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Abstract: Tumor organoid cultures play a crucial role in clinical practice, particularly in guiding med-
ication by accurately determining the morphology and size of the organoids. However, segmenting
individual tumor organoids is challenging due to their inhomogeneous internal intensity and over-
lapping structures. This paper proposes a convexity-preserving level-set segmentation 4 model based
on the characteristics of tumor organoid images to segment individual tumor organoids precisely.
Considering the predominant spherical shape exhibited by organoid growth, we propose a level-set
model that includes a data-driven term, a curvature term, and a regularization term. The data-driven
term pulls the contour to the vicinity of the boundary; the curvature term ensures the maintenance
of convexity in the targeted segmentation, and the regularization term controls the smoothness and
propagation of the contour. The proposed model aids in overcoming interference from factors such
as overlap and noise, enabling the evolving curve to converge to the actual boundary of the target
accurately. Furthermore, we propose a selectable and targeted initialization method that guarantees
precise segmentation of specific regions of interest. Experiments on 51 pancreatic ductal adenocarci-
noma organoid images show that our model achieved excellent segmentation results. The average
Dice value and computation time are 98.81 ± 0.48% and 20.67 s. Compared with the C-V and CPLSE
models, it is more accurate and takes less time.

Keywords: convexity; image segmentation; tumor organoid; level set

1. Introduction

In the past two decades, organoid technology has emerged as a promising advance-
ment in clinical treatment. Organoid is a collection of organ-specific cell types that develops
from stem cells or organ progenitors and self-organizes through cell sorting and spatially
restricted lineage commitment like in vivo [1]. In 2011, Sato et al. took the lead in establish-
ing colon adenomatous organoids [2]. Establishing the tumor organoid model is another
significant breakthrough in the organoid field, providing a reliable cancer research and
treatment model. So far, many tumor organoids have been successfully cultured, including
prostate cancer [3], pancreatic cancer [4], ovarian cancer [5], etc.

Tumor organoids can simulate the structure and function of tumors in vivo to the
greatest extent, which can directly display the process of tumor growth [6]. It is essential to
observe the shape and size of tumor organoids, which can be used to screen anti-tumor
drugs or study the mechanism of tumor genesis and development. Therefore, it is of
practical significance to realize the segmentation of tumor organoid images, which can help
us observe the changes in tumor organoids more clearly.

Up to now, more research is needed on the segmentation of organoid images. By
cooperating with professional doctors, we have some images of pancreatic ductal adeno-
carcinoma organoids in our hands. During the segmentation experiment, we found the
following difficulties: (1) intensity inhomogeneity inside of the organoid, which makes
it difficult to segment the organoid boundary when the initial contour line is located in
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an internal area; (2) overlapping organoids: overlapping parts will have non-negligible
impacts on the segmentation results; (3) image noise; (4) the limitations of imaging devices.
Organoids that are not on the focal plane can be very blurry.

Existing image-segmentation methods include traditional segmentation methods [7,8]
and deep learning segmentation methods [9,10]. Although deep learning segmentation
methods are more efficient and intelligent, they require a large amount of data for training
to improve the generalization ability. Small sample images are more suitable for traditional
segmentation methods. Active contour models (ACMs) are a typical traditional segmen-
tation method, widely used in image segmentation in the past few decades. The existing
ACMs can be divided into two major classes: edge-based models [11–13] and region-based
models [14–16]. Edge-based models apply local edge and gradient information to evolve
the initial contour to the object boundaries. Region-based models employ regional sta-
tistical information to guide the motion of the contour. However, the ACMs may fail to
segment some complex images, for instance due to intensity inhomogeneity. Furthermore,
higher level information can be incorporated into the ACMs, such as shape priors [17,18],
Euler elasticity energy [19,20], and convexity preservation [21,22].

