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Abstract: Prostate cancer is a significant health concern with high mortality rates and substantial
economic impact. Early detection plays a crucial role in improving patient outcomes. This study
introduces a non-invasive computer-aided diagnosis (CAD) system that leverages intravoxel incoher-
ent motion (IVIM) parameters for the detection and diagnosis of prostate cancer (PCa). IVIM imaging
enables the differentiation of water molecule diffusion within capillaries and outside vessels, offering
valuable insights into tumor characteristics. The proposed approach utilizes a two-step segmentation
approach through the use of three U-Net architectures for extracting tumor-containing regions of
interest (ROIs) from the segmented images. The performance of the CAD system is thoroughly
evaluated, considering the optimal classifier and IVIM parameters for differentiation and comparing
the diagnostic value of IVIM parameters with the commonly used apparent diffusion coefficient
(ADC). The results demonstrate that the combination of central zone (CZ) and peripheral zone (PZ)
features with the Random Forest Classifier (RFC) yields the best performance. The CAD system
achieves an accuracy of 84.08% and a balanced accuracy of 82.60%. This combination showcases high
sensitivity (93.24%) and reasonable specificity (71.96%), along with good precision (81.48%) and F1
score (86.96%). These findings highlight the effectiveness of the proposed CAD system in accurately
segmenting and diagnosing PCa. This study represents a significant advancement in non-invasive
methods for early detection and diagnosis of PCa, showcasing the potential of IVIM parameters
in combination with machine learning techniques. This developed solution has the potential to
revolutionize PCa diagnosis, leading to improved patient outcomes and reduced healthcare costs.

Keywords: apparent diffusion coefficient (ADC); computer- aided diagnosis (CAD); intravoxel
incoherent motion (IVIM); machine learning (ML); prostate cancer (PCa); U-Net segmentation

1. Introduction

The prostate is a walnut-sized gland that can be found below the bladder, in front of
the rectum, and behind the base of the penis. It encircles the urethra, a canal that resembles
a tube that carries sperm and urine out of the penis [1]. The fundamental function of the
prostate is to create seminal fluid, the substance found in semen that feeds, protects, and
facilitates sperm motility. It is worth mentioning that the prostate includes three glandular
regions, namely, the transition (TZ), central (CZ), and peripheral (PZ) zones, which make
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up around 5%, 25%, and 70% of the prostatic glandular tissue, respectively [2]. A tumor
is created when normal prostate cells undergo a transformation and grow out of control.
Both benign and malignant tumors are possible. Malignancy refers to the tumor’s capacity
to grow and spread to other parts of the body. On the other hand, a benign tumor can form
but will not grow [3]. Prostate cancer (PCa) is somewhat distinct from other malignancies.
This is because many types of PCa do not easily spread to other parts of the body. In certain
kinds of prostate cancer, many years or even decades may pass before any symptoms or
problems are seen [1]. However, PCa is a significant health concern affecting men globally,
with the second-highest incidence rate among male cancers [4].

Most cases of PCa (i.e., 70%) arise in the peripheral zone (PZ), while a smaller propor-
tion (i.e., 20%) originate in the transitional zone (TZ) [5]. The most used imaging technique
for identifying, staging, and localizing PCa is multiparametric MRI (mpMRI). However,
detecting PCa that is initiated in the TZ remains challenging due to its heterogeneous ap-
pearance and the difficulty of distinguishing it from contemporaneous benign prostatic hy-
perplasia (BPH) [6]. The suggested starting sequence for evaluating the TZ is T2-weighted
imaging (T2WI); however, its diagnostic efficacy remains poor. The diffusion-weighted
imaging (DWI) sequence has emerged as a significant functional imaging technique that
employs the diffusion properties of water molecules to indirectly provide a quantitative pa-
rameter called the apparent diffusion coefficient (ADC) [7]. DWI is currently the dominant
sequence used to detect PZ lesions according to the PI-RADS v2.1 guidelines. However, as
non-cancerous tissues such as BPH also have increased cellularity, the ADC value may be
present in central zone (CZ) PCa as well. Additionally, ADC is combined with capillary
microcirculation perfusion, leading to several potential false positives for PCa diagnosis [8].

With the rapid development of digital images and computing, applying artificial
intelligence (AI) in medical data image processing has become a prominent research field
that has achieved remarkable results [9,10]. Recently, AI, together with its machine (ML)
and deep learning (DL) subfields, has made significant advances in the identification of
PCa [11]. It has the potential to transform the role of clinicians, revolutionize the practice
of medicine, lead to better patient care, and simplify the prediction of disease outcomes
and treatment [12,13]. Consequently, numerous computer-aided diagnosis (CAD) systems
have emerged as key technologies in PCa detection [14,15]. These systems employ imaging
features from a fusion of MR modalities [16].

