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Abstract: The decision to extubate patients on invasive mechanical ventilation is critical; however,
clinician performance in identifying patients to liberate from the ventilator is poor. Machine Learning-
based predictors using tabular data have been developed; however, these fail to capture the wide
spectrum of data available. Here, we develop and validate a deep learning-based model using
routinely collected chest X-rays to predict the outcome of attempted extubation. We included
2288 serial patients admitted to the Medical ICU at an urban academic medical center, who underwent
invasive mechanical ventilation, with at least one intubated CXR, and a documented extubation
attempt. The last CXR before extubation for each patient was taken and split 79/21 for training/testing
sets, then transfer learning with k-fold cross-validation was used on a pre-trained ResNet50 deep
learning architecture. The top three models were ensembled to form a final classifier. The Grad-CAM
technique was used to visualize image regions driving predictions. The model achieved an AUC of
0.66, AUPRC of 0.94, sensitivity of 0.62, and specificity of 0.60. The model performance was improved
compared to the Rapid Shallow Breathing Index (AUC 0.61) and the only identified previous study
in this domain (AUC 0.55), but significant room for improvement and experimentation remains.

Keywords: machine learning; artificial intelligence; deep learning; transfer learning; respiratory
failure; mechanical ventilation; ventilator liberation; clinical decision support

1. Introduction

Endotracheal intubation and invasive mechanical ventilation (IMV) are lifesaving
methods of support in patients with respiratory failure; however, IMV itself provides a
significant risk of ventilator-related adverse events and must be discontinued as soon as
possible [1]. Patient selection, timing of extubation, and liberation from IMV are challenging,
and poor timing resulting in re-intubation increases ICU length of stay and mortality [2,3].
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In general, clinician performance in this regard is poor, and a number of indices, called
weaning predictors, to predict extubation outcomes have not resulted in a viable gold
standard above clinical gestalt [4,5]. The increasing use of Machine Learning (ML)-based
clinical decision support has resulted in a handful of ventilator liberation predictive engines
using tabular data; however, these have proved difficult to operationalize and represent
only a small amount of the breadth of clinical information bedside clinicians use in weaning
assessment [6–9]. Deep learning has enabled ML-based decision support in images, and
its use in the interpretation of chest X-ray (CXR) imaging is rising. Most work on ML in
CXR imaging has focused on the diagnosis and identification of imaging abnormalities,
with some models rising to radiologist-level accuracy [10]. This represents an opportunity
for deep learning to extract information from CXR for higher-order decision support, such
as prediction of extubation attempts and optimal patient selection for weaning. To our
knowledge, only one small study has been conducted regarding the use of CXR to predict
extubation outcomes, which was limited by poor predictive power compared to existing
benchmarks [11]. Here, we develop and validate a model using deep learning and transfer
learning to predict 72 h extubation success or failure in medically critically ill patients
on IMV.

2. Materials and Methods
2.1. Study Setting, Population, and Data Sources

This study was undertaken at the Mount Sinai Hospital (MSH), an urban 1,134-bed
tertiary-care teaching facility. We included adults (age ≥ 18 years) admitted to the Medical
Intensive Care Unit from 1 January 2011 to 31 December 2019, who underwent mechanical
ventilation via an endotracheal tube and had at least one extubation attempt. Patients
lacking chest X-rays during ventilation or those palliatively extubated were excluded.
Only a patient’s first extubation attempt per hospital visit was included in the dataset.
All patients underwent regular assessments for ventilator liberation as per institutional
protocol. This study identified extubation failures (re-intubation within 72 h) and successes
(no re-intubation after 72 h). Figure 1 shows the flow chart for inclusions and exclusions
for the cohort.
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Data were collected from three EHR platforms—Epic (Epic Systems, Verona, WI,
USA), Cerner (Cerner Corporation, North Kansas, MO, USA), and GE PACS. To assemble
the chest radiograph dataset, we obtained raw DICOM (Digital Imaging and Communi-
cations in Medicine) files from the GE PACS platform. CXRs taken in both supine and
upright positions were included. This study adhered to the Transparent Reporting of a
multivariable prediction model for individual prognosis or diagnosis statement [12]. All
methods were performed in accordance with relevant guidelines and regulations provided
by the Institutional Review Board (IRB), which granted a waiver of informed consent
(IRB-18-00573-MODCR001).

