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Abstract: The human heart’s remarkable vitality necessitates a deep understanding of its mechanics,
particularly concerning cardiac device leads. This paper presents advancements in finite element
modeling for cardiac leads and 3D heart models, leveraging computational simulations to assess
lead behavior over time. Through detailed modeling and meshing techniques, we accurately cap-
tured the complex interactions between leads and heart tissue. Material properties were assigned
based on ASTM (American Society for Testing and Materials) standards and in vivo exposure data,
ensuring realistic simulations. Our results demonstrate close agreement between experimental
and simulated data for silicone insulation in pacemaker leads, with a mean force tolerance of
19.6 N £ 3.6 N, an ultimate tensile strength (UTS) of 6.3 MPa =+ 1.15 MPa, and a percentage elongation
of 125% =+ 18.8%, highlighting the effectiveness of simulation in predicting lead performance. Simi-
larly, for polyurethane insulation in ICD leads, we found a mean force of 65.87 N £ 7.1 N, a UTS of
10.7 MPa =+ 1.15 MPa, and a percentage elongation of 259.3% =+ 21.4%. Additionally, for polyurethane
insulation in CRT leads, we observed a mean force of 53.3 N 4= 2.06 N, a UTS of 22.11 MPa = 0.85 MPa,
and a percentage elongation of 251.6% = 13.2%. Correlation analysis revealed strong relationships
between mechanical properties, further validating the simulation models. Classification models
constructed using both experimental and simulated data exhibited high discriminative ability, un-
derscoring the reliability of simulation in analyzing lead behavior. These findings contribute to the
ongoing efforts to improve cardiac device lead design and optimize patient outcomes.

Keywords: CIED leads insulation; in vivo environment; finite element modeling; cardiac device
leads; computational simulations; silicone insulation; polyurethane insulation; pacemaker leads; ICD
leads; CRT leads; lead behavior

1. Introduction

The human heart exhibits remarkable vitality, beating approximately 100,000 times
each day, totaling 30 million beats annually, and a staggering 2.5 billion times over the
course of an average lifetime [1]. Despite being just slightly larger than a clenched fist, it
demonstrates incredible efficiency by pumping around 7000 L of blood daily, 2.5 million
liters yearly, and 200 million liters throughout an individual’s lifespan [2]. An anatomical
model of the human heart, constructed from computer tomography and magnetic resonance
images, is depicted in Figure 1 [3,4].

The synchronized opening and closing of these valves, orchestrated by a combination
of electrical and mechanical forces, ensures proper chamber filling and ejection. Any
disruption, such as valve malfunction or irregular electrical signals, can lead to serious
conditions like arrhythmias or heart failure [5]. Understanding the intricate relationship
between electrical impulses and muscular contractions offers valuable insights into these
complex cardiac phenomena, with the potential to revolutionize treatment for the millions
afflicted by heart disease [6].
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Figure 1. Human heart with four chambers [34].

The primary techniques and avenues for modeling cardiac electrophysiology (EP) in-
volve employing mathematical models to replicate the EP dynamics of the myocardium [7].
During the 1970s and 1980s, EP models predominantly relied on rule-based cellular au-
tomata, gradually transitioning to equation-based models encompassing cellular-level and
tissue-level equations. At the cellular level, these equations adhere to the Hodgkin and
Huxley formalism, characterizing cellular action potential and ionic currents through a
system of nonlinear first-order ionic ordinary differential equations. Such equations delin-
eate the kinetics of individual channels, pumps, exchangers, and their electrical interplays.
Moreover, there is a growing adoption of Markov-type models to construct more biophysi-
cally grounded representations of ion channels. Data from patch-clamp experiments have
facilitated the formulation of comprehensive mathematical frameworks for ionic currents,
facilitating the development of highly precise EP models. These models are instrumental
in simulating electrical activation patterns and conduction velocities of waves within the
ventricular myocardium. They can be broadly estimated from electrocardiograms (ECG)
or body surface potential maps (BSPM), or locally assessed via electrical activation maps
(EAMs). Additionally, extracellular ion concentrations can be approximated and integrated
into models based on measurements of blood electrolyte concentrations, albeit recognizing
their significant temporal variability.

As leads used in cardiac implantable electronic devices age, the risk of malfunction
increases, with reported malfunction rates reaching 40% after 8 years. This underscores
the importance of assessing damage in cardiac devices, given the significant number
of patients with cardiovascular diseases and implantable devices. The complexity of
these devices presents challenges in damage assessment, but such analyses can provide
valuable insights for improving future designs. Salih et al. [8] examined various damage
features of leads such as surface deformation, burnishing, pitting, scratching, discoloration,
delamination, insulation defects, coil damage, and abrasion. The study highlights the
importance of understanding common damage patterns in cardiac leads to improve future
device designs. Salih and Goswami [9] investigated the residual properties of silicone leads
used in cardiac implantable electronic devices, comparing them with new leads. Results
show significant decreases in load to failure, elongation to failure, ultimate tensile strength,
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and percentage elongation at 5 N after long-term in vivo exposure, while the modulus
of elasticity increases over time. Recently, they examined leads using polyurethane and
SI-polyimide as insulators, analyzing their mechanical properties after various durations
of in vivo implantation [10]. Results indicate no significant degradation in load to failure,
elongation, ultimate tensile strength, or modulus of elasticity over time, except for a
significant decrease in the percentage of elongation at 5 N force after 60 months. After
experimental work, computational simulation is crucial to complement and enhance the
understanding gained. While experiments provide valuable real-world data, they are often
limited by factors such as cost, time, and complexity. Computational simulations can fill
these gaps by providing a detailed, virtual representation of the system being studied. In
the investigation of lead behavior in cardiac devices, computational simulations can help
predict long-term performance and assess the impact of different materials and designs,
offering insights that may not be feasible through experimentation alone.