In order to distinguish between the incoherent movement of water molecules inside
capillaries and the molecular diffusion outside of vessels, Le Bihan et al. [17] introduced an
intravoxel incoherent motion (IVIM) in the late 1980s. While recent studies have shown
encouraging findings, the best IVIM parameter to use for PCa diagnosis remains under
dispute [18]. Many researchers have shown the potential role of employing the IVIM model
in different cancers, e.g., brain cancer [19,20], breast cancer [21,22], rectal cancer [23], and
PCa [24,25], and have demonstrated the robustness of IVIM in imaging analysis.

The current study aims to refine the use of IVIM imaging in the diagnosis of PCa using
ML techniques. Further, it seeks to extend the use of IVIM parameters to both the CZ and
PZ of the prostate for better diagnostic efficacy. Additionally, a two-stage segmentation is
combined with IVIM parameter estimation to accurately localize lesions and preprocess
data. The objective of the study is to analyze the diffusion parameters of the cases and
evaluate the performance of a non-invasive IVIM-based CAD system for classifying regions
of interest (ROIs) as either PCa or benign prostatic hyperplasia. The study also determines
the best classifier and IVIM parameters for differentiation and compares the diagnostic
value of IVIM parameters with that of ADC. This paper can be considered a significant
contribution to the development of non-invasive methods for early detection and diagnosis
of PCa, as it uses IVIM parameters in both the central and peripheral zones for the first
time. The following points provide a summary of the study’s contributions:

- Development of a non-invasive CAD system: This paper introduces a novel cascaded
framework for PCa detection and segmentation using diffusion-weighted magnetic
resonance imaging (DW-MRI). The framework consists of several stages, including



Bioengineering 2024, 11, 629 3 of 29

image acquisition, prostate segmentation, lesion segmentation, IVIM parameter extrac-
tion, dataset normalization, learning and optimization, and model evaluation. This
framework provides a systematic approach for accurate and efficient detection and
segmentation of PCa lesions.

- Utilization of U-net architecture: This paper employs a U-net architecture in two
different flavors for prostate and lesion segmentation. By utilizing a U-net design, the
framework effectively locates and separates PCa lesions within the prostate region.
This contribution highlights the application of state-of-the-art deep learning techniques
in the field of PCa detection.

- Extraction of IVIM parameters: This paper focuses on extracting IVIM parameters
from DW-MRI images. The IVIM model describes the diffusion of water molecules in
tissue using molecular diffusion and microcirculation processes. By extracting IVIM
parameters, the framework captures valuable information about tissue microstructure,
which can aid in the detection and diagnosis of PCa. This contribution highlights the
integration of advanced diffusion modeling techniques in the proposed framework.

- Contribution to non-invasive methods for PCa detection: By utilizing IVIM parameters
in both the CZ and PZ, this study makes a significant contribution to the development
of non-invasive methods for early detection and diagnosis of PCa. The findings have
the potential to improve current practices and enhance the overall management of
PCa patients.

The rest of this paper is organized as follows: Section 2 provides an overview of
related studies in the field; Section 3 describes the research materials; Section 4 describes
the methodology; Section 5 describes the experimental setup and results; Section 6 presents
an overall discussion of the study; and Section 7 concludes the paper and offers insights
into future work.

2. Related Studies

Numerous published studies have delved into the role of the intravoxel incoherent
motion (IVIM) parameter in the grading of various tumors. The concept of capturing the dis-
tinction between tissue perfusion and diffusion effects within the IVIM model was initially
introduced by Le Bihan et al. [17]. This approach offered a more dependable methodology
for characterizing microcirculation-induced signal attenuation than the simplistic mono-
exponential model. Recent investigations have examined IVIM’s potential in different
domains, including differentiation between spinal metastasis and tuberculous spondyli-
tis [26] and assessment of glioma malignancy and isocitrate dehydrogenase 1 (IDH-1) gene
type [27]. However, Le Bihan [28] proposed that perfusion could be accurately estimated
from diffusion-weighted imaging (DWI) alone, obviating the need for contrast agent-based
magnetic resonance (MR) imaging techniques such as dynamic contrast-enhanced (DCE)
imaging.

