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Abstract: Pediatric gait rehabilitation and guidance strategies using robotic exoskeletons require a
controller that encourages user volitional control and participation while guiding the wearer towards
a stable gait cycle. Virtual constraint-based controllers have created stable gait cycles in bipedal robotic
systems and have seen recent use in assistive exoskeletons. This paper evaluates a virtual constraint-
based controller for pediatric gait guidance through comparison with a traditional time-dependent
position tracking controller on a newly developed exoskeleton system. Walking experiments were
performed with a healthy child subject wearing the exoskeleton under proportional-derivative control,
virtual constraint-based control, and while unpowered. The participant questionnaires assessed
the perceived exertion and controller usability measures, while sensors provided kinematic, control
torque, and muscle activation data. The virtual constraint-based controller resulted in a gait similar to
the proportional-derivative controlled gait but reduced the variability in the gait kinematics by 36.72%
and 16.28% relative to unassisted gait in the hips and knees, respectively. The virtual constraint-
based controller also used 35.89% and 4.44% less rms torque per gait cycle in the hips and knees,
respectively. The user feedback indicated that the virtual constraint-based controller was intuitive
and easy to utilize relative to the proportional-derivative controller. These results indicate that virtual
constraint-based control has favorable characteristics for robot-assisted gait guidance.

Keywords: gait; exoskeletons; virtual constraint control; pediatric

1. Introduction

A lower-limb exoskeleton is a wearable robotic device that provides assistive torque
to the joints of the wearer’s legs. In medical contexts, exoskeletons can be used to assist
or rehabilitate the motion of individuals dealing with gait impairment through robotic-
assisted gait training (RAGT). RAGT has been suggested as an alternative or complementary
solution to traditional physical therapy options and bodyweight-supported treadmill
training. The introduction of a robotic device to guide the gait pattern decreases the physical
demands on the physical therapist and offers increased robotic accuracy and controllability
to the walking task [1,2]. Previous studies have shown that RAGT can increase the wearer’s
average walking speed, distance, balance, and other mobility measures [3,4]. Studies have
also demonstrated that RAGT can improve the range of motion, increase muscle strength,
and decrease spasticity for pediatric subjects with cerebral palsy [5–7].

While children with gait impairments stand to benefit from RAGT, most commer-
cially available exoskeletons are adult-oriented [8,9] and are not designed to serve the
pediatric population [10]. Representative pediatric devices currently include the pedi-
atric Lokomat [11], the Trexo robotic walker [12], the very small-sized Hybrid Assis-
tive Limb (2S-HAL) [13], the ATLAS 2020 and 2030 [7,14], the MOTION exoskeleton by
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Zhang et al. [15], and the exoskeletons developed by Lerner et al. at the NIH [5]. Of the
pediatric devices that do exist, few devices combine the characteristics of a lightweight form
factor, community setting mobility, adjustability, and ease of use. Previously, the authors
created an anthropometrically parametrized exoskeleton [16], and recently introduced the
Cleveland State University (CSU) adjustable pediatric exoskeleton [17,18]. Preliminary
human factor testing with the new device demonstrated that the exoskeleton was suitable
for preliminary control testing with pediatric subjects [19].

Identifying an appropriate controller for medical exoskeletons remains a challenge,
in large part due to the diversity of gait impairment pathologies. The therapeutic ob-
jective for those who need walking assistance due to severe neurological injury differs
greatly from those seeking gait rehabilitation and guidance, such as individuals recov-
ering from stroke [20]. In this manuscript, the authors wish to investigate controllers
suitable for gait guidance and rehabilitation. A common strategy for exoskeleton control
includes time-dependent, position tracking controllers such as proportional-derivative
(PD) and proportional-integral-derivative (PID) controllers [21–23]. Closely related time-
dependent controllers include impedance controllers, which improve human–robot inter-
action safety by introducing compliant behavior between the wearer and the exoskeleton
through model-based control [24,25]. Relevant examples include the LOPES robot by
van der Kooij et al. [26], the knee device by Aguirre-Ollinger et al. [27], and the impedance
control law used by Tran et al. on the HUALEX [28]. These controllers oftentimes utilize
nominal human walking patterns from sources like Winter et al. [29] or Schwartz [30], to
define the desired joint motion reference and spatiotemporal gait parameters. However,
while time-dependent trajectory tracking controllers are effective at matching a gait pattern
and are easy to implement, the strict timing nature can disincentivize user participation in
the walking cycle, leading to patient passivity [31,32]. This in turn can lead to less efficient
therapy sessions and inconclusive rehabilitation results. Other manuscripts have noted
that the strict regulation of gait, especially timing, can lead to gait destabilization [33].
This aligns with the “guidance hypothesis”, which predicts that feedback can negatively
impact motor learning and rehabilitation when heavily relied upon to complete that learned
action [34]. Additionally, these time-dependent trajectory tracking controllers also risk gait
desynchronization between the walking cycle of the controller and the intended gait of
the wearer. This often results in the user fighting the exoskeleton controller and can lead
to gait instability and potential falls. Thus, while these controllers are useful for walking
assistance purposes, they are oftentimes not suitable for gait rehabilitation.