In recent years, Wang et al. developed a res-double dynamic conv attention U-Net
model targeting bladder cancer organoids [23]. Lefferts et al. proposed a MASK-RCNN
allowing for the segmentation of individual intestinal patient-derived organoid structures
from bright field images [24]. They both focus on the overall segmentation of organoid
images and lack precise segmentation of individual organoids. In this paper, we mainly
focus on segmenting single tumor organoids. With the segmentation result, we can further
observe the morphology and size of individual tumor organoids to guide clinical treatment.
Through observing the organoid images presented in academic papers [25,26] and our
possession, we found that the intensity inside the organoids is extremely inhomogeneous,
while the background is relatively homogeneous. We plan to locate the initial contour
outside of the single organoid to be segmented and shrink it inward to the object boundary.
At the same time, it is necessary to ensure the contour’s convexity-preserving ability for the
complete segmentation of tumor organoid boundary, especially in the overlapping areas of
organoids. Combined with the convexity-preserving mechanism of the curves, we propose
a level-set model for tumor organoid image segmentation. It mainly solves the difficulty of
the single segmentation of overlapping tumor organoids. On the other hand, we propose
an automatic initialization method, which speeds up and guarantees the implementation
of the segmentation process.

The rest of this paper is organized as follows. Section 2 will review the C-V and CPLSE
models associated with the proposed model. In Section 3, we present the proposed model.
In Section 4, we show the principle and process of automatic initialization in detail. In
Section 5, we use 51 images to show the segmentation results of our model and compare
the accuracy with the other two methods. Finally, the discussion and conclusion are given
in Section 6.

2. The Related Works
2.1. The C-V Model

Chan and Vese [14] proposed an ACM based on the simplified Mumford and Shah
model [27] and the level-set method. Let Ω be a bounded open subset of R2, and I: Ω → R
is the input image. Under the level-set framework, the closed contour C ⊂ Ω is represented
by the zero level-set function ϕ(x), such that

{C = x ∈ Ω : ϕ(x) = 0},
{inside(C) = x ∈ Ω : ϕ(x) > 0},
{outside(C) = x ∈ Ω : ϕ(x) < 0},

(1)
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Then, the energy functional of the C-V model can be formulated as

ECV =µ
∫

Ω
δϵ(ϕ(x))|∇ϕ|dx + v

∫
Ω

Hϵ(ϕ(x))dx + λ1

∫
Ω
(I − c1)

2Hϵ(ϕ(x))dx

+ λ2

∫
Ω
(I − c2)

2(1 − Hϵ(ϕ(x)))dx
(2)

where µ ≥ 0, v ≥ 0, λ1 > 0, and λ2 > 0 are fixed parameters and c1 and c2 are the average
intensities inside and outside the contour ϕ. Hϵ(ϕ(x)) is the Heaviside function, and the
Dirac delta function δϵ(ϕ(x)) is the derivative of Hϵ(z). Keep c1 and c2 fixed, and minimize
ECV with respect to using the standard gradient descent method by solving the gradient
flow equation as follows

∂ϕ

∂t
= δϵ(ϕ)µ div

(
∇ϕ

|∇ϕ|

)
− vδϵ(ϕ)− λ1δϵ(ϕ)(I − c1)

2 + λ2δϵ(ϕ)(I − c2)
2 (3)

The C-V model is a typical region-based model that utilizes global intensity informa-
tion inside and outside the contour ϕ. However, for images with segmentation problems
such as intensity inhomogeneity, it is difficult to achieve satisfactory results from the
C-V model.

2.2. The CPLSE Model

Li and Shi [28] proposed a level-set method with a convexity-preserving mechanism,
for the segmentation of the cardiac left ventricle, which is desired to be convex and include
the cavity, trabeculae, and papillary muscles. It can be deduced that ϕ is convex at the
pixels where κ ≥ 0 and concave where κ < 0 [29]. Therefore, the curvature sign indicator
function (CSI) can be defined by

s(κ) =
{

1, κ ≥ 0
0, κ < 0

(4)

Combined with the s(κ) function, the specific level-set evolution is as follows

∂ϕ

∂t
= s(κ)D(ϕ; I) + (1 − s(κ))κδϵ(ϕ) + R(ϕ) (5)

where D(ϕ; I) and R(ϕ) are defined based on the distance-regularized level-set evolution
(DRLSE) model in [30] by

D(ϕ; I) = λδϵ(ϕ)div(g
∇ϕ

|∇ϕ| ) + αgδϵ(ϕ) (6)

and
R(ϕ) = µdiv(dp(|∇ϕ|)∇ϕ) (7)

where p(s) is the double-well potential defined by

p(s) =

{
1

(2π)2 (1 − cos(2πs)), s ≤ 1
1
2 (s − 1)2, s > 1

(8)

and

dp(s) ≜
p
′
(s)
s

; (9)

the corresponding convexity-preserving level-set evolution (CPLSE) model can be ex-
pressed as follows