2.2. Image Pre-Processing

DICOM images were processed in an end-to-end automated fashion to prepare images
for transfer learning and optimize model accuracy. Images were cropped to the smallest
bounding box to remove irrelevant background noise. The images were then resized to
224 × 224 pixels and pixel intensities were rescaled to the (0, 255) SI range to fit the specifi-
cations of common pre-trained deep learning models. Histogram matching was used to
standardize pixel intensities across scans and modalities. Given that the primary region of
interest (ROI) in this study was the lungs, image segmentation was performed in an auto-
mated fashion using a pre-trained U-Net model architecture, LungVAE, trained on publicly
available CXR datasets [13]. Centroid image alignment was performed to ensure critical
lung structures remained centralized and resistant to rotation or other transformation.

2.3. Transfer Learning and Fine Tuning

We divided our cohort into two subsets: a training set (79% of the data) and a test set
(21%), ensuring no patient overlap to validate our evaluation process effectively. Because
of significant class imbalance (88% majority class, 12% minority class), we employed
oversampling techniques on the training dataset, augmenting the minority class to balance
the class representation using standard methodologies such as rotation (up to 15 degrees),
horizontal flipping, translating, and random blurring.

ResNet50 was chosen over other CNN models like VGG, DenseNet, AlexNet, and
GoogleNet due to its superior accuracy, reduced model complexity, and lower memory
and computational demands [14]. Its use of residual connections helps in learning complex
features efficiently, marked by its lower G-FLOP rates, making it ideal for our needs.
The segmented CXRs were processed using a pre-trained ResNet50 model, modified for
grayscale images and binary classification. Adjustments included a new convolutional
layer with ReLu activation, dropout (0.4), and a sigmoid output function. Optimization
was performed using the Adam optimizer, with initial settings of 18 epochs, a batch size of
25, and a learning rate of 0.001.

Using transfer learning and ten-fold cross-validation integrated with a grid-search
algorithm refined the hyperparameters (learning rate, hidden units, dropout, batch size,
epoch size) based on the AUROC [15]. Optimal settings were established as follows:
20 epochs, 0.2 dropout, batch size 16, learning rate 1 × 10−3, and 12 hidden units. Final
model re-training and predictions were executed on the Pytorch framework (version 1.6.0)
using GPU resources on Microsoft Azure’s cloud platform with 56 GB RAM.

2.4. Pixel Visualization

To interpret the image classifier’s results, we utilized the Grad-CAM technique, which
produces class-specific heat-maps that highlight the influential areas in the CXRs for the
model’s decision-making [16]. This method leverages feature maps from the final convolution
layer to capture spatial details essential for identifying visual patterns and class assignments,
offering insights into what parts of an image most affected the model’s labeling.
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2.5. Benchmark Model, Model Testing, and Statistical Methods

The Rapid Shallow Breathing Index (RSBI) was chosen as the benchmark to compare
model performance given its long history and widespread use as a weaning predictor [5].
The last RSBI value before the extubation time was kept for each patient, with a widely used
cutoff value of RSBI under 105 breaths/min/L predicting extubation success. To generate
the Receiver Operating Curve for the RSBI score, probability scores were generated after
scaling the RSBI values using MinMax Scalar method in Scikit-learn in Python.

For each of the developed transfer learning models, performance was evaluated on
the test set and on the holdout set (which was not used for model development), and
the model-derived class probabilities were used to predict extubation success within 72 h.
The prediction threshold is selected such that there is a balance between sensitivity and
specificity. Predictions less than the threshold were categorized as negative. Sensitivity,
specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), F1
score, AUROC, and area under the precision–recall curve (AUPRC), along with bootstrap
95% CIs, were estimated for evaluating the screening tool’s performance. For demographics,
group comparisons were performed using Student’s t-test or Kruskal–Wallis for continuous
variables as appropriate, and the chi-squared test for categorical variables. All analysis was
performed using SciPy [17].

3. Results
3.1. Study Population and Outcomes

A total of 2288 intubated patients were included in the overall study cohort; clinical
characteristics and demographics are summarized in Table 1. In total, 52% of the overall
cohort was male, and the median age was 63.3 years. The median duration of ICU length
of stay was 4.7 days and ranged between 0.1 and 37.8 days. The overall rate of extubation
success was 88.2% in the whole study cohort. There was no statistically significant difference
between patients with extubation success and patients with extubation failure for all key
characteristics, except for the ICU length of stay: patients with an extubation failure stayed
significantly longer than patients with an extubation success (p < 0.001).