The shortcomings of strict time-dependent position controllers for rehabilitation pur-
poses have encouraged the exploration of patient-cooperative and time-independent con-
trollers. A prominent example of these are the “virtual tunnel” controllers utilized by the
ALEX [3] and Lokomat [35] exoskeletons. These controllers are designed to provide restora-
tive inputs when a patient deviates from the desired gait pattern by a certain threshold. The
ALEX’s force-field controller aims to guide the motion of a user’s ankle [3], while the Loko-
mat’s path control mode focuses on the overall leg posture through the gait cycle [35]. A
continuation of this control methodology can be found in the paper by Martínez et al. [36],
which utilizes force-field controllers to guide a lower leg exoskeleton during the swing
phase. These controllers enable the wearer’s volitional control over the gait cycle and en-
courage their active participation in the walking activity. They have also been implemented
in both time-dependent and -independent formulations. However, while the increased level
of volitional control over the gait cycle encourages rehabilitation and user participation in
the exercise, it only indirectly encourages a user’s dynamic stability during gait.

Recent advances in the control of bipedal robotic systems have yielded a new con-
trol methodology in virtual constraint-based controllers, also commonly referred to as
hybrid zero dynamic controllers. These controllers enforce relationships between the
system’s joints such that the biped walker becomes virtually constrained to walk in a
certain pattern [37]. The strategic definition and optimization of these virtual constraints,
which evolve with respect to the gait phase, can promote a dynamically stable gait for
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biped systems within their zero dynamics. These controllers can also be implemented in
time-invariant formulations by representing the gait phase as a configuration-dependent
variable. Extended to exoskeletal systems, these controllers drive the wearer towards the
stable gait cycle defined by the virtual constraints, while leaving progression through
the gait cycle dependent on the volitional control and effort exerted by the user. While
originally implemented in fully robotic bipedal systems in [38–41], virtual constraint-based
controllers have begun to see use in both prosthetic and exoskeletal devices [42–44]. Most
of these applications, however, are focused on walking assistance for paraplegic patients
instead of gait rehabilitation objectives [42,43]. To the author’s knowledge, there have
been few studies looking to evaluate virtual constraint-based controllers for gait guidance
and rehabilitation.

In this manuscript, the authors aim to preliminarily evaluate a virtual constraint-based
controller for gait guidance by performing a comparison to time-dependent proportional-
derivative control in treadmill walking experiments. Both the virtual constraint and
proportional-derivative controllers utilize identical control gains and gait references to
increase comparability. The two controllers are evaluated with respect to the kinetic and
kinematic effects of the controllers on the subject’s gait, the subject’s muscle effort quanti-
fied through electromyography (EMG), and the subject’s perceived effort and controller
preferences as indicated through questionnaires. The authors hypothesize the following:

• The two controllers will have comparable kinematics due to their similar error-based
architecture and comparable control gains;

• The virtual constraint-based controller will demonstrate less gait pattern variability
due to the lower risk of gait desynchronization;

• The virtual constraint-based controller will be preferred over the proportional-derivative
controller due to its time-independent nature and lack of step timing restrictions.

This work builds upon the authors’ previous work on virtual constraint-based con-
trollers for gait guidance [45,46] by applying a virtual constraint-based controller on a
newly developed pediatric exoskeleton system with an able-bodied child subject. This
manuscript demonstrates the adjustable pediatric lower-limb exoskeleton’s ability to serve
as an investigative platform for future gait assistance and rehabilitation control experiments.
Thus, the contributions of this manuscript are as follows:

• A preliminary evaluation of virtual constraint-based control for gait guidance by
performing a comparison to a more commonly applied time-dependent proportional-
derivative controller;

• The demonstration and first application of control on the CSU adjustable pediatric
exoskeleton in gait experiments.

