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Abstract: Ischemic heart disease remains a leading cause of mortality worldwide, which has pro-
moted extensive therapeutic efforts. Stenting has emerged as the primary intervention, particularly
among individuals aged 70 years and older. The geometric specifications of stents must align with
various mechanical performance criteria outlined by regulatory agencies such as the Food and Drug
Administration (FDA). Finite element method (FEM) analysis and computational fluid dynamics
(CFD) serve as essential tools to assess the mechanical performance parameters of stents. However,
the growing complexity of the numerical models presents significant challenges. Herein, we propose
a method to determine the mechanical performance parameters of stents using a simplified FEM
model comprising solid and shell elements. In addition, a baseline model of a stent is developed
and validated with experimental data, considering parameters such as foreshortening, radial recoil,
radial recoil index, and radial stiffness of stents. The results of the simplified FEM model agree well
with the baseline model, decreasing up to 80% in computational time. This method can be employed
to design stents with specific mechanical performance parameters that satisfy the requirements of
each patient.

Keywords: stent; FEM; simplified model; ischemic heart disease; shell elements; FDA

1. Introduction

The main cause of death worldwide by 2020 was associated with heart disease [1].
During 2022 in the USA, 699,659 deaths were related to heart diseases (21.37%) [2]. Wang
et al. [3] reported that the global cost of cardiovascular diseases to reach USD 1044 billion
in 2030. Khan et al. [4] estimated that ischemic heart disease (IHD) affects approximately
126 million persons, which is close to 1.72% of the population of the world. There
are four therapeutic approaches employed to address ischemic heart disease: (a) non-
pharmacological measures around lifestyle habits, (b) pharmacological measures such as
blood pressure medications, (c) percutaneous coronary intervention that involves placing a
vascular endoprosthesis (a stent) in affected heart vessels to alleviate the ischemic condition,
and (d) surgical intervention. For surgical intervention in patients aged 70 years and older,
the mortality risk outweighs the benefits of this procedure. Consequently, stenting has
emerged as the predominant method for treating ischemic heart diseases [5].

Etave et al. [6] reported one of the first finite element method (FEM) simulations of
the mechanical performance parameters of stents. These simulations included mechanical
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performance parameters such as radial elastic recoil, resistance of the stent to external
compressive forces, stent foreshortening, and stent coverage area. Furthermore, these
simulations regarded the stent with cyclic symmetry and the inflation driven by radial
displacement. The finite element method (FEM) simulations of the balloon inflation process
are nonlinear due to the plasticity during balloon expansion and the contact interactions
between the stent, balloon, and arterial plaque. Also, Liang et al. [7] developed comprehen-
sive 3D models of the stent and the balloon, incorporating basic nonlinear properties for all
material elements. However, a limiting factor in the simulation was the representation of
the balloon as a planar cylinder without folding.

Initially, simulation interactions between the balloon and stent were investigated
with material linearities on the non-essential components like the balloons. Later, when
the computer power capacity was increased, the simulations of stents considered more
elements and nodes of the FEM models, as well as nonlinearity parameters [8]. The balloon
was changed from a hollow cylinder with linear behavior to a fully folded balloon with
hyperelastic material properties. Similarly, the plaque and the artery initially were modeled
as a smooth occlusion embedded into a cylindrical artery [9,10]. Later, simulations of stents
considered complex geometries based on 3D scans from damaged arteries and hyperelastic
materials, as well as Neo-Hookean strain energy function, to describe the mechanical
behavior of plaque [11]. However, only two mechanical parameters recommended by the
Food and Drug Administration (FDA) were investigated during this research [11].

When the simulations of stents using FEM models incorporated more design parame-
ters, these models were used to optimize the geometrical parameters of stents [12]. In 2010,
the FDA established guidelines for engineering tests and technical variables to support
the safety and effectiveness of intravascular stents and their delivery systems [13]. These
guidelines were considered in the following research on the design and optimization of
stents. In addition, hemodynamic behavior started to be investigated using computational
fluid dynamics (CFD) simulations due to the relationship with neointimal growth under
low artery wall shear stress (WSS) [14].