Multiple investigations have leveraged the IVIM model in the grading of prostate
cancer (PCa) tumors. Research has demonstrated that the D parameter of the IVIM model
outperforms other parameters in Gleason score (GS) grading of PCa tumors [29]. Neverthe-
less, other studies have highlighted the relevance of both the D parameter and apparent
diffusion coefficient (ADC) to cell density in PCa and the potential for deriving treatment
outcome insights from changes in IVIM parameters during treatment [30,31].

Meng et al. [32] aimed to evaluate the predictive utility of IVIM for positive surgical
margins (PSMs) and Gleason score (GS) upgrading in PCa patients undergoing radical
prostatectomy (RP). In a retrospective analysis of 106 eligible PCa patients, pelvic multi-
parametric Magnetic Resonance Imaging (mpMRI) was employed. IVIM parameters were
derived using postprocessing software and LR models were applied to identify predictive
risk factors for PSMs and GS upgrading. The results indicated that the combination of IVIM
and clinical factors enhanced the prediction of PSMs, albeit with limited improvements
in predicting GS upgrading mainly involving enhanced sensitivity. The study concluded
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that IVIM displays effective predictive capabilities for PSMs and GS upgrading, potentially
enhancing clinical diagnosis and treatment in conjunction with clinical factors.

Additionally, Hu et al. [33] aimed to investigate the predictive potential of 3D amide
proton transfer-weighted (APTw) and IVIM imaging alongside routine diffusion-weighted
imaging (DWI) for detecting bone metastasis (BM) in PCa patients. Their retrospective anal-
ysis encompassed 39 PCa patients grouped into BM-negative and BM-positive categories.
MR examination incorporated APTw, DWI, and IVIM imaging, with IVIM data fitted using
single-exponential (IVIMmono) and double-exponential (IVIMbi) models. IVIM demon-
strated superior performance compared to APTw and DWI, with the single-exponential
model surpassing the double-exponential model. Combining the APTw and IVIMmono
further enhanced diagnostic accuracy. Overall, both APTw and IVIM imaging exhibited
effectiveness in predicting PCa bone metastasis, with IVIM showing greater promise and
potential for improved diagnostics when combined with APTw.

Sen et al. [34] studied whether quantitative diffusion MRI (i.e., ADC, IVIM, DKI,
VERDICT) can differentiate various tissue types (i.e., false positives, true positives, normal
tissue). They examined 38 patients with mp-MRI and VERDICT MRI after transperineal
biopsies, categorizing them as 19 significant cancers and 19 atrophy/inflammation/high-
grade prostatic intraepithelial neoplasias. Clinical ADC values and deep learning were used
to analyze IVIM, DKI, and VERDICT. Significant distinctions (p < 0.05) between true and
false positive lesions were found in ADC, IVIM perfusion fraction ( f ), diffusivity (D), DKI
diffusivity (DK), kurtosis (K), VERDICT intracellular volume fraction ( f IC), extracellular–
extravascular volume fraction ( fEES), and VERDICT diffusivity (dEES) (p < 0.0001). False
positive lesions differed significantly from normal tissue in VERDICT intracellular volume
fraction ( f IC) (p = 0.004) and IVIM diffusivity (D). Quantitative diffusion MRI techniques
(ADC, IVIM, DKI, VERDICT) effectively differentiated false positive lesions and cancer,
potentially reducing unnecessary biopsies. A limitation of this study was its relatively
small patient group.

In addition, Chen et al. [24] assessed the relationship between IVIM characteristics
and PCa severity. The IVIM technique was utilized with five different b-values (i.e., b0,
b188, b375, b563, b750) to acquire data. Several parameters were computed using histogram
analysis, including ADC, pseudo-diffusion volume fraction ( fp), pure tissue diffusion (Ds),
hypoxia score (HSDWI), hypoxic fraction (HFDWI), and relative oxygen saturation (rOSDWI).
The authors also explored the discriminative power of IVIM-derived hypoxia parameters
for distinguishing low-grade PCa (grade ≤ 2) from high-grade PCa (grade ≥ 3). They
employed cross-validated SVM classification and compared the results with univariate
ROC analysis to explore the potential of using IVIM-derived hypoxia for stratifying the risk
of PZ PCa. During cross-validation, their prediction model incorporating IVIM-derived
hypoxia achieved an AUC ranging from 0.749 to 0.786. Although they achieved promising
results for the training data, only moderate results were attained for the testing data.