The successful implementation of virtual constraint-based control on the exoskeletal
system for gait guidance purposes represents an initial motivating step towards larger-scale
rehabilitative control studies involving children with gait disabilities. The remainder of
the manuscript is split into the following sections. Section 2 details the materials and test
facility used in the gait experiments performed in this work. Section 3 details the controller
implementations used in this control comparison. Section 4 discusses the experimental
procedure. Section 5 presents and discusses the experimental results. Finally, Section 6
consists of the conclusion and points out avenues for future work.

2. Hardware and Facilities
2.1. Adjustable Pediatric Lower-Limb Exoskeleton

The CSU adjustable pediatric exoskeleton provides supplementary torques at the hip
and knee joints of the wearer through 144 W brushless DC motors, scaled through a 20.4:1
two-stage belt and chain transmission. The modular actuators can apply up to 5.9 Nm of
continuous torque, have been tested to up to 21.1 Nm peak torque, and have a theoretical
peak torque of 46.9 Nm. Previous evaluations indicated that the actuators were lightweight,
low-friction, and easily backdrivable at the output, making them appropriate for use in
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a pediatric lower-limb exoskeleton [17]. These actuators were placed into an adjustable
pediatric exoskeleton frame designed for children between 6 and 11 years old [18], resulting
in the 4.72 kg exoskeleton shown in Figure 1.
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Figure 1. CSU adjustable pediatric exoskeleton.

The ranges of adjustability were determined from estimated limb lengths and widths
of children within the target age group, derived from anthropometric averages [47] and
census data [48]. For a more detailed discussion of the exoskeleton device and joint
actuators, see [17,18]. A preliminary human factor assessment with the unpowered ad-
justable pediatric exoskeleton and a healthy, 30.8 kg, and 149 cm tall child volunteer subject
demonstrated that the hardware was comfortable, easily adjustable, and simple to don
and doff [19]. The exoskeleton can provide a measurement of the relative joint angles
and velocities for the hips with respect to the torso and the knees with respect to the
thigh for both legs through the Hall effect and magnetic angle sensors. A SEN-10736
(Sparkfun Electronics, Boulder, CO, USA) nine-degree-of-freedom inertial measurement
unit (IMU) is affixed to the hip cradle to provide angular position and velocity measure-
ments of the torso relative to the gravity vector. The measurement convention for the
human–exoskeleton system is shown in Figure 2, with the clockwise rotations in the figure
representing positive rotations.
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2.2. Treadmill, Sensors, and Data Collection

The gait experiments in this manuscript were performed on an R-Mill instrumented
split belt treadmill (Motekforce Link, Amsterdam, The Netherlands), shown in Figure 3.
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Figure 3. Experimental setup on the instrumented treadmill with the volunteer subject wearing the
pediatric exoskeleton.

The system includes parallel bar structures and an overhead harness suspension
system to assist with the subject’s lateral balance and provide a safety precaution in case of
a fall. The instrumented treadmill provides ground reaction force (GRF) signals as analog
outputs from the force plates for both the left and right sides.

The subject’s muscle activations were measured through a Trigno wireless EMG system
(Delsys Incorporated, Natirck, MA, USA). The authors measured activations in the Vastus
Medialis (VM), the Rectus Femoris (RF), the Biceps Femoris (BF), the Tibialis Anterior
(TA), the Gastrocnemius Medialis (GM), and the Gastrocnemius Lateralis (GL). The Vastus
Lateralis was originally measured but the associated EMG sensor fell off mid-experiment,
so the analysis on this muscle was excluded. Only the dominant leg of the subject was
equipped with EMG sensors. The outputs of the EMG sensors were filtered through a
second-order Butterworth bandpass filter between 30 and 300 Hz, full-wave rectified, and
then low-pass filtered with a second-order Butterworth filter with a cutoff frequency of
20 Hz to yield the linear envelope of the signal.

The control and partial data acquisition for this experiment were facilitated through a
dSPACE MicroLabBox DS1202 (dSPACE, Wixom, MI, USA). The dSPACE system collected
the joint angle and velocity measurements from the exoskeleton, and GRF data from the
instrumented treadmill. Separately, the wireless EMG sensors and GRF measurements
were also recorded through D-Flow (version 3.34.3) and CORTEX (64-bit, version 8.1.0.2017)
software to yield data files sampled at 10 kHz. These data sets were then unified in time by
aligning both sets’ measurements of the GRF data.