In 2015, several researchers [15–19] reported optimization processes of stents that
included FDA parameters. For instance, Bressloff et al. [15] designed a method considering
the FDA parameters of stents to study the geometric modifications of their components.
This method incorporated a response surface methodology (RSM) based on the Kriging
method. Furthermore, Ragkousis et al. [16] presented a virtual design of experiments
to understand the effect of the positioning parameter on some mechanical performance
parameters of stents [16]. However, the average time for analyzing a single point was 160 h.
Next, Tammareddi et al. [17] improved the optimization process of stents by introducing
multi-objective robust optimization of coronary stents [17], decreasing the computational
time for an average run to 26 h. In 2017, Li et al. [18] investigated an optimization design of
stents based on the Kriging surrogate model, focused on the FDA parameters, and assessed
the fatigue of stents [18]. Nevertheless, the balloon was modeled using a simplified cylin-
drical shape. In 2019, Geith et al. [19] incorporated FEM simulations for modeling balloon
folding, pleating, and stent crimping. They compared their results of FEM simulation
with experimental results. They only focused on comparing the balloon-stent without
considering the FDA parameters. In 2021, Gharleghi et al. [20] examined stent geometries
using multi-objective optimization with seven design variables. Furthermore, they used
mechanical performance parameters of the stent recommended by the FDA to assess its
optimal design. However, the structural analysis of the stent was simplified in terms of the
geometry of the balloon and artery using ideal cylindrical shapes.

Herein, we propose a simple method based on FEM models of stents to predict their
mechanical performance parameters considering the FDA guidelines. In addition, this
method includes the complexities of the balloon folding reported by Geith et al. [19] and
Gharleghi et al. [20] but with a reduced computational time. The results of our baseline
stent model agree well with the experimental data. Also, our simplified FEM models of
stents can determine their main mechanical performance parameters with a reduction in
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computational time of up to 80%. The proposed method can be employed to design better
structures of the stents that comply with the specific requirements of potential patients.

2. Materials and Methods

This section describes the stages of the proposed method for evaluating the mechanical
performance parameters of stents, considering the FDA guidelines.

Figure 1 depicts the different stages of the global optimization process used to predict
the mechanical performance parameters of stents using FEM and CFD simulations. From
these stages, the stage that requires more computational time is the FEM/CFD simulation.
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Figure 1. Different stages of the proposed method to assess the mechanical performance parameters
of stents.

GSE-Biomedical® (Hermosillo, Mexico) [21] provided the stent’s geometry and experi-
mental results. Two methods were explored. The first method uses a reduced model of the
stent with solid elements, while the second employs a reduced model with shell elements.
Performance parameters of stents based on the FDA were obtained for all the simulations.
Both methods were compared with the information obtained from the simulations reported
in the literature.

2.1. Mechanical Performance Parameters of Stents

The mechanical performance parameters of stents considering the FDA guidelines are
as follows:

1. Percent surface area: The area over which a stent contacts a vessel may affect the
biological response of the vessel. The amount of open, non-contact area may influence
tissue prolapse or ingrowth. The percentage of area is calculated as 100·(area in
contact with vessel/full cylindrical surface area).

2. Foreshortening: Dimensional changes may occur when deploying a stent, influencing
the final length. Knowledge of the foreshortening characteristics aids in proper
stent length selection and proper placement in the body. Percent foreshortening is
determined as 100·(change in length/loaded length).

3. Recoil for balloon expandable stents: The recoil behavior of balloon expandable stents
influences proper device selection, sizing, acute post-implant results, and long-term
clinical outcomes. Recoil is a function of stent design and material selection. Therefore,
knowledge of stent recoil helps to characterize the behavior of a particular stent
design. Recoil is calculated as the diameter of the expanded balloon/diameter of the
deflated balloon.

4. Radial stiffness and radial strength: Radial stiffness and stent recoil determine the
diameter of balloon expandable stents deployed in compliant vessels. Radial stiffness
and radial strength characterize the stent’s ability to resist collapse under short-term
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or long-term external loads. The radial stiffness of the stent is calculated as the force
required to compress a length normalized stent/amount of compression. The units
of the radial stiffness are N/mm. This radial strength is defined as the force that
generates a plastic deformation on the expanded stent. It is computed when the radial
stiffness slope decreases. The plastic deformation of the stent began when its radial
strength was achieved.