Using image features from mpMRI, Li et al. [35] performed a study to assess the
efficiency of SVM classification in classifying the GS of PCa within the central gland (CG).
Through a correlation between radiological and pathological data, they identified 152 ROIs
within the CG that were cancerous. From the mpMRI and histogram analysis, they derived
eleven parameters, including mean, median, the 10th percentile, skewness, and kurtosis
for each parameter (IVIM and conventional ADC parameters). In total, they calculated
55 variables, which were used as inputs for the SVM model. The model was developed
using a 10-fold cross-validation approach and was further validated using two distinct
datasets. Their findings revealed that SVM classification based on image characteristics
derived from mpMRI consistently achieved an accurate classification of the Gleason Score
of prostate cancer within the central gland.

To demonstrate the effectiveness of hierarchical clustering (HC) as a method for
diagnosing PCa, Akamine et al. [36] constructed an HC model using mp-MRI, which
includes diffusion kurtosis imaging, IVIM, and dynamic contrast-enhanced MRI data.
The HC model’s optimization involved evaluating various combinations of dissimilarity
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and linkage methods. The model’s quality was confirmed through internal validation
methods. The optimal HC model achieved an accuracy of 96.3% for discriminating between
tumor and normal tissue in the PZ and 97.8% in the TZ. According to the study’s findings,
hierarchical clustering demonstrated the ability to effectively differentiate between prostate
cancer and normal tissue. However, this research had limitations, notably the small patient
sample size, the use of only eight input parameters from DWI, and the use of permeability
data to construct the HC model.

Furthermore, Alkadi et al. [37] investigated the classification potential of various
b-values in diffusion-weighted MRI (DW-MRI) for detecting PCa. Analyzing DW-MR
data collected from 20 patients (classified as nine and eleven malignant and benign cases,
respectively, with varying Gleason scores), they compared different parametric maps
generated through diverse b-value combinations and fitting models. They developed a
machine learning-based computer-assisted diagnosis system utilizing the most effective
maps, achieving an impressive 90% accuracy and an AUC of 0.978 for distinguishing
early-stage PCa. This study highlights that incorporating low b-values and optimizing
b-value distribution can enhance the accuracy of PCa diagnosis using DWI. However, the
study encountered limitations, such as challenges in collecting sixteen different b-values
from hospitals and a relatively small patient cohort.

Moreover, Merisaari et al. [38] investigated different fitting approaches for IVIM imag-
ing in PCa regarding their ability to predict GS and their repeatability. They conducted two
DWI scans on 81 PCa patients using fourteen different b-values spanning 0 to 500 s/mm2.
They applied five IVIM fitting techniques, along with monoexponential, kurtosis, and
stretched exponential models, to fit the mean signal intensities of specific ROIs. The tumors
were categorized into three groups (3+ 3, 3+ 4, > 3+ 4), then machine learning algorithms
were employed to evaluate different parameter combinations. Their results showed that the
monoexponential model outperformed IVIM when assessed using the Akaike information
criteria (AIC). Different combinations of parameters did not exceed the performance of the
monoexponential model.

Liu et al. [39] introduced a two-phase approach for the complete automation of
prostate lesion detection and classification. This approach involved utilizing input se-
quences of T2-weighted images, ADC maps, and diffusion-weighted images with high
b-values. In the initial phase, they employed a Mask R-CNN model to autonomously
segment prostate structures. In the subsequent phase, a weakly supervised deep neural
network was developed to both identify and categorize lesions in a single operation. To
assess the accuracy of their approach, they validated it on two distinct datasets, one from
the PROSTATEx Challenge and the other gathered from their local cohort. This method
demonstrated impressive performance, with respective AUC values of 0.912 and 0.882 on
the two datasets.

Table 1 provides a comprehensive overview of various studies investigating the role
of IVIM parameters in the detection and characterization of PCa. These studies, spanning
from the late 1980s to the present, utilize diverse imaging modalities such as DW-MRI
and mpMRI. Notably, Le Bihan et al. [17] introduced the concept of IVIM to distinguish
tissue perfusion and diffusion effects, suggesting the possibility of accurately estimating
perfusion from DWI alone. Subsequent studies explored IVIM’s potential in differentiating
spinal metastasis, assessing glioma malignancy, and evaluating PCa tumors. Researchers
have investigated the predictive utility of IVIM for positive surgical margins and Gleason
score upgrading, leading to enhanced diagnostic capabilities when combined with clinical
factors. Additionally, ML techniques have been employed to classify PCa severity and
automate lesion detection. The table below underscores the evolving landscape of PCa
diagnosis, showcasing advancements in imaging technologies and analytical methodologies
that ultimately contribute to improved understanding and diagnosis of this prevalent
malignancy.