The use of the finite element method (FEM) and computational fluid dynamics (CFD)
modeling in cardiovascular device design and development is well-established. These
methods enable engineers to simulate the behavior of cardiovascular devices in a controlled
virtual environment, providing insights into their performance and helping to optimize
their design. However, previous studies have limitations that our work addresses, making
it important in the field.

Morris et al. [11] highlighted the significance of computational fluid dynamics model-
ing in cardiovascular medicine, emphasizing its role in improving device safety and effec-
tiveness. While their work advanced the understanding of cardiovascular device behavior,
it may have been limited in addressing specific device design challenges. Tourek et al. [12]
reviewed cardiac pacemaker lead designs for computational models in a VR environment,
showcasing the impact of FEM modeling on pacemaker design optimization. However,
their focus may have been more on the virtual reality aspect rather than on the comprehen-
sive analysis of lead performance over time, which is a critical factor in device durability
and patient safety.

Additionally, Morris et al. [13] demonstrated the utility of virtual fractional flow
reserve from coronary angiography in modeling the significance of coronary lesions, in-
dicating the potential of FEM and CFD modeling in optimizing coronary artery bypass
graft surgery planning. Their work contributed to understanding the hemodynamic effects
of coronary lesions, but it may not have fully explored the intricacies of device-tissue
interactions that our study addresses. Furthermore, Gasser et al. [14] proposed a novel
strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their
equivalent diameter risk, highlighting the role of FEM and CFD modeling in aneurysm
treatment planning. While their approach was innovative, it might not have delved deeply
into the detailed analysis of device performance and material behavior, a key aspect that
needed to be investigated.

Simon et al. [15] conducted simulations of the three-dimensional hinge flow fields
of a bi-leaflet mechanical heart valve (BMHYV) under aortic conditions, focusing on the
detrimental stresses on blood elements caused by these flows. Their study aimed to
characterize these flows to identify underlying causes for thromboembolic complications
associated with BMHVs. While their work contributed to improving heart valve design,
particularly in understanding the flow patterns around the hinge, it may not have addressed
the broader scope of device-organ interaction that our study encompasses. Jiménez and
Davies [16] demonstrated the hemodynamically driven stent strut design, emphasizing
FEM modeling’s role in stent design optimization. However, their focus may have been
more on stent geometry rather than on the comprehensive analysis of material properties
and long-term performance.

Chiu et al. [17] compared the thromboresistance of different ventricular assist devices
(VADs), highlighting the impact of FEM and CFD modeling on blood pump design opti-
mization. While their study contributed to improving blood pump design, particularly
in understanding thrombogenic potential, it may not have fully explored the dynamic
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behavior of devices within the cardiovascular system. Chen et al. [18] analyzed the fluid-
structure interaction in a model of an L-Type Mg alloy stent-stenosed coronary artery
system, demonstrating the use of FEM analysis in stent design optimization. While their
study advanced stent design, it may not have addressed the comprehensive analysis of the
device-tissue interaction.

In this study, three-dimensional models of cardiac leads and the heart were created
using SolidWorks and MIMICS 25.0, while ANSYS Workbench 2022R1 was utilized for
simulations. The cardiac leads were inserted into the heart 3D model, and simulations
were run to investigate changes in lead behavior over time, ranging from new leads to
more than 100 months of in vivo exposure. This work provides insights into the long-term
performance of cardiac leads in vivo, comparing our findings with previous experimental
work to enhance the robustness of our results and highlight the evolution of lead behavior
under in vivo conditions. This comparative analysis adds depth to our understanding of
lead performance and underscores the importance of our work in advancing the field of
cardiac device design and optimization.

The objectives of this research endeavor encompass the development and validation
of finite element models of cardiac device leads, aiming to create accurate representations
of their mechanical behavior under various loading and stretching conditions. Through
computational simulations, we seek to investigate the long-term performance of these leads
in vivo, simulating the effects of in vivo implantation and physiological conditions to assess
their durability and reliability. A crucial aspect involves comparing simulated results with
experimental data to validate the accuracy of our computational models, thus ensuring their
fidelity in representing real-world scenarios. Furthermore, we aim to optimize the design of
cardiac devices for improved performance, leveraging insights gained from computational
simulations to identify design enhancements and material optimizations. By exploring
the impact of material properties on the mechanical behavior of cardiac device leads, we
aim to enhance our understanding of their interaction with heart tissue and contribute to
the advancement of cardiac device technology, ultimately striving to develop safer, more
reliable, and longer-lasting cardiac device leads.

2. Materials and Methods
2.1. Computational Simulations

In our study, we employed advanced software tools to develop detailed three-dimensional
models of both cardiac leads and the heart. Using SolidWorks, we constructed intricate
models of cardiac leads, including a silicon pacing lead, a Polyurethane ICD lead, and a
Polyurethane CRT lead. These models were designed to accurately represent the geometry
and material properties of the leads used in cardiac implantable electronic devices.

Simultaneously, we utilized MIMICS 25.0 to create a three-dimensional model of the
heart, incorporating its various components such as the myocardium, valves, chambers,
and vessels. This detailed heart model was essential for simulating the interaction between
the leads and the heart tissue realistically.

For conducting simulations, we employed ANSYS Workbench 2022R1, a powerful
finite element analysis software. The heart model was meshed as nonlinear and quadratic
to capture its complex mechanical behavior accurately. This meshing approach allowed us
to simulate large deformations and material nonlinearity characteristic of soft tissues like
the heart, ensuring the fidelity of our simulations.