3. Control Overview

This manuscript compares the performance of a time-dependent proportional-derivative
(PD) trajectory tracking controller and a virtual constraint-based (VC) controller. An
unassisted (UA) condition, with the subject walking in the unpowered exoskeleton, was
also tested to serve as a baseline condition for comparison.

In the PD controller, the input torque is defined proportionally to the position and
velocity error of the system relative to a reference gait pattern. The reference gait profiles
for each joint were derived from the unassisted walking pattern of the wearer using the
unpowered exoskeleton, taken on a previous testing day. This was chosen over nominal
gait to represent the gait closest to the subject’s natural walking cycle while constrained by
the movements allowed by the exoskeleton. This gait pattern served as the desired gait
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profile across all the controlled conditions. The proportional and derivative control gains
applied to the system were chosen by the subject. For ease of implementation and for the
sake of comparison, the same set of control gains were used across all the hip and knee
joints and were used for both the PD and VC controllers. The time-dependent nature of the
PD controller necessitated a method to align the controller step timing with the user. This
was achieved by synchronizing a metronome to the gait period such that an audial cue was
given to the subject on when to time their heel strike.

For a more in-depth review and stability analysis of VC-based controllers, the authors
point the reader to the seminal works of Grizzle and Westervelt et al. [37,49]. In general, the
virtual constraint-based control method generates a set of constraint functions h(s(q)) for
the hip and knee joints that are dependent on a monotonically increasing phase variable s(q).
This phase variable represents the progression of gait and is dependent on the configuration
variable vector q. In prior experiments, the authors found that some phase variable
definitions were sensitive to natural human gait variability, which led to unnatural human–
exoskeleton behavior during control implementation [45]. Thus, the authors utilized a
phase definition determined via optimization as performed in previous works, using the
gait data from the UA condition [46]. This optimization identifies a phase variable definition
of the form shown in Equation (1):

s(q) = cq + s0 (1)

The row vector c and the constant s0 reflect the set of constants identified through the
optimization. The optimization of the phase definition was subject to the following constraints:

s(q−) = 0
s(q+) = 1
s′(qi) > 0

(2)

and minimizes the cost function shown in Equation (3):

Js =
N

∑
i=1

(
s′(qi)− 1

)2 (3)

The expression of q− and q+ represents the joint configuration vector of the human–
exoskeleton model at the beginning and ending of a step, respectively, while qi represents
the system configuration at a single datapoint 1 ≤ i ≤ N. The expression for the phase rate
with respect to normalized time t̂ is denoted as s′ = ∆s/∆t̂. The result is an optimal phase
definition that evenly distributes the phase’s sensitivity to natural human gait variability
over the entire gait step and is roughly equivalent to normalized time.

This phase definition is then utilized in a second offline optimization that generates
constraint functions h(s(q)). The optimization aligns the gait cycle described by the
constraint functions with the gait cycle recorded from the UA baseline. The optimization
is carried out via the Trajectory Optimization in CasADi (TROPIC 1.18.2021) toolbox [50],
utilizing the cost function shown in Equation (4).

JTROPIC =
N

∑
i=1
‖h(s(q))− ri‖ (4)

In the above equation, ri is the desired reference gait cycle recorded from the UA
condition, where the subscripts denote the percent of step phase. Additional optimization
constraints ensure that the walking speed of the optimized gait cycle matches the walking
speed of the UA baseline, and that the step period was within two standard deviations of
the baseline.

A time-invariant feedback controller then enforces the constraint functions. While theo-
retical implementations of virtual constraint-based controllers utilize feedback linearization
controllers to demonstrate controller stability and convergence, practical implementations
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in simulation and hardware applications have demonstrated that phase-based PD works to
drive the system towards the desired cyclical gait [38,49,51]. The control law used in this
virtual constraint-based controller is shown below.

Pe + D
.
e = u (5)

e = h(s(q))−Hq (6)

.
e =

∂h(s(q))
∂s

.
s−H

.
q (7)

The error vectors e and
.
e represent the position and velocity errors of the system with

respect to the virtual constraint functions. The matrix H consists of ones and zeros and
maps the controlled joints of q and

.
q to their appropriate constraint functions. Specifically,

H = [04×1 I4×4], where I4×4 is a 4-by-4 identity matrix. P and D are positive diagonal
gain matrices.