∂ϕ

∂t
= µdiv(dp(|∇ϕ|)∇ϕ) + λs(κ)δϵ(ϕ)div(g

∇ϕ

|∇ϕ| ) + αs(κ)gδϵ(ϕ) + (1 − s(κ))κδ(ϕ) (10)
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The CPLSE model incorporates the sign of the curvature of ϕ and the DRLSE model to
control the curve evolution, in order to obtain the convex segmentation result of the cardiac
left ventricle.

3. The Proposed Model

Organoids are self-organized cellular clusters that tend to be smoothly round or oval.
Figure 1a is an image of pancreatic ductal adenocarcinoma organoids. There are two par-
tially overlapping tumor organoids. The lower organoid is nearly round, while the upper
one is nearly oval. Take the segmentation of the upper organoid as an example. Directly
based on the C-V model with the same internal and external weights, the segmentation
results will be largely affected by the lower organoid’s internal inhomogeneous areas, as
shown in Figure 1b. On the other hand, when the internal weight of the C-V model is
increased, the contour will shrink towards the boundary of the upper organoid, but it
will break through the boundary, while the upper one cannot be completely separated, as
shown in Figure 1c. The desired result should be a continuous and convex shape, as shown
in Figure 1d. Therefore, it is necessary to introduce a convexity-preserving method of the
segmentation model to ensure convex and satisfactory segmentation results. Given that,
we propose a novel level-set evaluation algorithm as follows:

∂ϕ

∂t
= s(κ) · F (ϕ, c1, c2) + α · L(ϕ) + µ · A(ϕ) + β · (1 − s(κ)) · V(ϕ) (11)

where F (ϕ, c1, c2) is the Data-driven term, and it is defined by

F (ϕ, c1, c2) = [λ1(I − c1)
2 − λ2(I − c2)

2]δϵ(ϕ) (12)

where λ1 > 0 and λ2 > 0 are constants that represent the internal and external weights.
c1 and c2 are the average intensities inside and outside the contour ϕ. Hϵ(ϕ(x)) is the
Heaviside function, and the Dirac delta function δϵ(ϕ(x)) is the derivative of Hϵ(z). α > 0,
µ > 0, and β > 0 are the coefficients of the length term L(ϕ), area term A(ϕ), and curvature
term V(ϕ). They are defined by

L(ϕ) ≜ div(
∇ϕ

|∇ϕ| )δϵ(ϕ), (13)

A(ϕ) ≜ gδϵ(ϕ), (14)

and
V(ϕ) = κδϵ(ϕ) (15)

where g is a positive and decreasing edge-detector function [11], which is defined by

g(I) =
1

1 + |∇Gσ ∗ I|2 (16)

The convolution Gσ ∗ I is the smoother of I to reduce the noise of the image. The Gaus-

sian kernel is defined by Gσ(x, y) = σ− 1
2 e

−|x2+y2 |
4σ , with a standard deviation σ. Actually,

A(ϕ) is a weighted area term [30]. When the contour is away from the object boundary, it
drives the contour to move towards the boundary. Contrarily, it slows down the shrinking
or expanding of the contour ϕ.
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(a) (b) (c) (d)

Figure 1. Organoid convexity-preserving segmentation. (a) Original image. (b) Segmentation result
using CV model with consistent internal and external weights. (c) Segmentation result using CV
model with high internal weight. (d) The desired result with convexity-preserving model. The red
lines show the position of the contours.

The Heaviside function Hϵ(ϕ(x)) and Dirac delta function δϵ(ϕ(x)) are chosen in the
form of smooth approximation, defined as follows:

Hϵ(x) =


1
2 (1 +

x
ϵ + 1

π sin(π(x)
ϵ )), |x| ≤ ϵ

1, x > ϵ
0, x < −ϵ

(17)

and

δϵ(x) =
{ 1

2ϵ (1 + cos(πx
ϵ )), |x| ≤ ϵ

0, |x| > ϵ
(18)

When the contour ϕ is far away from the object to be segmented and in the convex
areas (s(κ) = 1), F (ϕ, c1, c2) plays the main role to drive the contour line towards the object
boundary. With the curvature term V(ϕ) and s(κ) function, we can constrain the contour
line ϕ to maintain convexity when it tends to be concave (κ < 0) near the overlapping region.