The cardiac leads were then inserted into the heart model, and simulations were run
to investigate how the leads behaved over time. By analyzing changes in lead behavior,
we gained valuable insights into the long-term performance of cardiac leads in vivo. This
aspect of our study is crucial for understanding how leads interact with the heart tissue and
how their mechanical properties may change over time, providing valuable information
for improving the design and durability of cardiac implantable electronic devices.
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2.2. Geometry Creation

Three-dimensional models of the cardiac leads: silicon pacing lead (d = 2 mm),
Polyurethane ICD lead (d = 2.8 mm), and Polyurethane CRT lead (d = 1.75 mm) were
constructed using SolidWorks (Dassault Systemes SolidWorks Corp., Concord, MA, USA)
and imported in ANSYS Workbench 2022R1 (ANSYS Inc., Canonsburg, PA, USA) to simu-
late the loading conditions and regions of stress development. The heart and its attached
vessels were modeled as well. Firstly, imaging data of a healthy heart and its surrounding
vessels were taken from DICOM Image Library [19]. Secondly, MIMICS 25.0 program was
employed to convert the imaging data into a 3D model, following the same procedure
used in our previous modeling [20], allowing for the differentiation between the various
components of the heart, including the myocardium, mitral valve, tricuspid valve, aortic
valve, pulmonary valve, left atrium, right atrium, left ventricle, right ventricle, ascending
aorta, aortic arch, descending aorta, pulmonary artery, superior vena cava, inferior vena
cava, and coronary arteries, as shown in Figure 2. This process involved segmenting the
different structures based on their densities and anatomical features [21]. By segmenting
the different structures based on their densities and anatomical features, we were able to
create a detailed and realistic 3D model that accurately represented the complex geometry
of the heart and its associated vasculature. This detailed model was essential for conducting
accurate simulations and investigating the behavior of the cardiac leads in vivo. Finally,
the 3D model was refined and optimized using SolidWorks. This step allowed for the
incorporation of finer details and adjustments to ensure the model accurately represented
the structure and mechanical properties of the heart and its attached vessels. The final
model would therefore include both the external features of the heart and vessels as well as
internal structures in the myocardium and the layers of the vessel walls. After constructing
the models, the leads were inserted into the heart model, as shown in Figure 3. The lead is
then inserted into the right ventricle and the tip of the lead was fixed near the septal area
near the apex, as shown in Figure 4.
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Figure 2. MIMICS 25.0 program was employed to convert the imaging data into a 3D model of
the heart.
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Figure 3. The lead inserted into the heart model.
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Figure 4. Lead insertion into the right ventricle.

2.3. Finite Element Meshing

The mesh of the heart was configured as nonlinear and quadratic. This setup was
chosen to accurately capture the complex behavior of the heart tissue under various loading
conditions. Nonlinear elements allow for the simulation of large deformations and material
nonlinearity, which are characteristic of soft tissues like the heart. The quadratic mesh
type enhances the accuracy of the simulation by using higher-order interpolation functions
for the elements, providing a more detailed representation of the geometry, and reducing
numerical errors. This combination of nonlinear and quadratic meshing ensured that the
simulation accurately captured the mechanical response of the heart tissue, enhancing the
reliability and precision of the results. A mesh size of 0.5 mm was selected for both the heart
and lead geometry as shown in Figure 5. This choice aimed to strike a balance between
accuracy and computational efficiency. Each element in the mesh had a characteristic
size of 0.5 mm, enabling the capture of complex geometrical features while maintaining
manageable computational costs. A smaller mesh size would have provided more detailed
geometry representation but at a higher computational expense. Conversely, a larger mesh
size would have reduced computational costs but could have led to less accurate results,
particularly in regions with intricate geometry or high stress gradients. By using the 0.5 mm
mesh size, the simulation could accurately depict the behavior of the lead within the heart,
ensuring meaningful and reliable results.
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Figure 5. Meshing of the lead and heart models showing the quadratic mesh type.

In this study, mesh convergence checks were performed to assess the sensitivity of the
simulation results to changes in the mesh density. The number of elements and nodes in the
mesh directly impacts the accuracy of the simulation, with finer meshes generally providing
more accurate results but requiring more computational resources. The total number of elements
and nodes for each model, including the heart with different leads, was carefully determined to
ensure that the results were consistent within a five percent margin. This meant that further
refinement of the mesh did not lead to significant changes in the results, indicating that the
chosen mesh density was sufficient to capture the behavior of the system accurately. After
performing mesh convergence checks, the total number of elements for the heart model with
the pacing lead was 2,287,865, with 3,619,097 nodes. For the pacing lead itself, there were 4872
elements and 24,411 nodes. Correspondingly, the heart model alone consisted of 2,282,993
elements and 3,594,686 nodes. The total number of elements for the heart model with the ICD
lead was 2,289,083, with 3,625,200 nodes. For the ICD lead itself, there were 6090 elements and
30,514 nodes. The total number of elements for the heart model with the CRT lead was 2,286,647,
with 3,612,994 nodes. For the CRT lead itself, there were 3654 elements and 18,308 nodes, as
shown in Table 1. By refining the mesh using a smaller increment size, the simulation was able
to accurately depict the complex interactions between the leads and the heart tissue, providing
valuable insights into the long-term performance of the cardiac leads in vivo. The meticulous
meshing process ensured that the models were robust and capable of providing meaningful
and reliable results for further analysis and interpretation. Table 2 shows the mesh convergence
within a five percent margin for the polyurethane ICD lead inside the heart model with less
than a month of in vivo exposure.