The VC controller relies on a pinned model of the human–exoskeleton system. How-
ever, human gait exhibits periods of double support and the swapping of stance and
swing legs. In traditional virtual constraint-based controllers, the double support phase is
modeled as an instantaneous impact event with a transformation of the system states and
the swapping of the swing and stance leg definitions. In this paper, the bilateral mixing
strategy from [45,46] is used. It defines two symmetric full-body controllers, ul and ur,
which assume that either the left or right leg are in the stance phase, respectively. The
total control inputs to the system utot are then defined as a convex combination of the
two controllers, where the weights of the two controllers, wl and wr, are based on GRF
measurements. The bilateral mixing strategy is shown in Equation (8), and the definition
of the weighting coefficients are defined in Equation (9), with respect to the left and right
vertical GRF fr and fl .

utot = wlul + wrur (8)

wl/r =

{
fl/r

fl+ fr
, fl + fr
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(9)

This bilateral mixing strategy enables transitions across double stance phases without
discontinuous control inputs. Additionally, it allows for automatic control switching
between the two controllers when either the left or right leg is serving as the stance leg.

4. Experimental Procedure

An 11-year-old female volunteer subject participated in this study along with their
adult caretaker. The subject weighed 30.8 kg and measured 149 cm in height. They had
been exposed to the exoskeletal device through the previous human factor assessment [19].
The exoskeleton was comfortably compatible with the subject and was adjusted to their
anthropometrics at the start of the experiment. The anthropometric parameters of the
subject’s limbs were estimated from census data using their overall height and weight.
The parameters of the exoskeleton system were manually measured or derived from
CAD models of the system. The two models were combined to generate an approximate
human–exoskeleton rigid body model, with parameters listed in Table 1 for the torso, thigh,
and shank.

The volunteer participant was informed of the experiment’s motivations and pur-
pose, and written assent and informed consent was given by both the subject and their
parent/guardian prior to the start of the study in accordance with the Institutional Review
Board at Cleveland State University. The procedure consisted of three sessions. The first ses-
sion was to familiarize the subject with the placement of the EMG sensors, and to perform
preliminary sensor and control calibrations. A research assistant modeled the placement
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of the EMG sensors on their own leg so that the parent/guardian could accurately place
the sensors on the child’s limbs. Torque saturation limits were identified for each joint of
the exoskeleton by having the subject maintain a neutral single stance standing position
while a slowly ramping torque was applied to the joints of the non-stance leg. The subject
indicated the upper limit of torque that they were able to overpower or resist from the ex-
oskeleton. These torque limits were implemented as a safety precaution so that the wearer
could forcibly exercise control over the gait cycle in case of controller desynchronization.
Torque ranges from −5 to 8 Nm and from −4 to 4 Nm were identified for the subject’s
hips and knees, respectively. Next, the subject walked on the treadmill while wearing the
exoskeleton in an unpowered condition. After the subject became accustomed to walking
with the exoskeleton, a set of gait data for unassisted walking was taken to serve as the
baseline reference for the PD and VC control conditions.

Table 1. Parameters of the human–exoskeleton system.

Link Mass (kg) Length (m) CoM (m) Inertia (kg·m2)

Torso 21.89 0.70 0.42 2.63
Thigh 4.51 0.36 0.16 0.06
Shank 2.12 0.42 0.25 0.06

Center of mass locations (CoM) are reported as distances along the body segments’ axial length with respect to
the proximal joint. Inertia is reported with respect to the link center of mass.

The next session served as a practice day. The subject practiced walking with the
exoskeleton in the unassisted, PD-, and VC-controlled conditions for 6 min each. This
training day allowed the subject to learn how to walk with the exoskeleton under each
control condition before data were recorded. This practice day was conducted to mitigate
the temporary effects of the patient’s learning period during final data acquisition. During
these early gait sessions, preliminary subject-selected control gains were identified as a
starting point for the later gait experiments.

The third experimental session consisted of the final set of gait experiments and
the collection of data and subject questionnaires. Each of the tested walking conditions
started with a gait synchronization event. This allowed the researchers to synchronize the
D-Flow and dSPACE data sets in time by aligning the GRF measurements during data
processing. The treadmill system was sped up to a user-selected walking speed of 0.8 m/s.
The controller inputs were then incrementally increased until the subject-selected gains
for the control condition were reached. The subject walked for 3 min under the controlled
condition. Afterwards, the control inputs and treadmill speed were ramped back down.
Following each test condition, the subject was given a 3-min rest period, during which a
questionnaire was completed to allow the subject to give feedback and rate their perceived
physical effort using the Borg Rating of Perceived Effort scale [52]. On the day of the
experiment, the control conditions were applied in the following order: PD, VC, and finally,
UA. After all the tested conditions were completed, the subject was asked to rank the
applied controllers based on their exertion and subjective personal preference from least
to greatest.