2.2. Geometry and FEM for Baseline Stent and Balloon Model

The stent device has an inner diameter of 1.16 mm, a thickness of 80 µm, and a total
length of 9.416 mm. For this stent, we developed its FEM model using the LS-DYNA
software (ANSYS, San Diego, CA, USA), as shown in Figure 2. This model contains three
layers of elements along the thickness of the stent, incorporating 42,657 hexahedral solid
elements of formulation 2. In LS-DYNA R11.1.0 software, a solid element formulation
2 is a fully integrated selective reduced (S/R) solid element. The computer used for all
simulations of the stents was a Dell Precision Workstation T5810 (Round Rock, US), with a
processor Intel® Xeon® E5-2697 v4 -18 C; 2.3 GHz, 2400 MHz, 45 MB, 64 GB on RAM. For
this study, only 14 processors were used in any given simulation.
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Figure 2. FEM model of the stent provided by GSE-Biomedical® (Hermosillo, Mexico) [21].

The FEM model of the balloon (see Figure 3) was developed following the procedure
reported by Geith [19] and Oberhofer [22]. In this procedure, the balloon starts off inflated,
and then its pleating is simulated. The expanded balloon has an internal diameter of 3 mm,
a thickness of 20 µm, and a total length of 20 mm with an effective length of 15.54 mm. It
has an inner stent diameter of 0.63 mm. Furthermore, this FEM model uses shell elements
fomulation 1 that are related to the Hughes–Liu element formulation used in the LS-DYNA
software. This FEM model of the balloon incorporates 53,938 hexahedral elements with an
average dimension of 0.05 mm. Thus, the total number of elements for the FEM model that
includes the stent and balloon elements is 96,595.
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Bioengineering 2024, 11, 583 5 of 14

2.3. Materials for Balloon and Stent

CrCo-L605 is the material used for the stent and its properties were provided
by GSE-Biomedical (Hermosillo, Mexico) [21]. This model was simulated using
Mat_024_PICEWISE_LINEAR_PLATICITY. This material has a Young’s modulus of
233.89 GPa, a density of 7830 kg/m3, a Poisson ratio of 0.3, a yield strength of
1117 MPa, and its plastic properties are described in Table 1. On the other hand,
the balloon was modeled using a linear material with a Young’s modulus of 400 MPa,
a Poisson ratio of 0.3, and a density of 1000 kg/m3. The performance of the balloon
was taken from a non-compliant material following the Accuforce DC-RM3512HHW
model [23]. The comparison of the inflation diameter as a function of pressure is
illustrated in Figure 4. In the pressure range from 3 atm to 8 atm, the performance
of the FEM model of the balloon agrees well with the Accuforce model [23]. For this
pressure range, the maximum error of the FEM model is 2.06%. On the other hand,
the minimum and maximum errors of the FEM model are 0.30% and 9.71% for the
pressures of 6 atm and 12 atm, respectively.

Table 1. Plastic properties of the CrCo-L605 used in the FEM models of the stents.

Point Strain Stress (MPa)

1 6.6730 × 10−3 1117
2 7.6940 × 10−3 1178
3 8.7150 × 10−3 1235
4 1.0256 × 10−2 1293
5 1.2835 × 10−2 1345
6 1.6444 × 10−2 1389
7 2.0562 × 10−2 1416
8 2.5945 × 10−2 1442
9 3.0791 × 10−2 1461
10 3.5871 × 10−2 1472
11 4.2940 × 10−2 1486
12 4.9211 × 10−2 1496
13 1.6077 × 10−1 1677
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2.4. Geometry and FEM Model of Simplified Stent

We considered two cases in the FEM model of the stent. The first case employed a solid
model using an incomplete stent. This model considered 100% of the balloon dimension and
three fractions of the stent (50%, 25%, and 12.5%) based on the symmetry of its geometry.
The second case of the FEM model used shell elements instead of solid elements. In this
case, we included 100% of the balloon dimension and 25% of the fraction of the stent, as
well as a variety of attributes such as integration points and element formulation. The
geometries of the different configurations are represented in Figure 5, in which the balloon
was cut to better appreciate the configuration of the stent.
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Two contact conditions were established on all the models. The first condition was a
self-contact condition inside the balloon without a friction coefficient. The second condition
was a condition of contact between the balloon and the inner surface of the stent. Based on
data published by Gervaso et al. [24] and Pant et al. [25], we performed different simulation
iterations until we found that a static friction coefficient of 0.1 and a dynamic coefficient of
0.09 were consistent with the numerical results.