Table 1. Number of elements and nodes in each model.

The Model Elements Nodes

3D model of the Heart 2,282,993 3,594,686

Pacing lead inside the heart 2,287,865 3,619,097
Pacing lead only 4872 24,411

ICD lead inside the heart 2,289,083 3,625,200
ICD lead only 6090 30,514

CRT lead inside the heart 2,286,647 3,612,994
CRT lead only 3654 18,308

Table 2. Mesh convergence within a five percent margin for a Polyurethane ICD lead inside the heart
model with less than a month of in vivo exposure.

Equivalent Stress (MPa) Change (%) Nodes Elements
1 12.766 2,754,976 1,590,323
2 12.953 1.454 3,518,514 2,187,949
3 13.112 1.220 3,563,272 2,246,783
4 13.151 0.297 3,565,218 2,249,341
5 13.158 0.053 3,602,743 2,273,356
6 13.16 0.015 3,625,200 2,289,083
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2.4. Material Assignment

The material properties of the new leads were assigned according to the ASTM standards
D 1708-02a [22] and D 412-06a [23], which provide guidelines for determining the tensile
properties of plastics and elastomers, respectively. These standards ensure that the material
properties used in the simulation are based on well-established testing methodologies.

In contrast, the residual properties of the leads after in vivo exposure were derived
from our previous experimental investigations [9,10]. These data were crucial for modeling
the long-term behavior of the leads, as they reflects the actual performance of the leads
after being implanted in patients for varying durations.

The in vivo implantation durations varied among the leads, ranging from new leads
to 132 months. For pacing leads, the average in vivo duration was 55 £ 49 months, while
for CRT leads, it ranged from less than a month to 108 months, with an average duration
of 41 + 31 months. ICD leads had in vivo durations ranging from less than a month to
89 months, with an average duration of 41 & 27 months. These varying durations reflect
the real-world conditions under which the leads are exposed to physiological stresses, and
incorporating these data into the simulation ensures that the models accurately represent
the behavior of the leads over time. The mechanical properties of cardiac muscle were
crucial for accurately modeling its behavior under various mechanical loads and conditions
in the ANSYS software 2022 R1. These properties were defined based on specific values:
a Young’s elastic modulus of 80 kPa [24], which represents the stiffness and resistance to
deformation of the muscle; an ultimate tensile strength of 110 kPa [24,25], indicating the
maximum stress the muscle can withstand before failure; and a Poisson’s ratio of 0.4 [26],
which shows the muscle’s tendency to contract laterally when stretched longitudinally.
These properties were determined based on established values from the literature, ensuring
that the model accurately represents the mechanical response of cardiac muscle. Incorpo-
rating these properties into the simulation allows for a more realistic representation of the
behavior of the muscle under different loading conditions, providing valuable insights into
its mechanical function and performance.

2.5. Loads and Boundary Conditions

In the simulation, the lead was fixed at its entry point into the heart to prevent
unrealistic movement, representing its anchoring in reality. Other parts of the heart not in
direct contact with the lead were also fixed to simulate the anchoring effect of surrounding
tissues. To simulate the heartbeat, a displacement boundary condition was applied to the
heart. This displacement was defined based on the expected motion of the heart during
a cardiac cycle (Figure 6), incorporating the dynamics of the heart’s long axis. During
ventricular ejection, the distance between the apex and base decreased rapidly, and the
ventricles shortened by approximately 7 mm. This shortening plateaued towards the
end systole to ensure enough blood was ejected. During ventricular filling, the long axis
gradually returned to its initial length as the heart muscle relaxed.

The interaction between the lead and heart tissue was defined using a frictional contact
formulation to handle potential nonlinear behavior. Contact properties, with a friction
coefficient = 0.5, were specified to represent the contact between lead and heart tissue.
A fine mesh, approximately 0.1 mm near the contact interface, was used to capture the
contact behavior accurately. The contact interface was carefully aligned with the tissue
surface to prevent unrealistic contact behavior. Solver settings were adjusted to ensure
proper resolution of the contact interactions, with a convergence criterion and monitoring
of contact forces and displacements. The contact model was validated by comparing
simulation results with experimental data or the published literature to verify the accuracy
of the contact forces and displacements predicted by the simulation.

Multiple simulations were then performed on these models to investigate the change
in the residual properties with respect to the in vivo implantation period of the leads. This
involved applying the defined loads and boundary conditions to simulate the interaction
between the leads and the heart tissue over time. The simulations aimed to analyze how
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the mechanical properties of the leads changed over time due to the effects of in vivo
implantation, providing insights into the long-term performance and durability of the leads
in a realistic physiological environment.
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Figure 6. Expected motion of the heart during a cardiac cycle.

3. Results

Data were collected and statistical analysis was performed. The experimental data
were compared to simulation data to check for significance.