Table 1. Clinical characteristics and demographics of the study cohort.

Overall (n = 2288) Extubation Success
(n = 2017, 88.2%)

Extubation Failure
(n = 271, 11.8%) p-Value

Age 0.77
Mean (SD) 61.8 (16.4) 61.9 (16.4) 61.6 (16.2)
Median [Min, Max] 63.3 [18, 104] 63.4 [18, 104] 51.8 [20, 101]
Gender 0.52
Male 1195 (52.2%) 1048 (52.0%) 147 (54.2%)
Female 1093 (47.8%) 969 (48.0%) 124 (45.8%)
Race and Ethnicity 0.15
White 704 (30.8%) 623 (30.9%) 81 (29.9%)
African American 561 (24.5%) 495 (24.5%) 66 (24.4%)
Hispanic 250 (10.9%) 231 (11.5%) 19 (7.0%)
Asian 99 (4.3%) 89 (4.4%) 10 (3.7%)
Other 514 (22.5%) 440 (21.8%) 74 (27.3%)
Unspecified 160 (7.0%) 139 (6.9%) 21 (7.7%)
BMI 0.23
Mean (SD) 27.9 (9.8) 27.8 (9.7) 28.7 (10.9)
Median [Min, Max] 28.3 [10.8, 181.8] 25.9 [10.8, 181.8] 26.8 [14.3, 130.6]
Ideal Body Weight 0.87
Mean (SD) 60.7 (11.1) 60.8 (11.2) 60.6 [10.6]
Median [Min, Max] 59.6 [36.0, 98.3] 59.3 [36, 98.3] 61.5 [36.0, 85.0]
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Table 1. Cont.

Overall (n = 2288) Extubation Success
(n = 2017, 88.2%)

Extubation Failure
(n = 271, 11.8%) p-Value

Smoking history 0.53
Current Smoker 50 (2.2%) 44 (2.2%) 6 (2.2%)
Past smoker 675 (29.5%) 603 (29.9%) 72 (26.6%)
Never smoked 252 (11.0%) 216 (10.7%) 36 (13.3%)
Missing 1311 (57.3%) 1154 (57.2%) 157 (57.9%)
Hypertension 0.32
Yes 754 (33.0%) 670 (33.2%) 84 (31.0%)
No 407 (17.8%) 350 (17.4%) 57 (21.0%)
Missing 1127 (49.3%) 997 (49.4%) 130 (48.0%)
Diabetes 0.9
Yes 447 (19.5%) 393 (19.5%) 54 (20.0%)
No 714 (31.2%) 627 (31.1%) 87 (32.0%)
Missing 1127 (49.3%) 997 (49.4%) 130 (48.0%)
COPD 0.71
Yes 366 (16.0%) 318 (15.8%) 48 (17.7%)
No 795 (34.7%) 702 (34.8%) 93 (34.3%)
Missing 1127 (49.3%) 997 (49.4%) 130 (48.0%)
Obesity 0.29
Yes 226 (9.8%) 192 (9.5%) 34 (12.5%)
No 935 (40.9%) 828 (41.1%) 107 (34.5%)
Missing 1127 (49.3%) 997 (49.4%) 130 (48.0%)
ICU Length of Stay (days) <0.001
Mean (SD) 6.2 (5.0) 5.5 (4.4) 11.1 (6.2)
Median [Min, Max] 4.7 [0.1–37.8] 4.3 [0.1–37.7] 10.3 [0.1–37.8]

3.2. Final Imaging Classifier and Predictors in the Imaging Classifier

The final model was an ensemble of the three highest-performing cross-validation
models with final probability scores averaged to produce a final prediction (Figure 2).
The Grad-CAM (Gradient-weighted Class Activation Mapping) technique enables us to
visualize which specific regions of an image significantly influenced the model’s decision
for a given label. By utilizing the gradients of the target label (extubation success) that
flow into the final convolutional layer, Grad-CAM generates a coarse localization map that
highlights important areas within the image for label prediction. As illustrated in Figure 2,
for various individual models, the regions that most strongly contributed to predicting the
target label are indicated by the red-highlighted areas on the segmented images. These
red regions represent the critical parts of the image where the model focused its attention
when making the prediction. When the Grad-CAM visualizations from different models
are superimposed, the composite image shows the predominant areas that influenced the
final average model’s decision, highlighted in red.

