. Unstructured cellular model for growth and

product formation

Hydrodynamic parameters were
validated against experimental data

from thermal
anemometry. Nutrient concentrations
were validated against data collected
from 3 sensors at different locations

1996

6. Conclusions and Future Prospects

Prediction of cellular responses to external perturbations requires approaches that in-
tegrate descriptions of metabolic and hydrodynamic phenomena. Such integrated methods
provide useful insights into cellular physiology, cell population dynamics and metabolite
consumption/production rates. The structured cellular model can capture the intracellular
physiochemical parameters and population heterogeneity prevalent in the process. The
combination of CFD and CRK models represents a digitalised approach to understanding
and optimising biomanufacturing processes. This digitalised approach enhances the effi-
ciency of experimentation, reduces the need for extensive physical trials, and accelerates
the development and optimisation of bioproduction processes. Currently, the experimental
validation of these models using multi-compartment reactors consisting of stirred tank
reactors and plug flow reactors or by using flow-inhibiting elements is challenging. New
technical developments in flow-following sensor particles and microfluidic single-cell cul-
tivation are opening the door to a more interdisciplinary attempt to validate CFD-CRK
models and even evaluate process parameter gradient as a time series of position, cellular
state and extracellular metabolite concentrations.

However, these approaches present important challenges. Models of cell culture
kinetics are often constructed by lumping metabolite pools and often lack descriptions
of important intracellular states, such as redox potential and energy charge. In addition,
the parameterisation of these models requires repeated cycles of validation via further
experimentation. Recent progress in hybrid modelling techniques, where reaction rates are
replaced by data-driven approaches, such as partial least squares, artificial neural networks,
and Gaussian processes, holds promise for enhanced model performance [111].

From the CFD modelling aspect, especially for long-duration fed-batch and continuous
manufacturing processes, computation time/expense is the overall challenge. A way
around this problem is the use of compartment modelling, which assumes steady-state
conditions for the selected compartments [72,112]. Recurrence-CFD (rCFD) models based
on the creation of recurring patterns of dynamic flow [113], reduced order models, GPU-
enabled parallel processing, quantum CFD and applications such as ANSYS Discovery
Live are opening new horizons to not only realise computational feasibility but also to
accommodate rheological characteristics which are closer to the actual fermentation broth.
Nevertheless, these developments are bringing exciting times ahead to bring about an
efficient modelling framework that can capture the physiological properties of cells, the
dynamic physical conditions of the bioreactor, and the crosstalk between these two.
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Nomenclature

Abbreviations
USD United States Dollar
CFD Computational fluid dynamics
CRK Cell reaction kinetic
DO Dissolved oxygen
EE Euler-Euler
EL Euler-Lagrange
LDV Laser Doppler Velocimetry
PBMs Population balance models
PIV Particle Image Velocimetry
rCFD Recurrence-CFD
TVD Total Variation Diminishing
Symbols
µ Viscosity of the liquid (cP)
Di Impeller diameter (m)
dp Particle diameter (m)
kLa Volumetric mass transfer coefficient (1/h)
L Distance between particles/characteristic system length (m)
N Agitation rate
P/V Power density (W/m3)
St Stokes number
v Characteristic velocity (m/s)
λk Kolmogorov length (µm)
ρ Density of liquid (kg/m3)
ρ′ Density of dispersed or particulate phase (kg/m3)
τ Shear stress (N/m2)
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