Three configurations were used for the shell elements of the FEM model of the stent.
The LS-DYNA element formulation 16 is a fully integrated element; LS-DYNA element
formulation 1 is a Hughes–Liu formulation; and LS_DYNA element formulation 2 is a
Belytschko–Tsay formulation. In addition, different integration schemes were used along
the shell thickness of the FEM model, which were evaluated from 1 to 7 points.

2.5. Simulations for Mechanical Performance Parameters of Stent

Two simulations were performed for the baseline and the simplified models. The first
simulation consists of the expansion and compression of the balloon in three stages. This
simulation was performed for 2 ms and was considered a quasi-static analysis according to
Ragkousis et al. [26], in which the dynamic effects were negligible. The first stage consists
of the inflation of the balloon with a constant pressure of 6 atm. At the end of this cycle,
the average diameter of the balloon is calculated using various measurements at different
points of the balloon. In the second stage, the air is sucked from the balloon with twice the
vacuum pressure as the first half of the time. At the end of this stage, the outer area of the
FEM model was measured to obtain the surface area percent.

In addition, the length of the FEM model of the stent was determined, and its fore-
shortening was measured. Furthermore, at the end of the first stage, the final diameter of
the stent was estimated, and its recoil was calculated. Figure 6 depicts the different stages
of the simulations and the inflation process of the balloon.
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Figure 6. (a) Behavior of the pressure applied to the balloon as a function of time. (b) The initial
state of all the simulations. For this case, baseline simulation is illustrated. (c) The final state of
the balloon with its geometry fully inflated. (d) The final state of the balloon with its geometry
completely deflated.

Once the first simulation is completed, the resulting stent geometry is exported as
input for the second simulation. During the second simulation, the final stent geometry
is placed between the rigid plates (Figure 7a) and subjected to compression for 1 ms until
its final diameter reached 1.8 mm (Figure 7b). A static condition is achieved as in the first
simulation. From this simulation, the reaction force of the stent as a function of the wall is
obtained, and the radial stiffness as a function of compression can be computed. When the
FEM model of the stent begins to show plasticity, its radial strength can be determined.
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3. Results and Discussion

This section shows the results of the baseline model of the stent in comparison with the
experimental data reported by its manufacturer [21]. In addition, the results of the baseline
and simplified models of the stents are presented, considering their FDA parameters and
simulation times.
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3.1. Baseline Simulation

The results of the baseline model of the stent were compared with experimental data
reported by the manufacturer [21,27,28]. These results included the radial recoil, length
foreshortening, and radial stiffness of the stent. Figure 8 shows a comparison between
the FEM model of the stent and the experimental results for radial stiffness. For this
comparison, the thickness of the stent was changed to 65 µm to compare with the final
model tested by the manufacturer [28]. In all the following simulations of the stent, we
used the original thickness of 80 µm. The slope of the stent reaction force/length of the
simulation of the stent has a similar behavior to that of the experimental data. The minimum
errors of these simulations are 10.8% and 13.8% for the compressions close to 0.1 mm and
0.8 mm, respectively.
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The manufacturer [21] reported a foreshortening of 2%. On the other hand, the
foreshortening of the FEM model of the stent is close to 4% at the end of the simulation
(Figure 9). The simulation results agree well with the experimental behavior reported by
the manufacturer [21,27,28].
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The recoil of the stent reported by the manufacturer [21,27,28] is 4.6%, while the recoil
obtained by the simulation of the stent is close to 7.8%. Figure 10a depicts the different
points of the FEM model of the stent where the measurements were obtained. Figure 10b
shows the outer diameters of the stent as a function of the simulation time.
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The results of our stent FEM model agree well with the experimental data reported by
the manufacturer of the stent [21]. The proposed FEM model may be used to predict the
mechanical performance parameters of stents considering the FDA guidelines.