3.1. Silicone Insulation in Pacemaker Leads

A comprehensive assessment was conducted to compare the performance of the
silicone insulator based on both experimental and simulated data, focusing on factors
including its force-bearing capacity, ultimate tensile strength, and percentage elongation.
Figure 7 shows the silicone insulation lead under FEM. The mean force tolerance of the
insulator, derived from experimental results, was determined to be 19.6 N &£ 3.6 N, with a
maximum of 25.13 N, a minimum of 14.98 N, and a median of 19.5 N. Similarly, simulation
data yielded a mean force of 19.6 N £ 3.3 N, with a maximum of 24.5 N, a minimum
of 12.61 N, and a median of 19.5 N. Statistical analysis, depicted in Figure 8A, revealed
no significant disparity between the two datasets (p-value = 0.99). The investigation also
looked into the ultimate tensile strength of the insulator. Experimental findings indicated
a mean ultimate tensile strength of 6.3 MPa £ 1.15 MPa, with a maximum of 8 MPa, a
minimum of 4.77 MPa, and a median of 6.22 MPa. Similarly, simulation data exhibited
a mean of 6.25 MPa + 1.05 MPa, with a maximum of 7.8 MPa, a minimum of 4.01 MPa,
and a median of 6.21 MPa. Notably, statistical analysis (p-value = 0.99), as illustrated
in Figure 8B, demonstrated no significant differentiation between the experimental and
simulated results. Furthermore, the examination encompassed the percentage elongation of
the insulator. Experimental data revealed a mean percentage elongation of 125% 4= 18.8%,
with a maximum of 170%, a minimum of 99%, and a median of 125%. Similarly, simulation
data displayed a mean percentage elongation of 124.9% =+ 18.7%, with a maximum of 169%,
a minimum of 98%, and a median of 124%. Statistical scrutiny (p-value = 0.91), illustrated
in Figure 8C, affirmed the absence of noteworthy variance between the experimental and
simulated data sets.
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Figure 7. The von Mises stresses distribution of the new silicone pacing lead inside the heart.
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3.2. Polyurethane Insulation in ICD Leads

The polyurethane insulation covering the ICD lead underwent varied conditions, as shown
in Figure 9. Analysis of the experimental data revealed a mean force of 65.87 N £ 7.1 N, with a
maximum of 77.62 N, a minimum of 54.33 N, and a median of 66.7 N. In contrast, the simu-
lated data exhibited a mean force of 69.74 N 4 5.1 N, with a maximum of 81.1 N, a minimum
of 62.1 N, and a median of 70.45 N. Statistical evaluation, depicted in Figure 10A, even
though there is a slight increase in the simulated values, indicated no significant difference
in the simulated data (p-value = 0.18) compared to the experimental data. A further com-
parison was conducted between the experimental and simulated data concerning ultimate
tensile strength (UTS). The mean experimental UTS stood at 10.7 MPa + 1.15 MPa, with a
maximum of 12.6 MPa, a minimum of 8.82 MPa, and a median of 10.8 MPa. Conversely,
the mean UTS for the simulated data was notably higher at 11.32 MPa + 0.8 MPa, with a
maximum of 13.16 MPa, a minimum of 10.08 MPa, and a median of 11.42 MPa. Statistical
analysis demonstrated no significance in the simulation data compared to the experimental
results (p-value = 0.18), as depicted in Figure 10B. In terms of percentage elongation, the
mean experimental value was determined to be 259.3% =+ 21.4%, with a maximum of 290%,
a minimum of 220%, and a median of 266%. Meanwhile, the mean percentage elongation
for the simulated data was slightly lower, measuring at 242.7% =+ 19.4%, with a maximum
of 280%, a minimum of 212%, and a median of 247%. Statistical assessment revealed no
significant difference between the two datasets (p-value = 0.08), as illustrated in Figure 10C.
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Figure 9. The von Mises stresses distribution of the Polyurethane ICD lead inside the heart with less
than a month of in vivo exposure.
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Figure 10. Experimental versus simulated data sets of polyurethane insulation for ICD leads for

different parameters: (A) force in N, (B) ultimate tensile strength, and (C) percentage elongation.

3.3. Polyurethane Insulation in CRT Leads

Experimental and simulated tests were conducted to evaluate the polyurethane insu-
lation of CRT leads, as shown in Figure 11. In the experimental assessment, the mean force
measured was 53.3 N & 2.06 N, with a range from 49.16 N to 56.39 N, and a median of 53.5 N.
Conversely, in the simulated test, the mean force was slightly higher at 55.6 N + 2.4 N,
with values ranging from 52.4 N to 59.4 N, and a median of 55.07 N. Statistical analysis
revealed a p-value of 0.0579, indicating no significant difference between the experimental
and simulated data, although there was a marginal increase in the simulated results, as

depicted in Figure 12A.
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Figure 11. The von Mises stresses distribution of the Polyurethane CRT lead inside the heart model
with less than a month of in vivo exposure.

Figure 12. Experimental versus simulated data sets of polyurethane insulation for CRT leads for
different parameters: (A) force in N, (B) ultimate tensile strength, and (C) percentage elongation.
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The ultimate tensile strength (UTS) was also investigated through both simulation and
experimentation. The mean experimental UTS was determined to be 22.11 MPa + 0.85 MPa,
with a range from 20.4 MPa to 23.4 MPa, and a median of 22.2 MPa. Conversely, the mean
simulated UTS was slightly higher at 23.07 MPa + 1 MPa, with values ranging from
21.75 MPa to 24.65 MPa, and a median of 22.8 MPa. Statistical analysis yielded a p-value
of 0.058, indicating no significant disparity between the experimental and simulated UTS
data, as illustrated in Figure 12B.

Regarding percentage elongation, a crucial aspect of this study, the mean experimental
percentage elongation was 251.6% = 13.2%, with a range from 224% to 270%, and a median
of 253%. Conversely, the mean simulated percentage elongation was slightly lower at
246.5% =+ 10.8%, with values ranging from 226% to 260%, and a median of 251%. Statistical
analysis resulted in a p-value of 0.4328, indicating no significant distinctions between the
experimental and simulated data sets, as demonstrated in Figure 12C.