It is worth noting that while a considerable number of previous investigations have
explored the utility of IVIM parameters and ADC in PCa detection, only a limited number
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have delved into the potential of ML techniques. Consequently, there remains a notable
gap in our understanding. However, the proposed approach aims to bridge this deficiency
by presenting a novel non-invasive CAD system that harnesses IVIM parameters for the
detection and diagnosis of PCa. This innovative strategy holds the promise of addressing
current limitations and contributing to enhanced and more accurate PCa diagnosis through
the integration of advanced ML methodologies.

Table 1. Summary of related studies on the role of IVIM parameters in PCa detection, sorted by year
in ascending order.

Year Modality Study Followed Approach Limitations (Our Perspective)

1988 DW-MRI Le-Bihan et al. [17] Introduced IVIM to distinguish tissue perfusion and
diffusion effects, suggesting perfusion could be accu-
rately estimated from DWI alone.

Limited to theoretical proposal; fur-
ther validation needed through em-
pirical studies.

2015 DW-MRI Zhang et al. [29] Demonstrated the superiority of the D parameter in
Gleason score grading of PCa tumors, highlighting
the relevance of D and ADC to cell density.

Small sample size; potential bias in
patient selection.

2017 DW-MRI Merisaari et al. [38] Explored different fitting approaches for IVIM imag-
ing in PCa, showing the monoexponential model out-
performed IVIM.

Limited to retrospective analysis; re-
quires prospective validation.

2018 mpMRI Li et al. [35] Used SVM classification with image features from
mpMRI to classify the GS of PCa within the central
gland.

Relatively small dataset; validation on
larger cohorts necessary.

2019 Multi-modal Liu et al. [39] Introduced a two-phase approach for the complete
automation of prostate lesion detection and classifi-
cation.

Limited to retrospective validation;
clinical applicability requires prospec-
tive studies.

2020 DW-MRI Chen et al. [24] Assessed the relationship between IVIM character-
istics and PCa severity, showing potential for distin-
guishing low-grade from high-grade PCa.

Limited to single-center study; gen-
eralizability to diverse populations
needs confirmation.

2020 mpMRI Akamine et al. [36] Developed an HC model using mp-MRI to differenti-
ate between prostate cancer and normal tissue.

Small patient sample size; validation
on larger cohorts essential for robust-
ness.

2022 DW-MRI Alkadi et al. [37] Investigated the classification potential of various b-
values in DW-MRI for detecting PCa, achieving 90%
accuracy.

Relatively small patient cohort; valida-
tion on diverse populations necessary.

2022 MRI Sen et al. [34] Explored the differentiation ability of quantitative
diffusion MRI in various tissue types, effectively dif-
ferentiating false positive lesions and cancer.

Limited to retrospective analysis;
larger prospective studies required for
clinical validation.

2022 DW-MRI Zhang et al. [26] Explored IVIM’s role in differentiating spinal metas-
tasis and tuberculous spondylitis.

Limited to specific tumor types; gen-
eralizability to broader patient popu-
lations needs examination.

2023 DW-MRI Cao et al. [27] Investigated IVIM’s potential in assessing glioma ma-
lignancy and IDH-1 gene type.

Limited to glioma cases; applicability
to other tumor types requires investi-
gation.

2023 mpMRI Meng et al. [32] Evaluated IVIM’s predictive utility for PSMs and GS
upgrading in PCa patients undergoing RP, showing
enhanced prediction of PSMs.

Small sample size; validation on
larger cohorts necessary for robust-
ness.

2023 MRI Hu et al. [33] Investigated the predictive potential of 3D APTw
and IVIM imaging for detecting BM in PCa patients,
showing superior performance of IVIM.

Limited to bone metastasis cases; vali-
dation on broader PCa patient groups
needed.
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3. Materials

Study design and ethical considerations: This study was conducted in accordance
with the principles outlined in the Declaration of Helsinki and received ethical approval
from the institutional review board (IRB). Written informed consent was obtained from all
participating patients prior to their inclusion in the study, ensuring adherence to ethical
guidelines and regulations.

Patient selection and characteristics: Between 2019 and 2021, a cohort of 80 individu-
als exhibiting clinical indications of potential prostate cancer underwent comprehensive
evaluation. Eligibility criteria included a positive digital rectal examination and elevated
serum prostate-specific antigen (PSA) levels (>4 ng/mL). The participants had an average
age of 66 years (age range: 48–82, standard deviation: 7.119) and were categorized into
two groups: 37 patients were diagnosed with prostatic carcinomas, while 43 patients were
diagnosed with benign prostatic hyperplasia.