3.2. Mechanical Performance Parameters

Once the baseline model of the stent was established and compared with experimental
data, we assessed its mechanical performance parameters regarding semicomplete models
based on solid and shell elements with different formulations.

First, the length foreshortening of the stent was the first mechanical performance
parameter determined.

Figure 11 depicts the results of the normalized length foreshortening of the stent as a
function of simulation time employing solid or shell elements with different formulations.
These results were compared with those of the baseline model of the stent. Regarding
error percentage for the last simulation time, the 25% solid model of the stent has an
error percentage of foreshortening of 6.57% compared to the baseline model. On the other
hand, the 50% solid model and 12.5% solid model of the stent register error percentages of
foreshortening of 9.63% and 10.24%, respectively.
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The radial recoil of the stent was the second mechanical performance parameter assessed.
Figure 12 compares the radial expansion of the different simplified models and the

baseline model of the stent. This comparison helps to identify the simplified model with a
behavior closest to the baseline model, considering the same postprocessing time step. The
recoil index (R) of the stent can define the simulations of the simplified models with better
behavior related to the baseline model. For the simplified models of the stents, the number
2 of the recoil index indicates the behavior closest to the baseline model of the stent.

R =
D1

D2
+

D3

D4
(1)

where D1 is the diameter of the expanded stent of the simplified model, D2 is the diameter
of the expanded stent of the baseline model, D3 is the diameter of the simplified stent
model after the balloon is deflated, and D4 is the diameter of the baseline stent mode after
the balloon is deflated.
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Table 2 depicts the results of the recoil and recoil index of the stent simulation models
compared with the stent’s baseline model. The data are ordered closer to the baseline
model’s recoil index (two values). According to the recoil index, the simplified model
that best describes the recoil process is the model of a 12.5% solid stent that considers a
solid element.

Table 2. Recoil and recoil index of the simulation models of the stents.

Simulation Models Recoil Index Recoil

Baseline 2.00 1.09
12.5% Solid stent 2.00 1.11

25% Sell 1 stent-IP3 2.02 1.17
25% Shell 1 stent-IP5 2.03 1.16
25% Shell 2 stent-IP3 2.05 1.14
25% Shell 2 stent-IP5 2.06 1.12

25% Solid stent 1.93 1.11
25% Shell 1 stent-IP2 2.09 1.10
25% Shell 2 stent-IP2 2.10 1.10

50% solid stent 1.89 1.23
25% Shell 16 stent-IP5 2.22 1.10
25% Shell 16 stent-IP7 2.23 1.06
25% Shell 16 stent-IP3 2.23 1.07
25% Shell 16 stent-IP6 2.24 1.06

The radial stiffness of the stent was the third mechanical behavior parameter assessed
using the simulation models. Figure 13 shows the normalized reaction force per length of
the baseline model and the simplified solid models of the stents. The pattern is the same
for all configurations; however, the model with behavior closest to the baseline model was
the simplified solid model of 25% concerning the final normalized force. The second better
simplified solid model was the 50% solid model. The third better solid model was the 12.5%
solid model. The results of Figure 13 show a nonlinear behavior due to geometry buckling
and material plasticity.
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rameters using a reduced computational time. Furthermore, these simplified models
can be used to adjust the stents’ geometry and find the stent’s best geometry. Table 3
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compares the simplified models in terms of simulation time, simulation reduction time,
radial stiffness error, radial recoil index error, radial recoil error, foreshortening differ-
ence error, and error summation. These parameters are ordered from the best to the least
favorable value based on radial stiffness error as the primary criterion, followed by er-
ror summation as a secondary consideration. These data are compared to the baseline
model to determine the best-simplified stent models. Based on the above criterion, the
best-simplified model is the 50% solid model that registers a lesser difference concerning
the baseline model. The second-best simplified model is the 25% model, which has an even
more significant time reduction (5.5% faster). Shell models, particularly those utilizing
formulations 1 and 2 with integration points greater than one across the thickness, demon-
strate better performance in decreasing the simulation time and achieving good agreement
with radial and foreshortening measurements. However, for the compression analysis,
shell models have poor agreement compared to the baseline model. The results suggest a
potential pathway to reduce simulation time during the initial stages of defining a new stent
geometry. Table 4 depicts the results of simulation times of different modeling techniques
of stents reported in the literature. Our simplified stent model achieved the best simulation
time reduction. Thus, the results of the proposed simplified models can estimate the main
mechanical performance parameters of stents considering the FDA guidelines and using
a significant computational time reduction. Specifically, for a reference simulation point,
almost five points related to the mechanical performance parameters of a stent can be
obtained. This advancement may improve personalized stent designs tailored to individual
patient conditions.