5. Results and Discussion

The subject made no notes regarding discomfort while wearing the exoskeleton and
did not indicate excessive levels of fatigue. There were no recorded trips or falls during
testing. On the day of the experiments, the subject chose control gains that produced
conservative control inputs. The proportional and derivative gains for both the PD and
VC conditions were left at 7.8 Nm·rad−1 and 0.12 Nm·s·rad−1 across both the hip and
knee joints.

The gait information was partitioned into step cycles based on the GRF information
such that the beginning and end of each gait cycle corresponded with the heel strike event.
The left and right leg gait cycles were combined for the kinematic analysis. Only the right
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leg information was used for the EMG sensors analysis, as only the patient’s dominant leg
was equipped with sensors.

5.1. Kinematics and Kinetics

To compare hip and knee angles across the conditions, a one-way analysis of variance
(ANOVA) statistical test was performed. This was performed by comparing the hip and
knee joint angles in each tested condition (PD, VC) to that of the UA baseline and taking
the average root mean square (rms) difference. Each comparison was performed using a
t-test (significance level of 0.050) with a Tukey–Kramer multiple-comparisons correction.
Figure 4 illustrates the ensemble-averaged gait cycle accomplished under the different
controlled conditions, plotted with respect to the UA condition performance.
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Table 2 lists the quantified performance metrics averaged over the gait cycle such as
the mean rms difference with respect to the UA baseline, their mean standard deviations,
and the mean rms torque output.

Table 2. Performance and torque outputs of the control conditions.

Condition
Kinematic Difference * Kinetics

Hip (deg) Knee (deg) Hip (Nm) Knee (Nm)

UA – ± 4.88 – ± 6.33 – –
PD 2.50 ± 3.70 3.75 ± 6.78 0.39 0.90
VC 3.06 ± 3.04 4.59 ± 5.30 0.25 0.86

* Mean ± standard deviation. UA only reports standard deviation. – Represents a null entry.

Low angular differences were recorded across the controlled conditions for both
the hips and knees. The PD-controlled condition reported an rms difference of 2.50 and
3.75 degrees in the hips and knees, respectively, while the VC-controlled condition reported
slightly higher differences of 3.06 and 4.59 degrees for the hips and knees. The rms
differences for both the hip and knee positions relative to the UA baseline were sufficiently
similar such that statistically significant (p < 0.05) differences were not identified between
the PD vs. VC conditions in the 275 gait cycles compared. This indicates that the gait cycles
in the PD- and VC-controlled conditions were comparable despite the difference in the
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controller used. This is further corroborated when looking at the effect size between the
conditions, which are listed in Table 3.

Table 3. Effect size from control comparisons.

Comparison Hip (Mean + Std) Knee (Mean + Std)

UA-PD 0.4833 ± 0.3016 0.4766 ± 0.2302
UA-VC 0.6616 ± 0.2877 0.5769 ± 0.3535
PD-VC 0.5488 ± 0.2893 0.4765 ± 0.3070

UA, PD, and VC represent the unassisted, proportional-derivative, and virtual constraint-based controlled
conditions respectively. Hyphens denotes the pairwise comparisons between conditions.

For all the comparisons (UA-PD, UA-VC, and PD-VC), the differences in the kinemat-
ics were moderate with an average absolute effect size within 0.48–0.67 for the hip and
0.47–0.58 for the knee. This suggests the gait patterns are largely similar, often within a
standard deviation of one another across all the pairs of conditions. In the context of the
experiment performed, this is unsurprising, as the subject was a healthy individual and the
control gains were tuned such that the subject could manually exert control over the gait
cycle. However, while the average gait profiles in each condition were similar, a point-wise
calculation of the standard deviation was obtained and then averaged to quantify the
gait variability. The mean standard deviation of the hip and knee angles decreased in
the VC condition relative to the UA and PD conditions. The VC controller decreased the
wearer’s gait variability from 4.88 to 3.04 degrees in the hip and 6.33 to 5.30 degrees in the
knee between the UA and VC conditions. This represents a relative reduction in the mean
standard deviation at the hip and knee joints of 36.72% and 16.28%, respectively. In the PD
controller, the mean standard deviation of the hip joints decreased to 3.70, or only 27.03%,
and for the knee, increased to 6.78 degrees, representing a 7.10% increase. These changes in
the standard deviation indicate that the VC controller increased the wearer’s gait regularity
and consistency more than the PD controller.