The corresponding evaluation model can be expressed as follows:

∂ϕ

∂t
= s(κ) · [λ1(I − c1)

2 − λ2(I − c2)
2]δϵ(ϕ) + α · div(

∇ϕ

|∇ϕ| )δϵ(ϕ) + µ · gδϵ(ϕ)

+ (1 − s(κ)) · κδϵ(ϕ)

(19)

We can see that, at the positions where κ ≥ 0 (convex), the data-driven term F (ϕ, c1, c2)
plays the dominant role, while at the positions where κ < 0 (concave), the curvature term
V(ϕ) leads the motivation of the contour ϕ to the single organoid’s boundary. The length
term L(ϕ) and area term A(ϕ) have been working throughout the evolution of ϕ, which
control the smoothness and propagation of the contour ϕ.

To implement the contours evolving toward the object boundary, we can use the
following iteration:

ϕk+1 − ϕk

∆t
= R(ϕk) (20)

Here, k and ∆t are the iteration number and time step and R(ϕk) is the numerical
approximation of the derivative terms in (19). ∆t is limited by the Courant–Friedrichs–Lewy
(CFL) Condition [31] to avoid oscillations occurring.

4. Automatic Initialization

Active contour models always need to determine an appropriate initial contour, and
its selection of has a significant influence on the segmentation results. During the actual
segmentation of the tumor organoid images, the initial contour’s position is manually
adjusted for each new image. Especially for segmenting the two partially overlapping
organoids in the same image, the initial contour should be adjusted separately. There-
fore, we propose a human-computer interaction method to automatically generate initial



Bioengineering 2024, 11, 601 6 of 13

contours for organoid images. Only one point at the center of the organoid that we want
to divide that needs to be manually clicked, and the initial contour will be automatically
generated. This method suits a single organoid image and a multiple overlapping organoid
image. The advantage of this method is that there is little manual intervention, which
significantly reduces labor costs, and we can freely choose the individual organoid we want
to segment to generate the initial contour.

For multiple tumor organoids in one image, click the inner center point of the organoid
to be segmented, the initial contour of this organoid will be automatically generated. Let
us take Figure 2a as an example to detail generating the initial contour. As shown in
Figure 2a, it is an image of two overlapping tumor organoids. In the upper right corner
is another tumor organoid. At first, use the C-V model to segment the entire image and
obtain Figure 2b, then apply the Canny operator to extract its edges. We can see that the
outer contour of the two overlapping organoids is visible, as shown in Figure 2c. Mark
the inner center point as A and find the pixels B and C closest to point A’s horizontal and
vertical directions in the outline pixel set of (c). Then, expand the length of AB and AC by
20 percent; it can form a rectangular contour line centered on A. As shown in Figure 2d,
the green point is the center point we chose, and the red rectangle is the generated initial
contour. Figure 3 is an algorithm flowchart that shows the critical steps of the initial
contour-generation process more clearly.

(a) (b)

(c) (d)

Figure 2. Generation process of the initial contour. (a) Original image. (b) Preliminary segmentation
of the CV model. (c) Edge-detection results based on Canny operator. A is the inner center point, and
B and C are the closest points to A horizontally and vertically, respectively. (d) The initial contour.
The green point is the inner center point, and the red rectangular line is the initial contour.

With the above process, we realized that, during the actual segmentation process,
there is no need to adjust the initial contour’s position manually. Only one point should be
pointed at the inner center of the organoid to be segmented, and its initial contour can be
automatically generated. On the other hand, the automatic initialization method proposed
can also be applied to the segmentation of other circular objects, especially images with
homogeneous background intensity.
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Figure 3. Algorithm flowchart of the automatic initialization.

5. Experiments and Results

In this section, the experimental results of the proposed model and comparisons
with the existing models will be presented in detail. All methods were processed using a
laptop with a 64-bit Windows 11 Enterprise, core i5 processor, and 16 GB of RAM, using the
Matlab2019b. In this paper, the data set contains pancreatic ductal adenocarcinoma organoid
images, which are provided by the School of Life Sciences, Nanjing University, China.