Imaging techniques: All magnetic resonance imaging (MRI) scans were performed
on a 3 Tesla MRI scanner (Phillips, Ingenia 3T, The Best, Netherlands) equipped with a
phased-array body coil. The multiparametric MRI (mp-MRI) protocol encompassed the
assessment of various parameters, focusing on the prostate’s central and peripheral zones.
Lesions in both zones were included.

The mp-MRI protocol comprised the sequences below. Our comprehensive imaging
protocol facilitated a detailed evaluation of prostate lesions and provided essential data for
subsequent analyses.

- T2-weighted Turbo Spin Echo (TSE) imaging: Standard axial, coronal, and sagittal
T2-weighted TSE sequences were acquired. The imaging parameters were as follows:
repetition time (TR)/echo time (TE) = 3672/110 ms , slice thickness/gap = 3/0.3 mm,
field of view (FOV) = 16 cm, matrix = 320 × 176.

- Diffusion-Weighted Imaging (DWI): Axial DWI scans were acquired using a single-shot
echo-planar imaging technique. The imaging parameters were: TR/TE = 4735/88 ms,
slice thickness/gap = 3.5/0.1 mm, FOV = 200 × 178 mm, matrix = 68 × 59, SENSE
factor = 2. A series of b-values (i.e., 0, 100, 200, 300, 400, 500, 600, 700, and 1400 s/mm2)
were employed to probe diffusion characteristics. The acquisition time for the DWI
sequence was approximately 7 min and 8 s.

Data collection and analysis: Detailed patient information was collected, including
age, b-values, T2 measurements, PSA levels, follow-up PSA, responses to questionnaires,
number of biopsy sectors, Gleason Score, grade, diagnosis, and treatment outcomes. Data
obtained from the mp-MRI protocol and patient information were subjected to rigorous
analysis, including image processing and quantitative assessments. However, some patients
did not record certain information, such as PSA level and follow-up PSA.

Statistical analysis: Statistical analyses were performed to explore the relationships
between imaging parameters, patient characteristics, and clinical findings.

4. Methodology

The proposed framework for prostate cancer detection and segmentation using
diffusion-weighted magnetic resonance imaging (DW-MRI), presented in Figure 1, consists
of several cascaded stages. The first stage involves the acquisition of input DW-MRI images,
which typically range from b = 0 to b = 1400. The b-value indicates both the strength and
timing of the gradients utilized in producing diffusion-weighted images. The diffusion
characteristics of water molecules within tissues are captured by the DW-MRI images,
which may be used to identify anomalies such as prostate cancer. The prostate is segmented
in the second stage of the framework, while the lesion is segmented in the third stage. Both
of these stages utilize a U-net architecture, with two different flavors. U-net designs are
frequently employed for image segmentation applications, being applied in this situation
to locate and separate prostate cancer lesions inside the prostate region. The fourth stage
of the framework involves extracting IVIM parameters from the DW-MRI images. The
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IVIM model describes the diffusion of water molecules in tissue as a combination of two
processes, namely, molecular diffusion and microcirculation. IVIM parameters can provide
valuable information about tissue microstructure, which can be used to detect and diagnose
prostate cancer.

The fifth stage of the framework involves dataset normalization. The normalization
process involves scaling and centering the input DW-MRI images and the extracted IVIM
parameters to ensure that they are on the same scale. This step is important for improving
the performance of the subsequent learning and optimization stages. The sixth stage of the
framework involves learning and optimization using an ML algorithm. The ML algorithm
is trained on the normalized DW-MRI images and IVIM parameters to develop a predictive
model that can accurately detect and segment prostate cancer lesions. The seventh and
final stage of the framework involves model evaluation. The tuned model is evaluated
on a testing dataset to assess its performance in detecting and segmenting prostate cancer
lesions. Standard metrics, including balanced accuracy, specificity, sensitivity, and Dice
coefficient, are used to assess the performance of the presented models.

Acquisition of Input
DW-MRI Images

Prostate Segmentation Lesion Segmentation
Extracting IVIM

Parameters

.....

B0

B1400

First Stage of U-Net 
Architecture

Second Stage of U-Net 
Architecture IVIM Parameters

Pure Diffusion 
Coefficient D

Pseudo-diffusion 
Fraction f 

Pseudo-diffusion 
Fraction D*

.....