Because the final probability prediction is an average of three distinct models’ proba-
bility predictions, the Grad-CAM visualizations from each independent model were first
generated, and then all Grad-CAM images from all models were superimposed in the
final visualization. Figure 2 shows the image processing flow chart and individual models’
Grad-CAM images as well as the final superimposed Grad-CAM image.
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Figure 2. Flow chart of the imaging pipeline with one example chest X-ray. It starts from the raw
chest X-ray (A). (B) shows the segmented and processed chest X-ray resulting from the processing
pipeline. The most important features (pixels) predicting extubation success are highlighted in the
class activation map calculated by Grad-CAM projected on the image for the top 3 models (C–E).
Lastly, (F) shows the superimposed Grad-CAM image in the final model.
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3.3. Predictive Performance of the Model

At a prediction probability threshold of 0.81, the final image classifier provided a
sensitivity of 58% (95% CI: 55–62%), specificity of 87% (95% CI: 84–89%), accuracy of 73%
(95% CI: 71–75%), and AUC-ROC of 0.87 (95% CI: 0.85–0.89) on the training set. On the
testing set, it reached a sensitivity of 62% (95% CI: 56–69%), specificity of 60% (95% CI:
39–79%), accuracy of 62% (95% CI: 60–68%), and AUC-ROC of 0.66 (95% CI: 0.54–0.76).

Compared to the benchmark RSBI score, the image classifier gave boosted performance
results in the test set in terms of specificity (from 16% to 60%), PPV (from 90% to 93%),
and AUROC (from 0.61 to 0.66), and a similar AUPR (0.93 vs. 0.94). Table 2 shows
all performance metrics for the imaging model and the RSBI benchmark on the test set.
Receiver operating characteristic (ROC) curves are shown in Figure 3. Example images for
true positive, false positive, true negative, and false negative predictions are presented in
Appendix A, Figure A1.

Table 2. Summary performance of the image classifier and the Rapid Shallow Breathing Index on the
test set.

Model Name Sensitivity Specificity Accuracy PPV NPV F1 Score AUROC AUPRC

RSBI
Benchmark 0.92 [0.88, 0.96] 0.16 [0.04, 0.33] 0.84 [0.79, 0.88] 0.90 [0.85, 0.94] 0.20 [0.05, 0.39] 0.91 [0.88, 0.94] 0.61 [0.49, 0.73] 0.93 [0.87, 0.96]

Imaging
classifier 0.62 [0.56, 0.69] 0.60 [0.39, 0.79] 0.62 [0.60, 0.68] 0.93 [0.88, 0.97] 0.17 [0.09, 0.25] 0.75 [0.69, 0.80] 0.66 [0.54, 0.76] 0.94 [0.90, 0.97]
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4. Discussion

In the current study, we develop and internally validate a deep learning model using
routinely available chest radiographs for the prediction of extubation outcomes in medically
critically ill patients undergoing invasive mechanical ventilation. The optimized model was
an ensemble of the highest-performing trained ResNet models, in which probability scores
were averaged amongst the three, resulting in a more balanced probability distribution and
more even sensitivity and specificity than from any single model alone. The final model
achieved an AUC of 0.66 and an AUPRC of 0.94, as well as a sensitivity and specificity of
0.62 and 0.60, respectively, when calibrated to a prediction threshold of 0.81. In our testing
dataset, the model performs better than the RSBI with higher specificity, precision, and
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AUC-ROC. The final classifier has improved performance compared to other work in this
space (AUC 0.55) [11]. In the current model, there remains a large gap between training
performance (AUC 0.87) and testing performance (AUC 0.67), suggesting overfitting and
potential for even further model improvements with more training examples and the use
of a pre-training dataset more closely aligned to CXRs, as opposed to ImageNet.

CXRs have been consistently regarded as key to identifying improvement in the cause
of respiratory failure, driving the need for mechanical ventilation. Because of their nature
as an image and not an easily quantifiable numeric score, there is limited research on the
use of chest radiographs in extubation prediction [1]. One early attempt to incorporate
chest X-rays into a systematic weaning program was the Burns Modified Weaning Program,
which simply asks whether the patient’s X-ray is improving or not, but this does not
incorporate the breadth of information contained in the image [18].

In the age of deep learning, we can now overcome these barriers and incorporate chest
X-rays into multimodal predictions. There is a robust base of evidence that chest X-rays may
be useful in predicting the need for intubation in patients not yet on mechanical ventilation,
especially during the COVID-19 pandemic, with trends for higher performance among
larger datasets and those models pre-trained on ChexNeXt as opposed to ImageNet [19–24].
On the other hand, the use of chest X-rays in extubation prediction is an open problem.