There are parameters, α, µ, β, λ1, and λ2, in our proposed model. α, µ, and β are
the parameters of the length term, area term, and curvature term, respectively. λ1 and λ2
are the parameters of the data-driven term, which are the weights of the mean intensity
inside and outside the contour, respectively. The model is not sensitive to the choice of
the length term parameter α, which can be fixed for most applications. Nonzero λ1 and µ
give the internal and additional external forces to drive the motion of the contour. When
the value of µ is positive, the contour evolves inward, and when the value is negative, the
contour evolves outward. Consider that λ1 and µ have the same effect and that we fixed
the value of µ. β determines the effect of the curvature term; as its value increases, the
effect of the curvature term becomes stronger when the contour becomes concave. Unless
otherwise specified, these parameters are fixed as α = 1, µ = 10, and λ2 = 1 in this paper.
In the proposed model, only two parameters λ1 and β need to be adjusted for different
images. With a large number of experiments, we have found that, only for a few images
with very unclear boundaries of the tumor organoid to be segmented, it is necessary to
increase the value of β to prevent boundary leakage. However, for most images with clear
boundaries, we can directly set β = 1 and only tune the value of λ1. As an important
parameter in the data-driven term, the larger the value of λ1, the stronger the ability to
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pull the contour inward and contract to the boundary of the organoid is. But, for images
with blurred boundaries, the value of λ1 should not be too large to prevent boundary
leakage. In Appendix A, we also explain the effect of the values of each variable on the
segmentation results.

According to the characteristics of the tumor organoid images, the internal intensity
of the tumor organoid is very inhomogeneous, but the background is relatively intensity-
homogeneous. Therefore, we selected the initial contour outside the tumor organoid and
evolved it inward to shrink to the object boundary. When λ1 = λ2 = 1, the data-driven
term is equivalent to the C-V model. Consequently, the contour cannot overcome the
influence of the overlapping tumor organoids, as shown in Figure 1b. Therefore, in order to
segment the tumor organoid above, we should increase the value of λ1 to pull the contour
to shrink toward the boundary. On the other hand, a too-large a value of λ1 may cause
boundary leakage for images with weak boundaries. Therefore, we need to choose the
appropriate λ1 to achieve a satisfactory segmentation result. Empirically, for common
organoid images, the optimal value of λ1 is between 1 and 5.

Figure 4 shows an example of the curve evolution process using our method. For this
image, we made λ1 = 3.5. Figure 4b presents the initial contour automatically generated
by manually selecting the center point (green point) of the organoid using the method
mentioned above. Figure 4c,d show the shapes of the contour at 200 and 800 iterations,
and Figure 4e is the final result. The difficulty in segmenting this image is making the
contour overcome the impact of three parts of the impurities in the culture dish and shrink
towards the organoid boundary with the convexity-preserving ability. We can see that our
model has a strong convexity-preserving force so that it can pull the contour through those
impurities and contract towards the organoid boundary, as shown in Figure 4c,d. On the
other hand, the convexity-preserving ability also ensures that, when the contour shrinks
to the vicinity of the boundary, it does not cross the boundary and enter the organoid’s
interior, effectively avoiding boundary leakage.

(a) (b) (c) (d) (e)

Figure 4. An example of the iterative process of our model. (a) The original image. (b) The inner center
point and the generated initial contour. (c,d) Intermediate iterations of 200 and 800. (e) Final result.
The red lines show the position of the contours.

Our model has been compared with the C-V and CPLSE models regarding how
precisely and rapidly they segment organoids to evaluate the segmentation performance.
The quantitative evaluation of these models is obtained by calculating the Dice value on
their segmentation results, and the Dice score is defined as follows:

Dice =
2|A ⋂

G|
|A|+ |G| (21)

where | · | stands for the region area, A is the segmentation results, and G is the ground truth.
We selected 51 pancreatic ductal adenocarcinoma organoid images with typical seg-

mentation difficulties to illustrate the segmentation results. In our experiment, the ground
truth was obtained from experienced physicians. The average Dice values of C-V, CPLSE,
and our model were 84.84 ± 8%, 92.21 ± 4.42%, and 98.81 ± 0.48%, as shown in Table 1. We
can see that the proposed model has significantly improved the segmentation accuracy of
tumor organoids. It has a very small standard deviation, indicating that the segmentation
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results are very stable. As for the time efficiency, the average computation time of our
model is 20.67 s, which is comparable to the C-V model (20.43 s), while the CPLSE model
takes 28.63 s. Our model is 1.4-times faster than the CPLSE model. The comparative details
are shown in Table 1, where i represents the average of the total iteration numbers and T
represents the average of the total computational time.