4. Discussion

This study presents advancements in finite element modeling for cardiac leads and
3D heart models, demonstrating close agreement between experimental and simulated
data for silicone insulation in pacemaker leads, polyurethane insulation in ICD leads, and
polyurethane insulation in CRT leads. This study highlights the effectiveness of simulation
in predicting lead performance, with strong correlations between mechanical properties
and high discriminative ability of classification models constructed using both experimental
and simulated data. We conducted a comprehensive comparison between our simulation
work and the previous experimental work conducted by Salih et al. [9,10]. This comparison
aimed to assess the performance of insulation materials used in cardiac leads, specifically
focusing on silicone insulation in pacing leads, polyurethane insulation in ICD leads, and
polyurethane insulation in CRT leads. Salih et al.’s experimental work provided valuable
insights into the mechanical properties and behavior of these insulation materials under
various loading conditions and durations of in vivo exposure. By comparing our simulation
results with their experimental data, we aimed to validate the accuracy and reliability of
our simulation models in capturing the real-world behavior of these materials.

4.1. Silicone Insulation for Pacing Leads

The analysis of both experimental and simulated data reveals noticeable variability
across different in vivo durations, suggesting dynamic changes in material properties or
behavior over time. This variability is evident in the fluctuations observed in force, ulti-
mate tensile strength (UTS), and percentage elongation throughout the study period. Such
fluctuations indicate a complex interplay of factors influencing the material’s response
under varying conditions. Despite these fluctuations, both experimental and simulated
tests exhibit similar overall trends in force, UTS, and percentage elongation. However, there
are discernible differences in the specific values obtained between the two sets of data. No-
tably, the simulated results consistently trend slightly lower than the experimental results
across all measured parameters. This discrepancy suggests that while the simulation model
captures essential aspects of the material behavior, there are inherent limitations or dis-
crepancies in the model that lead to deviations from the experimental observations. These
differences between experimental and simulated data can be attributed to several factors,
including model assumptions, material properties, and boundary conditions. Figure 13
illustrates the influence of these factors on the observed disparities. For instance, variations
in model assumptions may lead to inaccuracies in predicting material behavior, while
differences in material properties used in the simulation compared to the actual material
may affect the accuracy of the results. Additionally, discrepancies in boundary conditions
between the simulated environment and the real-world experimental setup can further
contribute to differences in observed outcomes. Despite these disparities, both experimental
and simulated data exhibit variability across different in vivo durations. Specifically, both
force and UTS demonstrate a decreasing trend over time, indicating potential degrada-
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tion or weakening of the material. Percentage elongation also displays variability, with
fluctuations observed across different durations. This dynamic behavior underscores the
importance of considering temporal effects when analyzing material performance under
varying conditions.
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Figure 13. Silicone insulation experimental vs simulation (A) force, (B) UTS, and (C) elongation.
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The aim was to investigate the relationship between three mechanical properties:
force, ultimate tensile strength (UTS), and percentage elongation. Correlation analysis
was conducted to determine whether these properties were related and to what extent.
When it comes to the correlation between force and ultimate tensile strength (UTS), the
analysis revealed a linear correlation between force and UTS. This implies that as force
increases, there is a corresponding increase in UTS, and vice versa. This relationship is
consistent with mechanical principles, as UTS represents the maximum force a material can
withstand before breaking, and force directly impacts the material’s strength [27]. On the
other hand, percentage elongation showed a positive correlation with both force and UTS.
This suggests that materials with higher force and UTS tend to exhibit greater elongation
before failure. This relationship highlights the material’s ability to deform plastically before
reaching its breaking point, which is an important consideration in various engineering
applications [28], as shown in Figure 14A.
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Figure 14. Silicone insulation pacing leads. (A) Correlation between force, UTS, and elongation and
(B) ROC performance curve.

After establishing correlations between mechanical properties, the performance of
classifiers applied to both experimental and simulated data was assessed using the area
under the curve (AUC) of the receiver operating characteristic (ROC) curve. Both the
experimental and simulated data yielded an AUC of 0.6844, as shown in Figure 14B. This
indicates that the classifiers applied to both types of data perform similarly in distinguishing
between the two classes. The consistent performance of classifiers on both experimental
and simulated data suggests that the simulation model effectively captures essential aspects
of the material behavior, allowing for reliable predictions and classification [29].

4.2. Polyhurethane Insulation in ICD Leads

The mean force values obtained from both experimental and simulated data exhibit
a close resemblance, with the simulated data slightly higher on average. Similarly, when
comparing the mean UTS values between experimental and simulated data, they are
found to be quite comparable, though with the simulated data showing a slight elevation.
Moreover, the mean percentage elongation values also demonstrate similarity between the
experimental and simulated datasets, albeit with marginally higher values observed in the
experimental data. Despite these slight disparities between experimental and simulated
results for force, UTS, and percentage elongation, the main trends and magnitudes remain
largely consistent. This consistency suggests that the simulation effectively captures the
behavior observed in experimental testing, even if with some minor deviations, as shown
in Figure 15. These observed differences in values may stem from various factors such
as model assumptions, discrepancies in material properties, and inherent measurement
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error. Model assumptions, in particular, play a crucial role in shaping simulated outcomes,
and any inaccuracies or simplifications in these assumptions could lead to deviations from
experimental results [30]. Furthermore, variations in material properties between the simu-
lated and real-world materials may contribute to the observed differences. Additionally,
the presence of measurement errors, minimized to the extent possible, could also introduce
slight discrepancies between experimental and simulated data [31].
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Figure 15. Polyurethane insulation for ICD leads experimental vs simulation: (A) force, (B) UTS, and
(C) elongation.
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The data suggest strong positive correlations between force and UTS, as well as
moderate positive correlations between percentage elongation and both force and UTS.
These correlations provide insights into how changes in one variable relate to changes in
another, which can be crucial for understanding the behavior of materials under different
conditions, as shown in Figure 16A. This indicates a perfect positive correlation between
force and UTS. In other words, as the force increases, UTS also increases proportionally, and
vice versa. The correlation coefficient of 1.0000 suggests a strong linear relationship between
these two variables. It implies that changes in force directly correspond to changes in UTS,
following the same direction and magnitude. When it comes to the relationship between
percentage elongation and UTS and force, the correlation coefficient of 0.6325 indicates a
moderate positive correlation between percentage elongation and UTS. As UTS increases,
percentage elongation tends to increase as well, though not as strongly as the correlation
between force and UTS. The lower and upper bounds of the 95% confidence interval (0.2639
and 0.8399, respectively) suggest that this correlation is statistically significant.
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Figure 16. Polyurethane insulation ICD leads. (A) Correlation between force, UTS, and elongation
and (B) ROC performance curve.