To our knowledge, there is only one other study describing the use of chest radiographs
in weaning prediction from Fukuchi et al., in which they use n = 1066 episodes of invasive
mechanical ventilation in the MIMIC-IV dataset with a similar study design to the current
work. In their study, they found that the deep learning model trained on CXRs was unable
to perform better than the RSBI, and the CXR classifier alone had an AUC of 0.55 (95%
CI 0.49–0.6) with a sensitivity of 66% and specificity of 44%. These suggest performance
similar to a no-skill classifier, and they concluded that the use of CXRs did not improve the
prediction of extubation outcome. There are several major differences between their study
and the present study, including defining extubation success at 48 h as opposed to 72 h
here and using EfficientNet as a model architecture; however, the two factors that seem to
contribute the most are a significantly higher sample size (n = 2288 vs. n = 1066) and the
use of segmented images with meticulous pre-processing in the current study. Steps taken
in the current pipeline, including histogram matching to regularize exposure, isolating
the key ROI with a segmentation algorithm, and centroid alignment, ensure that only the
most useful information is retained, noise is limited, and precise and reliable images are
passed to the image classifier. Fukuchi’s group does not report the cross-validation training
performance or the size of their train/test split; however, the results of the current study
suggest that increasing training size may optimize model performance.

Grad-CAM was used to identify regions of interest influencing model output to
provide a degree of explainability to model predictions. Because earlier work in this space
did not employ this technique, and extubation success or failure is a complex phenotype
and not a specific imaging finding, it is not known which regions are expected to drive
predictions in this population. Figure 2 demonstrates the Grad-CAM images of the top
three models and the final ensemble model; conserved regions of interest among the
three models are at the left hilum and lung apices. While there is no specific literature to
suggest findings in these areas are more or less likely to influence ventilator liberation, it is
interesting to note that a similar distribution was found in a CXR transfer learning study
using routinely available CXRs to classify patients with Chronic Obstructive Pulmonary
Disease (COPD) [25]. While this is a different label than the current study, it is worth
noting that it too is a complex phenotype as opposed to a direct imaging finding, and it is
possible that the deep learning models are picking up changes in structures like pulmonary
vasculature or retrocardiac opacities that human reviewers may not identify. Finally, some
of the regions on the Grad-CAM map have no expected contribution to the prediction,
including the image corners where no segmented lung is present. These are likely remnants
from the pre-training of the model on the ImageNet dataset, in which these areas may have
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been more important. A larger transfer learning cohort or training the model from scratch
on lung images would be expected to address this issue.

The present study has several strengths, including the development and deployment
of an end-to-end automated pipeline for X-ray pre-processing and model prediction, which
allows for a seamless transition to prospective evaluation; the use of segmented images;
the use of real-world clinical labels for extubation success or failure; the use of Grad-CAM
to help identify regions of interest in the final output; and higher performance compared to
current benchmarks and previous work. At the same time, the current work has several
limitations and much further exploration is warranted. The current model was trained
at a single center in a single ICU, and it remains to be seen how well it will generalize
to future or different patient populations. Furthermore, the model was trained with a
very small dataset, resulting in overfitting with a drop in performance from training to
testing. The model was pre-trained on ImageNet for convenience; however, pre-training
a model on a medical imaging dataset would potentially improve performance in this
domain. These factors contribute to the relative drop in performance from training to
testing; these represent next steps for improvement in model development in this space.
Finally, it remains to be seen how the model will interact with EMR features, and the
best method to combine these two different modalities (images and tabular data) remains
unknown [26]. Future work will have to address these limitations.

5. Conclusions

As the availability of deep learning and the integration of machine learning pipelines
in healthcare improve, the use of multimodal data in clinical decision support is the
next frontier. Here, we demonstrate that CXR images using deep learning can predict
the outcome of a trial of extubation with performance similar to or higher than existing
benchmarks or previous work, though there remains significant room for improvement
and optimization. The left hilum and lung apices were identified as regions of interest in
the final model; however, the significance of these findings requires further investigation.
Future work will involve improving model pre-training, increasing the size of the training
cohort, and optimizing performance in the hope of one day reaching clinical deployment.
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Appendix A

Representative DICOM images for true positive, false positive, true negative, and
false negative images are provided in Figure A1. While certain findings are apparent in
the images, such as right middle lobe collapse in a false positive (Figure A1b) or airspace



Bioengineering 2024, 11, 626 10 of 12

opacities in a true negative (Figure A1c), caution must be taken in their interpretation
because the prediction of extubation success or failure at least 72 h after the image was
captured is a more complex phenotype than directly identifying diagnostic abnormalities
on the image itself. Because all patients included in this study were extubated by ICU
clinicians who reviewed the images, features driving classification may not be readily
apparent on clinical review. Instead, the model may incorporate more subtle features
and different kinds of information than what is readily visible to the human eye. More
discussion regarding the use of Grad-CAM to identify regions of interest driving the model
predictions is presented in the main text.