An additional ANOVA and multiple comparisons t-test was performed on the rms
torque profiles of each controlled condition to quantify the changes in the amount of applied
intervention. There was a statistically significant (p < 0.050) reduction in the rms torques
applied by the VC controller relative to the PD controller in the hip and knee joints. With
regard to the ensemble-averaged torque profiles applied, the VC controller reduced the rms
torques applied from 0.39 to 0.25 Nm and 0.90 Nm to 0.86 Nm for the hip and knee joints
relative to the PD controller, representing a 35.89% and a 4.44% reduction in the overall
robotic intervention, respectively. The kinematic and kinetic data indicate that the mean
gait cycles of the VC- and PD-controlled conditions were similar, but the VC controller
demonstrated a greater degree of gait regularity in the subject’s walking pattern while
using less robotic intervention.

5.2. EMG Sensors and Perceived Exertion

Only the right leg of the subject was equipped with EMG sensors, which means the
total number of gait cycles available for analysis was around half of those used in the
kinematic data analysis. A total of 136 gait cycles were compared between the UA, PD,
and VC conditions for the EMG analysis. Before the analysis, the EMG signals of each
muscle were normalized with respect to the mean output of the muscle during the UA
condition. Figure 5 plots the normalized mean and standard deviation of the EMG readings
for each muscle group measured across all the tested conditions, while Figure 6 plots their
normalized value over the gait cycle. These values are also listed in Table 4, along with
Borg scale ratings and the post-experiment exertion rankings provided by the child subject.
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Table 4. Ratings of perceived exertion and normalized EMG outputs.

Condition Borg Rank VM RF BF TA GM GL

UA 7 1 1.00 1.00 1.00 1.00 1.00 1.00

PD 8 3 1.10 1.28 1.06 1.09 1.10 1.10

VC 9 2 1.43 1.46 1.36 1.24 1.32 1.25

Vastus Medialis (VM), Rectus Femoris (RF), Biceps Femoris (BF), Tibialis Anterior (TA), Gastrocnemius Medialis
(GM), Gastrocnemius Lateralis (GL).

To quantify the differences in the muscle activation levels, a similar statistical analysis
was performed on the normalized EMG outputs for each muscle. Statistically significant
differences in the muscle activation levels were found in the VC vs. PD and the VC vs.
UA comparison, but not in the UA vs. PD comparison. The general trends demonstrate
that the UA condition required the least amount of physical exertion based on the EMG



Bioengineering 2024, 11, 590 12 of 16

measurements. The second lowest average EMG outputs were measured for PD, at about
11.8% higher than those of UA, followed by VC, at 34.4%.

The analysis of the child subject’s ratings of perceived exertion show some inconsisten-
cies, and a discrepancy between the muscle activation levels and controller preference. The
Borg scale ratings given after each tested condition indicates that the extent of perceived
exertion between the PD- and VC-controlled conditions were similar. The PD-controlled
condition was initially listed as a slightly lower effort controller than the VC condition,
though this perception may have been affected by the order in which the controlled con-
ditions were applied. The PD controller was applied before any other control conditions,
and thus, there is likely some recency bias associated with the Borg scale rankings. The
post experiment user rankings given at the end of all the gait experiments indicate that the
user found the VC controller preferable to PD. These results stand in opposition to the fact
that the muscle activations in the VC controller are higher than those in the PD-controlled
condition. While more effort was expended by the user to walk under the VC-controlled
condition, the controller was still seen as preferable to the PD controller. A potential ex-
planation for this discrepancy is that the final rankings of preference in these experiments
might serve more as a measure of ease of use, or how intrusive the controller was with
respect to the wearer’s gait. For instance, the time dependency of the PD controller dictates
a certain rate of gait progression and step timing. If the subject’s intended gait is lagging or
leading the PD controller’s reference, this could result in the controller pushing or resisting
the motion of the user. Gait desynchronization could lead to the user fighting the controller
at certain points in the gait profile even if the PD controller is working cooperatively with
the wearer for most of the motion. There were a few instances of gait desynchronization be-
tween the user and PD controller during the experiment, including a few gait cycles where
the user and controller were completely desynched. Additionally, the standard deviation
of the torque curve in Figure 4 is noticeably larger than that of the VC-controlled condition,
suggesting a greater degree of variance in the control inputs, which themselves stem from
how well the user’s gait is synchronized to the controller. In contrast, the VC-controlled
condition leaves the gait timing entirely up to the wearer’s volition. While these controllers
may not push the user through the gait cycle at any point, they never actively resist the
intention of the wearer.