The ROC curve was employed to evaluate the effectiveness of classification models
constructed using two distinct datasets. One derived from experimental data and another
from simulation data. The AUC values, reported as 0.9800 for both datasets, serve as
indicators of how well these models can differentiate between different classes within their
respective datasets. The high AUC values signify that the classification models exhibit
exceptional performance in distinguishing between the classes present in each dataset.
Specifically, a value of 0.9800 suggests that the models are highly adept at correctly identi-
fying true positives while minimizing the occurrence of false positives. This indicates a
high level of discrimination between the classes, reinforcing the reliability and effectiveness
of the classification models. The consistency of the AUC values (0.9800) across both the ex-
perimental and simulation datasets further underscores the robustness and generalizability
of the classification models. This consistency implies that regardless of whether the models
are based on experimental or simulated data, they demonstrate equally high performance
in distinguishing between the classes present in each dataset.

Force and UTS demonstrate a perfect positive correlation, indicating that as force
increases, UTS also increases proportionally, and vice versa, as shown in Figure 16A. This
strong correlation underscores the direct influence of force on the material’s ultimate
tensile strength. There is a strong positive relationship between percentage elongation and
UTS. As UTS increases, the material tends to elongate more before reaching its breaking
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point. However, this correlation is not perfect, implying the involvement of other factors
influencing percentage elongation. Similarly, there is a strong positive relationship between
percentage elongation and force. As the force applied to the material increases, it tends to
elongate more before breaking. Like the previous correlation, this relationship is not perfect,
suggesting the influence of other contributing factors. The narrow confidence intervals for
both correlations between percentage elongation and UTS, and percentage elongation and
force, indicate a high level of confidence in the estimated correlation coefficients, enhancing
the reliability of the observed relationships.

4.3. Polyurethane Insulation in CRT Leads

When comparing the experimental and simulated results, we observe consistent pat-
terns across all measured parameters, including force, ultimate tensile strength (UTS),
and percentage elongation as shown in Figure 17. Both sets of data generally follow the
same trend, showing an increase or decrease in values over the range of measurements.
Despite some minor differences, such as the simulated values being slightly higher than
the experimental values, the overall trends remain consistent between the two datasets.
The disparities between experimental and simulated results can be attributed to model
assumptions. Simulation models often make simplifications and assumptions about the be-
havior of materials and systems, which may not perfectly align with real-world conditions.
Variations in material properties, such as elasticity or strength, can affect how a material
responds to external forces in experimental versus simulated environments [32]. Differ-
ences in how boundary conditions are implemented in experiments versus simulations can
lead to discrepancies in the observed outcomes [33]. Both experimental and simulated data
may be subject to measurement error, introducing uncertainties in the results. Despite the
differences between experimental and simulated results, the data suggest that simulation
provides reasonably comparable results to experimental testing. It indicates the potential
usefulness of simulation as a predictive tool for evaluating the performance of polyurethane
insulation in CRT leads. By leveraging simulation, researchers and engineers can gain
insights into the behavior of materials and systems under various conditions, enabling
more informed decision-making in product development and optimization processes.

With an AUC of 0.8594 for both experimental and simulation data types, it indicates
that both sets of data have a relatively high discriminative ability. This means that the
models or methods used to generate the ROC curves, whether based on experimental data
or simulation data, are effective at distinguishing between different categories or classes
within the dataset. Essentially, the ROC curves generated for both the experimental and
simulated data perform similarly well in their ability to differentiate between different
classes or categories within the data. This suggests that both the experimental approach and
the simulation approach are effective at capturing relevant patterns or characteristics within
the dataset, allowing for meaningful discrimination between different groups or conditions.
Therefore, the similarity in AUC values between the experimental and simulated data types
indicates that both methodologies yield comparable results in terms of their discriminative
power, further validating the usefulness and reliability of both approaches in analyzing and
interpreting the data at hand. There is also a perfect positive correlation between UTS and
force. This suggests that as UTS increases, the force also increases linearly. This positive
correlation indicates that stronger materials tend to require more force to break. However,
there is a weak negative correlation between UTS and percentage elongation (—0.1545).
This suggests that as the UTS increases, percentage elongation tends to decrease slightly,
although the correlation is not very strong. Force also has a perfect positive correlation
with itself, as expected the negative correlation between force and percentage elongation
(—0.1545) suggests that as force increases, percentage elongation tends to decrease slightly,
as shown in Figure 18A.
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Figure 17. Polyurethane insulation for CRT leads, experimental vs simulation: (A) force, (B) UTS,
and (C) elongation.
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Figure 18. Polyurethane insulation CRT leads. (A) Correlation between force, UTS, and elongation
and (B) ROC performance curve.