Bioengineering 2024, 11, x FOR PEER REVIEW 11 of 12 
 

 
Figure A1. Examples of input images and classification outcomes demonstrating (a) a true positive 
successful extubation, (b) a false positive prediction, (c) a true negative prediction, and (d) a false 
negative prediction. A label of 1 signifies successful extubation at 72 h; a label of 0 signifies extuba-
tion failure by 72 h. 

References 
1. MacIntyre, N.R. Evidence-Based Guidelines for Weaning and Discontinuing Ventilatory Support: A Collective Task Force Fa-

cilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College 
of Critical Care Medicine. Chest 2001, 120, 375S–395S. https://doi.org/10.1378/chest.120.6_suppl.375S. 

2. Thille, A.W.; Richard, J.-C.M.; Brochard, L. The Decision to Extubate in the Intensive Care Unit. Am. J. Respir. Crit. Care Med. 
2013, 187, 1294–1302. https://doi.org/10.1164/rccm.201208-1523CI. 

3. Epstein, S.K.; Nevins, M.L.; Chung, J. Effect of Unplanned Extubation on Outcome of Mechanical Ventilation. Am. J. Respir. Crit. 
Care Med. 2000, 161, 1912–1916. https://doi.org/10.1164/ajrccm.161.6.9908068. 

4. Epstein, S.K. Routine Use of Weaning Predictors: Not so Fast. Crit. Care 2009, 13, 197. https://doi.org/10.1186/cc8121. 
5. Yang, K.L.; Tobin, M.J. A Prospective Study of Indexes Predicting the Outcome of Trials of Weaning from Mechanical Ventila-

tion. N. Engl. J. Med. 1991, 324, 1445–1450. https://doi.org/10.1056/NEJM199105233242101. 
6. Hsieh, M.-H.; Hsieh, M.-J.; Chen, C.-M.; Hsieh, C.-C.; Chao, C.-M.; Lai, C.-C. An Artificial Neural Network Model for Predicting 

Successful Extubation in Intensive Care Units. J. Clin. Med. 2018, 7, 240. https://doi.org/10.3390/jcm7090240. 
7. Kuo, H.-J.; Chiu, H.-W.; Lee, C.-N.; Chen, T.-T.; Chang, C.-C.; Bien, M.-Y. Improvement in the Prediction of Ventilator Weaning 

Outcomes by an Artificial Neural Network in a Medical ICU. Respir. Care 2015, 60, 1560–1569. 
https://doi.org/10.4187/respcare.03648. 

8. Parreco, J.; Hidalgo, A.; Parks, J.J.; Kozol, R.; Rattan, R. Using Artificial Intelligence to Predict Prolonged Mechanical Ventilation 
and Tracheostomy Placement. J. Surg. Res. 2018, 228, 179–187. https://doi.org/10.1016/j.jss.2018.03.028. 

Figure A1. Examples of input images and classification outcomes demonstrating (a) a true positive
successful extubation, (b) a false positive prediction, (c) a true negative prediction, and (d) a false
negative prediction. A label of 1 signifies successful extubation at 72 h; a label of 0 signifies extubation
failure by 72 h.



Bioengineering 2024, 11, 626 11 of 12

References
1. MacIntyre, N.R. Evidence-Based Guidelines for Weaning and Discontinuing Ventilatory Support: A Collective Task Force

Facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American
College of Critical Care Medicine. Chest 2001, 120, 375S–395S. [CrossRef]

2. Thille, A.W.; Richard, J.-C.M.; Brochard, L. The Decision to Extubate in the Intensive Care Unit. Am. J. Respir. Crit. Care Med. 2013,
187, 1294–1302. [CrossRef]

3. Epstein, S.K.; Nevins, M.L.; Chung, J. Effect of Unplanned Extubation on Outcome of Mechanical Ventilation. Am. J. Respir. Crit.
Care Med. 2000, 161, 1912–1916. [CrossRef]

4. Epstein, S.K. Routine Use of Weaning Predictors: Not so Fast. Crit. Care 2009, 13, 197. [CrossRef]
5. Yang, K.L.; Tobin, M.J. A Prospective Study of Indexes Predicting the Outcome of Trials of Weaning from Mechanical Ventilation.