Across all the controlled conditions, the EMG outputs for each muscle increased
relative to the UA case. Similarly, the Borg scale ratings and the finalized rankings of the
tested conditions indicated that the subject found it more difficult to walk with external
controllers than without. This suggests that for able-bodied subjects, the introduction
of control inputs in this experiment acted more as a system disturbance as opposed to a
restorative or assistive force.

5.3. Study Limitations

There are a few limitations to the conducted study. This study utilized only a single
volunteer pediatric subject, which limits the generalizability of these results to other indi-
viduals. Additionally, the control inputs applied by the exoskeleton remained low. The
average peak torque input was in the VC condition at merely 2.91 ± 0.63 Nm at the knee.
This represents around 15.36% of the 18.94 Nm peak knee torque expected based on Winter
gait data for a 30.8 kg subject [29]. The low control input can be attributed to the fact that
the subject did not have any form of gait impairment, and so the amount of control input
exerted by the exoskeleton remained low throughout the walking cycle. Additionally, the
control gains applied in the experiment were tuned based on user comfort, resulting in
gains that minimally affected the already well-performing gait cycle. However, repeated
exposure to the exoskeleton and controllers may encourage the user to adopt a more coop-
erative walking strategy, or increase the subject’s confidence in the device, leading to the
use of higher control gains and inputs. Additionally, a user with gait impairment may be
more amenable to increased robotic intervention.
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For similar reasons, the interpretation of the EMG-measured outputs should be taken
with caution. While statistically significant differences in EMG activations were found
between the controlled conditions, it is unclear whether the comparisons and relationships
discussed in this paper will hold true when greater control inputs are allowed by a healthy
individual or a user with gait impairment.

6. Conclusions

This paper presented a comparison of a virtual constraint-based controller with a
traditional proportional-derivative controller to evaluate their suitability for gait guidance.
Control was applied on a newly developed adjustable pediatric exoskeleton, marking the
device’s first use in a control study. During the experiment, the subject gave no indication of
discomfort due to the applied controller or the physical hardware. The authors successfully
conducted multiple gait experiments using the exoskeleton under different controllers. The
successful control implementation demonstrates that the adjustable pediatric lower-limb
exoskeleton may serve as a platform in future experiments on rehabilitative and assistive
controllers for children.

The virtual constraint-based controller achieved similar levels of gait performance
relative to the proportional-derivative controller, as evidenced by the moderate effect size
values. However, the VC controller was able to decrease the level of gait variability by
36.72% and 16.28% for the hips and knees, respectively. Conversely, the PD controller
decreased variability in the hip joint by only 27.03% and increased the gait variability in the
knee joint by 7.10%. Additionally, the VC controller utilized 35.89% and 4.44% less torque
in the hip and knee joints relative to the PD controller. A comparison of the EMG outputs
between the two controllers indicated that the virtual constraint-based controller required
more effort to utilize. However, the user’s post-experiment controller rankings indicated
that the VC-based controller was easier to utilize. This could be attributed to the difference
in time dependence between the PD and VC controllers, which is evidenced by both the
large standard deviation in the control torque inputs and the observations of gait desyn-
chronization made by both the wearer and authors during the PD-controlled experiment.

The results of this study’s comparison suggest that virtual constraint-based controllers
have favorable characteristics relative to standard PD control due to their perceived ease
of use, decreased gait variability, and ability to reduce the control torque required to
achieve good performance all while maintaining a time-invariant control implementation.
The VC controller also allows the user to retain volitional control over the step timing
and removes the risk of gait desynchronization during walking. Thus, virtual constraint-
based controllers merit further investigation in larger multi-subject rehabilitation-oriented
studies. The efficacy of virtual constraint-based controllers for rehabilitation should also
be evaluated through the application of control on a pediatric subject dealing with gait
impairment. The authors also propose a multi-subject study utilizing the newly validated
exoskeleton platform to better demonstrate the exoskeleton’s ability to adjust to several
pediatric subjects.
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