Table 1. Average computation time and Dice values of 51 images of the three methods.

i T Dice Value

CV 1234 20.43 s 84.84 ± 8%
CPLSE 1213 28.63 s 92.21 ± 4.42%

Proposed 1162 20.67 s 98.81 ± 0.48%

We selected five typical images with different characteristics to show the segmentation
results of different methods, as shown in Figure 5. Each row corresponds to one image. The
first column is the input images with the generated initial contours, and the second column
is the ground truth labeled by experienced physicians. The third, fourth, and fifth columns
are the segmentation results of C-V, CPLSE, and our model, respectively. It is obvious that
the C-V model will segment almost all boundaries in the image, which is not satisfactory.
Although the CPLSE model can preserve convexity and make the evolution of the contour
tend to shrink to the organoid boundaries, it is still easily influenced by other distractions,
as shown in Figure 5; only for the second image has CPLSE achieved satisfactory results,
and the remaining images cannot be accurately segmented. In contrast, our model can
achieve satisfactory results for every image. If we choose appropriate parameters, we can
accurately segment organoids. Table 2 presents each image’s Dice values and computation
time. we can see that our model has a much higher Dice value than the other two models;
on the other hand, the computation time is also significantly improved. For images 1, 3,
and 5 in Figure 5, we made λ1 = 3.5. For image 2, since the intensity of the shadow is
similar to the background, λ1 can be taken as a small value, λ1 = 2.5. For image 4, the
influencing factor is the other organoid boundaries on the left and upper sides, and then,
we chose λ1 = 3. For these five images, we set β = 1 for all.

Table 2. Dice values and computation time for the five images of the three methods.

1 2 3 4 5 Average of 5 Images

C-V 91.09(38 s) 68.84(19 s) 91.43(23 s) 77.52(47 s) 69.00(43 s) 79.58(34 s)

CPLSE 93.06(77 s) 98.26(65 s) 83.67(78 s) 92.87(88 s) 95.83(190 s) 92.74(100 s)

Proposed 99.27(44 s) 98.88(9 s) 99.17(31 s) 98.63(12 s) 97.39(14 s) 98.67(22 s)
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(a) (b) (c) (d) (e)

Figure 5. Comparison results of five organoid images. (a) Original images and initial contours. The
green point is the inner center point, and the red rectangular line is the initial contour. (b) Ground
truth. (c–e) Results of C-V model, CPLSE model, and proposed model. The lines of different colors
show the position of the contours of the different models.

6. Discussion and Conclusions

This paper proposes an innovative level-set evolution model for tumor organoid
image segmentation combined with a convexity-preserving ability. Organoids are three-
dimensional cell clusters cultivated in culture dishes. A common problem in organoid
image segmentation is the separate segmentation of the overlapping organoids. The
proposed model solves this problem and can accurately achieve convex segmentation of
individual tumor organoids. The total evolution model for ϕ consists of a data-driven
term, a length term, an area term, and a curvature term. The data-driven and curvature
terms are incorporated with the convex indicator, respectively. When ϕ is convex, the
data-driven term works, and the curvature term fails. When the contour moves near the
boundary of the organoid and is influenced by other substances, ϕ tends to be concave, the
data-driven term becomes invalid, and the curvature term takes effect, pulling the contour
towards convexity. The area and length terms work throughout the entire segmentation
process, maintaining the excellent properties of the contour and providing balloon force. By
utilizing the proposed model, we were able to obtain segmentation results with an average
Dice value of 98.81 ± 0.48%.