N. Engl. J. Med. 1991, 324, 1445–1450. [CrossRef]
6. Hsieh, M.-H.; Hsieh, M.-J.; Chen, C.-M.; Hsieh, C.-C.; Chao, C.-M.; Lai, C.-C. An Artificial Neural Network Model for Predicting

Successful Extubation in Intensive Care Units. J. Clin. Med. 2018, 7, 240. [CrossRef]
7. Kuo, H.-J.; Chiu, H.-W.; Lee, C.-N.; Chen, T.-T.; Chang, C.-C.; Bien, M.-Y. Improvement in the Prediction of Ventilator Weaning

Outcomes by an Artificial Neural Network in a Medical ICU. Respir. Care 2015, 60, 1560–1569. [CrossRef]
8. Parreco, J.; Hidalgo, A.; Parks, J.J.; Kozol, R.; Rattan, R. Using Artificial Intelligence to Predict Prolonged Mechanical Ventilation

and Tracheostomy Placement. J. Surg. Res. 2018, 228, 179–187. [CrossRef]
9. Tandon, P.; Cheng, F.-Y.; Cheetirala, S.N.; Parchure, P.; Levin, M.; Kia, A. Predicting Readiness to Liberate from Mechanical Venti-

lation Using Machine Learning: Development and Retrospective Validation. In Proceedings of the TP54. TP054 MECHANICAL
VENTILATION, American Thoracic Society, Virtual, 14–19 May 2021; p. A2757.

10. Rajpurkar, P.; Irvin, J.; Ball, R.L.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.P.; et al. Deep Learning
for Chest Radiograph Diagnosis: A Retrospective Comparison of the CheXNeXt Algorithm to Practicing Radiologists. PLoS Med.
2018, 15, e1002686. [CrossRef]

11. Fukuchi, K.; Osawa, I.; Satake, S.; Ito, H.; Shibata, J.; Dohi, E.; Kasugai, D.; Miyamoto, Y.; Ohbe, H.; Tamoto, M.; et al. The
Contribution of Chest X-Ray to Predict Extubation Failure in Mechanically Ventilated Patients Using Machine Learning-Based
Algorithms. Crit. Care Explor. 2022, 4, e0718. [CrossRef]

12. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BMJ 2015, 350, g7594. [CrossRef]

13. Selvan, R.; Dam, E.B.; Detlefsen, N.S.; Rischel, S.; Sheng, K.; Nielsen, M.; Pai, A. Lung Segmentation from Chest X-rays Using
Variational Data Imputation. arXiv 2020, arXiv:2005.10052.

14. Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark Analysis of Representative Deep Neural Network Architectures.
IEEE Access 2018, 6, 64270–64277. [CrossRef]

15. Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN
Comput. Sci. 2021, 2, 420. [CrossRef]

16. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 618–626.

17. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]

18. Burns, S.M.; Fisher, C.; Tribble, S.E.S.; Lewis, R.; Merrel, P.; Conaway, M.R.; Bleck, T.P. The Relationship of 26 Clinical Factors to
Weaning Outcome. Am. J. Crit. Care Off. Publ. Am. Assoc. Crit.-Care Nurses 2012, 21, 52–58, quiz 59. [CrossRef]

19. Kulkarni, A.R.; Athavale, A.M.; Sahni, A.; Sukhal, S.; Saini, A.; Itteera, M.; Zhukovsky, S.; Vernik, J.; Abraham, M.; Joshi, A.; et al.
Deep Learning Model to Predict the Need for Mechanical Ventilation Using Chest X-Ray Images in Hospitalised Patients with
COVID-19. BMJ Innov. 2021, 7, 261–270. [CrossRef]

20. Aljouie, A.F.; Almazroa, A.; Bokhari, Y.; Alawad, M.; Mahmoud, E.; Alawad, E.; Alsehawi, A.; Rashid, M.; Alomair, L.;
Almozaai, S.; et al. Early Prediction of COVID-19 Ventilation Requirement and Mortality from Routinely Collected Baseline Chest
Radiographs, Laboratory, and Clinical Data with Machine Learning. J. Multidiscip. Healthc. 2021, 14, 2017–2033. [CrossRef]