Dataset 
Normalization

Learning and 
Optimization

Model 
Evaluation

Tuned 
Model

Figure 1. Stages of the proposed IVIM-based CAD system pipeline: acquisition of input DW-MRI im-
ages, prostate segmentation, lesion segmentation, extracting IVIM parameters, dataset normalization,
learning and optimization, model evaluation.

4.1. Prostate and Lesion Segmentation

The proposed framework consists of two stages for automatic segmentation, with the
first stage focused on prostate segmentation and the second stage on lesion segmentation.
To enhance segmentation accuracy, a pipeline consisting of a deeply supervised 2D U-Net
and two different flavors is utilized in this stage. These variants are U-Net, Attention
U-Net, and V-Net. U-Net is a popular convolutional neural network (CNN) architecture
for image segmentation tasks. It was introduced in a 2015 paper by Ronneberger et al. [40],
and has since become a widely-used approach for biomedical image segmentation. The
key feature of U-Net is its U-shaped architecture, which consists of an encoder network
that progressively reduces the spatial resolution of the input image, followed by a decoder
network that upsamples the feature maps back to the original resolution. The encoder and
decoder networks are connected by skip connections, which allow the decoder to access
low-level features from the encoder. The U-net architecture has been shown to be effective
for various medical imaging applications, including segmentation of the brain, lungs, and
liver. Attention U-Net is a variation of the U-net architecture that incorporates the attention
mechanism concept [41].

Attention mechanisms allow the network to selectively focus on the most informative
regions of the input image rather than processing the entire image equally. This can be
particularly useful for medical imaging tasks, where the regions of interest may be small
and difficult to distinguish from the background. The attention mechanism is typically
implemented using a gating mechanism that learns to weigh the importance of each feature
map. Attention U-Net has been shown to outperform the standard U-Net on several
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medical image segmentation tasks. V-Net is another CNN architecture used for volumetric
medical image segmentation tasks. It was introduced in a 2016 paper by Milletari et al. [42],
and is similar to U-Net in that it uses an encoder–decoder architecture with skip connections.
However, V-Net also incorporates 3D convolutions, which allow it to process volumetric
data directly without the need for additional preprocessing steps. V-Net also includes
residual connections, which can help to mitigate the vanishing gradient problem that can
occur in very deep networks. The V-Net architecture has been shown to achieve state-of-
the-art results on several medical image segmentation tasks, including segmentation of the
brain, liver, and kidneys [43].

Table 2 presents the hyperparameters used for each segmentation model in the current
study. Each model has several parameters with specific values. The parameter “Filter
Num” represents the number of filters in each convolutional block. The parameters “Stack
Num Down” and “Stack Num Up” determine the number of convolutional blocks in the
down-sampling and up-sampling paths, respectively. The “Activation” parameter specifies
the activation function used in the convolutional layers. The “Atten Activation” parameter,
which is specific to Attention U-Net, specifies the activation function used in the attention
layers, while the attention parameter specifies the type of attention mechanism used. The
“Batch Norm” parameter is a Boolean indicating whether to use batch normalization, while
the “Backbone” parameter specifies the pretrained model used as a backbone, which is
only applicable for U-Net and Attention U-Net. The “Pool” and “Unpool” parameters
are Booleans that indicate whether to use pooling or unpooling, respectively. The “Freeze
Backbone” and “Freeze Batch Norm” parameters are Booleans that indicate whether to
freeze the weights of the backbone and batch normalization layers, respectively. The
“Weights” parameter, which is specific to Attention U-Net, specifies the weight initialization
method. The V-Net model has two additional parameters: “# Res Ini”, which specifies
the number of residual blocks in the initial convolutional block, and “# Res Max”, which
specifies the maximum number of residual blocks in the convolutional blocks.

Table 2. Hyperparameter configurations for lesion segmentation models: U-Net, Attention U-Net,
and V-Net. # means the number of.

U-NET Attention U-NET V-NET

Filter Num [64, 128, 256, 512, 1024 ] [64, 128, 256, 512, 1024] [64, 128, 256, 512, 1024]

Stack Num Down 2 2 N/A

Stack Num Up 2 2 N/A

Activation GELU GELU GELU

Atten Activation N/A ReLU N/A

Attention N/A Add N/A

Batch Norm False True True

Backbone VGG19 VGG16 N/A

Pool False False False

Unpool False False False

Freeze Backbone True True N/A

Freeze Batch Norm True True N/A

Weights N/A ImageNet N/A

# Res Ini N/A N/A 1

# Res Max N/A N/A 3

Figure 2 illustrates three cases, with each case displayed in a separate row. From left to
right, the columns represent the entire scan, the prostate GT mask, the prostate predicted
mask, the prostate ROI, the lesion GT mask, the lesion predicted mask, and the lesion ROI.
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Case 1 Prostate GT Mask Prostate Predicted Mask Prostate ROI Lesion GT Mask Lesion Predicted Mask Lesion ROI