For active contour methods, the position of the initial contour plays a significant
role in determining the accuracy of the segmentation results. Organoids are usually cul-
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tivated in culture dishes, resulting in a relatively homogeneous background of organoid
images that are less affected by noise or artifacts, but the intensity inside the organoids is
highly inhomogeneous. Therefore, finding the initial contour outside the organoid and
then shrinking it inward are necessary. To simplify this process, we have developed an
automatic initialization method that requires only one click on the inner center of the
organoid to be segmented. We used the C-V model to initially segment the tumor organoid
image and the Canny operator to detect edges and determine the initial contour of the
organoid. This approach reduces the labor costs and speeds up the segmentation process
significantly. During the segmentation process, the interference of overlapping areas on
the contour evolution process is much greater than the noise or artifacts. The proposed
convexity-preserving segmentation model can pull the contour to overcome the influence
of overlapping regions and contract inward to the boundary of the organoids.

According to the experimental results, our model can achieve high-quality segmenta-
tion results with fast computational speed. Compared to the C-V and CPLSE models, our
model shows significant improvement in the Dice value, all above 95%, which is very close
to the ground truth. In Figure 5, it can be observed that the C-V model tends to segment
the overall boundary, while the CPLSE model struggles to overcome the influence of other
organoids, and only the second image has a satisfactory segmentation result. In the case of
the second image, the blurred shadow on the right side of the organoid to be segmented is
another organoid not in the focal plane, and the difference in intensity between this shadow
and the background is not particularly large, leading to a good segmentation result for
the CPLSE model. However, for images 1, 3, and 4, the CPLSE model cannot overcome
external influences, and the convexity-preserving ability is not strong enough to shrink the
contour to the boundary of the organoid. For image 5, the contour has not shrunk on the
lower and left sides of the organoid to be segmented, but the right side has already crossed
the edge. Conversely, our proposed model overcomes the influence of other organoids and
impurities and has excellent convexity-preserving ability. It achieves an average Dice value
of 98.67% and shows excellent segmentation results on every image.

In conclusion, based on tumor organoid image characteristics and segmentation diffi-
culties, we propose an algorithm with robust convexity preservation for the segmentation
of tumor organoid images. It does not require a large data set compared to deep learn-
ing methods. In addition, an automatically generated initialization is designed so that
the convexity-preserving segmentation algorithm is simple and easy to perform for the
selected tumor organoid. Numerical experiments show that the algorithm can segment
individual target tumor organoids quickly and efficiently on complex organoid images,
which is crucial for subsequent property analysis in tumor organoid studies. Some aspects
of the model can be improved. On the one hand, due to the characteristics of organoid
images, the initial contour needs to be located outside the target organoid, resulting in
a unidirectional contour evolution. On the other hand, the data of organoid images are
limited, and we only conducted model validation on small sample of data. In the future,
we will continue to explore the improvement of the proposed segmentation model and
methods for determining the optimal values of parameters. If the organoid image data are
accessible, we will apply our model to a big data set.
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Appendix A

The proposed model contains five parameters, λ1, λ2, α, µ, and β. The selection of
the parameter value is related to the segmentation performance. In the segmentation
experiment of pancreatic ductal adenocarcinoma organoid images in this article, only the
parameters λ1 and β need to be adjusted. For most images, β can be set to 1, and only the
value of λ1 needs to be adjusted. Table A1 provides a detailed introduction to the values of
each parameter and their impact on the segmentation performance of the model.

Table A1. Detailed description of parameters in the model.

Parameter Value The Impact on Segmentation Results

λ1 1–5 It is a parameter of the average grayscale inside the contour.
The larger is value, the stronger the ability of the contour to
evolve inward to the boundary of the organoid. For images
with blurred boundaries, the value of λ1 should not be too
large.

λ2 1 It is the parameter of the average grayscale outside the contour.
In order to highlight the role of λ1, λ2 is set to a fixed value of 1,
and the value of λ1 is set to be greater than 1 to facilitate pulling
the contour to shrink.

α 1 It is a parameter of the length term, and the model is not sensi-
tive to the value of α, so it can be set to a fixed value of 1.

µ 10 It is a parameter of the area term, providing balloon forces for
contour evolution. When d is positive, the contour shrinks
inward. When d is negative, the contour expands outward. Due
to the similar effect of µ and λ1, we fixed the value of µ to 10.

β 1 It is a parameter of the curvature term. The larger its value, the
stronger the constraint on the convexity of the contour. For most
images, the value of β can be fixed to 1, and for some images
with blurred boundaries or strong noise, the value of g can be
increased.
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