4.4. Fatigue Cycle

The fatigue cycle of materials like polyurethane and silicone refers to their behavior
under repeated loading and unloading over time. While these materials are known for
their durability and flexibility, they can still experience fatigue when subjected to cyclic
stresses [34]. The ultimate tensile strength applicable to insulation in pacing, ICD, and
CRT leads can exhibit a considerable range, spanning from approximately 6 MPa to over
24 MPa [9,10]. Consequently, the evaluation of these insulation materials” performance
in vivo entails subjecting them to cyclic stress where each cycle corresponds to one heart-
beat. This testing methodology allows for the assessment of how well the insulation
withstands the repetitive stresses experienced during normal cardiac function. In engineer-
ing, understanding how materials and structures respond to varying loads is critical for
predicting their performance and ensuring safety in real-world applications. Therefore,
applying cyclic loading to test the performance of these insulation materials in changing
environmental conditions is important, as shown in Figure 19.
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Figure 19. Fatigue in the Polyurethane ICD lead inside the heart.

As shown in Figure 20A, silicone is subjected to a cyclic stress representing 80% of its
maximum capacity. Remarkably, even under this relatively high level of stress, silicone
demonstrates exceptional durability, enduring a remarkable 2 x 107 loading cycles before
showing signs of fatigue or failure. However, as the cyclic stress level decreases to 80% of
its original value, the endurance of silicone diminishes. At this reduced stress level, silicone
can only withstand a significantly lower number of loading cycles, specifically 2.5 x 10°
cycles, before exhibiting signs of fatigue or failure. On the other hand, polyurethane
showed a higher number of cycles and performance than silicone. Figure 20B shows the
performance of polyurethane in CRT leads and involves understanding how the material
responds to cyclic loading at different stress levels. In the beginning, polyurethane is
subjected to a cyclic stress level that exceeds its nominal or expected loading capacity by
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110%. Despite this slight overloading, the polyurethane demonstrates robust endurance,
withstanding an impressive 2 x 107 loading cycles. This suggests that polyurethane has
a considerable margin of safety when subjected to slightly elevated stress levels. As the
loading history increases to 150% of the nominal stress level, representing a more significant
overload condition, the endurance of the polyurethane diminishes. Despite this increased
stress level, the material still displays notable durability, withstanding 1.7 x 107 loading
cycles before showing signs of fatigue or failure. The data presented in Figure 20C indicate
that the polyurethane insulation of ICD leads exhibits remarkable performance when
subjected to cyclic loading. Initially, the polyurethane insulation withstands a loading
history that exceeds its nominal stress level by 20%. Even under this heightened stress
condition, the material demonstrates exceptional durability, enduring a substantial 2 x 107
loading cycles before exhibiting signs of fatigue or failure. This emphasizes the material’s
robustness and ability to withstand moderately elevated stress levels while maintaining
structural integrity. When the loading history increases to 150% of the nominal stress level,
representing a significant overload condition, the endurance of the polyurethane insulation
decreases. Despite this more pronounced stress elevation, the material still showcases
notable resilience, enduring 1.7 x 107 loading cycles before reaching fatigue or failure.
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Figure 20. Sensitivity plot for (A) silicone insulation in pacemaker leads, (B) polyurethane insulation
in CRT leads, and (C) polyurethane insulation in ICD leads.
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4.5. Study Limitations

We acknowledge several limitations of our research. Firstly, our model made certain
simplifications to enhance computational efficiency, such as neglecting certain anatomical
details or simplifying material properties. While these simplifications were necessary for the
scope of this study, they may limit the model’s ability to fully capture all aspects of cardiac
behavior. Additionally, the generalizability of our findings may be limited, as our study
focused on specific cardiac device leads and heart models. The findings may not be directly
generalizable to other types of leads or patient populations. Finaly, due to the complexity of
the heart and the limitations of current computational models, there is still much to explore
in terms of improving the accuracy and applicability of such simulations. Future research
could focus on refining the model with more detailed anatomical and physiological data,
as well as incorporating patient-specific information for personalized simulations.

5. Conclusions

This study developed advanced finite element models for cardiac device leads and
3D heart models, which accurately capture the complex interactions between leads and
heart tissue. This approach represents a significant innovation in the field of cardiac device
design and evaluation. By utilizing ASTM standards and in vivo exposure data for material
properties assignment, we have ensured that our simulations are realistic and applicable to
real-world scenarios. Our work also demonstrates a strong correlation between mechanical
properties, providing valuable insights for future research and design considerations. This
research demonstrates the advancement in finite element modeling for cardiac device leads
and 3D heart models. Through computational simulations using SolidWorks, MIMICS,
and ANSYS Workbench, we created detailed models of cardiac leads and the heart to
investigate their long-term performance in vivo. By meshing the heart as nonlinear and
quadratic, we accurately captured its complex behavior under various loading conditions.
Material properties were assigned based on ASTM standards and in vivo exposure data,
allowing for realistic simulations of lead behavior over time. Our results indicate that the
simulation models effectively capture the mechanical properties of cardiac leads, with close
agreement between experimental and simulated data. Despite some minor differences, the
overall trends remain consistent, suggesting that simulation provides valuable insights
into lead performance and durability. Correlation analysis revealed strong relationships
between force, ultimate tensile strength (UTS), and percentage elongation, highlighting the
interplay between these mechanical properties. Classification models constructed using
experimental and simulated data demonstrated high discriminative ability, indicating the
reliability and effectiveness of both approaches in analyzing lead behavior. The ROC curves
further validated the robustness of the models, emphasizing their utility in distinguishing
between different classes within the datasets.
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