21. Pyrros, A.; Flanders, A.E.; Rodríguez-Fernández, J.M.; Chen, A.; Cole, P.; Wenzke, D.; Hart, E.; Harford, S.; Horowitz, J.;
Nikolaidis, P.; et al. Predicting Prolonged Hospitalization and Supplemental Oxygenation in Patients with COVID-19 Infection
from Ambulatory Chest Radiographs Using Deep Learning. Acad. Radiol. 2021, 28, 1151–1158. [CrossRef]

22. Varghese, B.A.; Shin, H.; Desai, B.; Gholamrezanezhad, A.; Lei, X.; Perkins, M.; Oberai, A.; Nanda, N.; Cen, S.; Duddalwar, V.
Predicting Clinical Outcomes in COVID-19 Using Radiomics on Chest Radiographs. Br. J. Radiol. 2021, 94, 20210221. [CrossRef]

23. O’Shea, A.; Li, M.D.; Mercaldo, N.D.; Balthazar, P.; Som, A.; Yeung, T.; Succi, M.D.; Little, B.P.; Kalpathy-Cramer, J.; Lee,
S.I. Intubation and Mortality Prediction in Hospitalized COVID-19 Patients Using a Combination of Convolutional Neural
Network-Based Scoring of Chest Radiographs and Clinical Data. BJR Open 2022, 4, 20210062. [CrossRef]

24. Chung, J.; Kim, D.; Choi, J.; Yune, S.; Song, K.D.; Kim, S.; Chua, M.; Succi, M.D.; Conklin, J.; Longo, M.G.F.; et al. Prediction of
Oxygen Requirement in Patients with COVID-19 Using a Pre-Trained Chest Radiograph xAI Model: Efficient Development of
Auditable Risk Prediction Models via a Fine-Tuning Approach. Sci. Rep. 2022, 12, 21164. [CrossRef]

https://doi.org/10.1378/chest.120.6_suppl.375S
https://doi.org/10.1164/rccm.201208-1523CI
https://doi.org/10.1164/ajrccm.161.6.9908068
https://doi.org/10.1186/cc8121
https://doi.org/10.1056/NEJM199105233242101
https://doi.org/10.3390/jcm7090240
https://doi.org/10.4187/respcare.03648
https://doi.org/10.1016/j.jss.2018.03.028
https://doi.org/10.1371/journal.pmed.1002686
https://doi.org/10.1097/CCE.0000000000000718
https://doi.org/10.1136/bmj.g7594
https://doi.org/10.1109/ACCESS.2018.2877890
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.4037/ajcc2012425
https://doi.org/10.1136/bmjinnov-2020-000593
https://doi.org/10.2147/JMDH.S322431
https://doi.org/10.1016/j.acra.2021.05.002
https://doi.org/10.1259/bjr.20210221
https://doi.org/10.1259/bjro.20210062
https://doi.org/10.1038/s41598-022-24721-5


Bioengineering 2024, 11, 626 12 of 12

25. Wang, R.; Chen, L.-C.; Moukheiber, L.; Seastedt, K.P.; Moukheiber, M.; Moukheiber, D.; Zaiman, Z.; Moukheiber, S.; Litchman,
T.; Trivedi, H.; et al. Enabling Chronic Obstructive Pulmonary Disease Diagnosis through Chest X-rays: A Multi-Site and
Multi-Modality Study. Int. J. Med. Inform. 2023, 178, 105211. [CrossRef]

26. Huang, S.-C.; Pareek, A.; Seyyedi, S.; Banerjee, I.; Lungren, M.P. Fusion of Medical Imaging and Electronic Health Records Using
Deep Learning: A Systematic Review and Implementation Guidelines. NPJ Digit. Med. 2020, 3, 136. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ijmedinf.2023.105211
https://doi.org/10.1038/s41746-020-00341-z

	Introduction 
	Materials and Methods 
	Study Setting, Population, and Data Sources 
	Image Pre-Processing 
	Transfer Learning and Fine Tuning 
	Pixel Visualization 
	Benchmark Model, Model Testing, and Statistical Methods 

	Results 
	Study Population and Outcomes 
	Final Imaging Classifier and Predictors in the Imaging Classifier 
	Predictive Performance of the Model 

	Discussion 
	Conclusions 
	Appendix A
	References