Table 3. Comparison of the simulation time and errors of the main performance parameters of the
simplified models of stents with respect to the baseline model.

Model Simulation Time
(min)

Time Reduction
(%)

Radial Stiffness
Error @ 0.75 mm

Compression

Recoil Index
Error Recoil Error Foreshortening

Error Difference

Baseline 835.25 - - - - -
50% Solid 280.03 66.5% 11.70% 5.5% 12.84% 3.40%
25% Solid 234.13 72.0% 16.46% 3.5% 1.83% 3.06%

12.5% Solid 216.70 74.1% 21.71% 0.0% 1.83% 3.67%
25% Shell 2-IP 5 187.67 77.4% 100.00% 3.0% 2.75% 2.80%
25% Shell 1-IP 5 192.05 77.0% 100.00% 1.5% 6.42% 1.87%
25% Shell 1-IP 2 189.20 77.6% 100.00% 4.5% 0.92% 6.78%
25% Shell 2-IP 2 185.17 77.5% 100.00% 5.0% 0.92% 6.71%
25% Shell 1-IP 3 188.92 77.3% 100.00% 1.0% 7.34% 4.76%
25% Shell 2-IP 3 187.00 77.8% 100.00% 2.5% 4.59% 6.56%
25% Shell 16-IP 7 151.60 82.4% 100.00% 11.5% 2.75% 1.47%
25% Shell 16-IP 3 144.68 81.8% 100.00% 11.5% 1.83% 5.10%
25% Shell 16-IP 5 146.93 82.7% 100.00% 11.0% 0.92% 10.40%
25% Shell 16-IP 6 149.38 82.1% 100.00% 12.0% 2.75% 8.24%

Table 4. Computer time used in different modeling techniques of stents.

Reference Number of Computer
Cores

Computer Time per
Point Evaluation (h) Software

Our work 14 3.6 LS-DYNA Explicit (R11.1.0)
[19] 32 33.5 LS-DYNA Implicit (R10.1.0)

[16] 32 160 Abaqus Explicit
(V 6.12)

[17] 8 26 Abaqus Explicit
(V 6.9.2)

[29] 6 24 Abaqus Explicit
(V 6.9.1)

[12] 8 >24 Abaqus Explicit
(V 6.9.1)

[24] 4 120 Abaqus Explicit
(V 6.9.1)

[10] * 48 Abaqus Explicit
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We validated a baseline model of the stent using experimental data. In addition,
we developed simplified FEM models of stents to predict their mechanical performance
parameters regarding FDA guidelines, decreasing the simulation time close to 80%. The
proposed models can be used to design future stents with specific mechanical performance
parameters suitable for the requirements of each patient.

4. Conclusions

Considering the FDA guidelines, simplified models of stents to predict their main
mechanical performance parameters were proposed. These parameters considered the
foreshortening, radial recoil, radial recoil index, and radial stiffness of stents. The simplified
models were based on the finite element method using the software ANSYS. In addition,
the results of the simplified models were compared to those of a baseline model of the stent.
This baseline model was validated using experimental data. The best simplified model
used solid elements, reducing computational time close to 80%. In addition, the proposed
models can be used to optimize the design of stents for patients with specific requirements.

Future research on simplified stent models will consider additional parameters such
as stent dog boning, quantitative measures of circumferential stress on the arterial wall,
and quantitative measurements of radial stress on the arterial wall for structural analysis.
Furthermore, we will use the hyperelastic and plasticity models to simulate the behavior of
the balloon and the stent.
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