Case 2 Prostate GT Mask Prostate Predicted Mask Prostate ROI Lesion GT Mask Lesion Predicted Mask Lesion ROI

Case 3 Prostate GT Mask Prostate Predicted Mask Prostate ROI Lesion GT Mask Lesion Predicted Mask Lesion ROI

Figure 2. Visualization of three cases, each presented in a row. From left to right, the columns
represent the entire scan, the prostate GT mask, the prostate predicted mask, the prostate ROI, the
lesion GT mask, the lesion predicted mask, and the lesion ROI.

4.2. DWI Analysis Using IVIM Fitting

The IVIM model is a mathematical representation that describes the signal attenuation
in DWI by considering both diffusion and perfusion effects. It assumes that the measured
signal intensity S(b) is a combination of two components: (1) the diffusion-related compo-
nent, and (2) the perfusion-related component. IVIM diffusion imaging can be considered
advantageous over other diffusion models due to its ability to separate and quantify perfu-
sion and diffusion effects within tissues. IVIM provides valuable information about both
microcirculation and pure diffusion, allowing for more comprehensive characterization of
tissue properties. Unlike other models that primarily focus on diffusion, IVIM incorporates
perfusion-related parameters such as blood flow and capillary permeability, which are
essential in assessing tissue viability, disease progression, and treatment response. This
unique feature of IVIM makes it particularly useful in areas such as oncology, where the
evaluation of tumor vascularity and microstructure is critical for diagnosis and therapeutic
monitoring [44].

The Intravoxel Incoherent Motion (IVIM) model offers a mathematical framework for
elucidating how the DWI signal diminishes, incorporating both diffusion and perfusion
phenomena. It posits that the observed signal intensity S(b) is a blend of two primary
components: (1) diffusion-driven attenuation, and (2) perfusion-induced effects. This model
proves advantageous in that it disentangles and quantifies these distinct contributions
within tissue to provide a nuanced understanding of microcirculation and pure diffusion
dynamics. Unlike conventional diffusion models, IVIM integrates perfusion-related metrics
such as blood flow and capillary permeability, which are crucial for assessing tissue vitality,
disease evolution, and treatment efficacy. This nuanced approach finds particular relevance
in oncology, facilitating the precise evaluation of tumor vascularity and microstructure that
is pivotal for diagnosis and therapy tracking [44]. Equation (1) can be used to explain the
IVIM model [17,37]. The IVIM model equation can be interpreted as a weighted sum of two
exponential decay terms. The first term, (1 − f )× e−b×D, represents the signal attenuation
due to pure molecular diffusion. It decays exponentially with the increase in the diffusion
weighting factor b. The second term, f × e−b×D∗

, accounts for the perfusion-related effects.
It also decays exponentially with b, but with a different rate determined by D∗. By fitting
the IVIM model equation to the acquired DWI data, the parameters S(0), f , D, and D∗

can be estimated. These parameter values provide quantitative information about tissue
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diffusion and perfusion characteristics. The perfusion fraction ( f ) and diffusion coefficients
(D and D∗) can offer valuable insights into tissue microstructure, blood flow, and treatment
response in various clinical applications [28,45].

S(b) = S(0)×
(

f × e−b×D∗
+ (1 − f )× e−b×D

)
(1)

Below, we break down Equation (1) with reference to the physical phenomena of diffusion
and perfusion:

- S(b) represents the signal intensity measured with diffusion weighting b. This signal
is influenced by both diffusion and perfusion effects.

- S(0) is the baseline signal intensity obtained without any diffusion weighting (b = 0).
It serves as a reference point for the signal intensity.

- f is the perfusion fraction, indicating the proportion of the signal arising from perfu-
sion effects. It quantifies the contribution of perfusion to the total signal.

- D is the diffusion coefficient, characterizing the pure molecular diffusion of water
molecules within tissue. It represents the diffusion-related component of signal atten-
uation.

- D∗ is the pseudo-diffusion coefficient, which accounts for microcirculation-related
effects such as blood flow and capillary perfusion. It represents the perfusion-related
component of signal attenuation.

Next, we discuss the physical interpretations of these parameters:

- S(0): This term represents the baseline signal intensity, which is unaffected by diffu-
sion. In tissues with high cellularity or restricted diffusion, S(0) tends to be higher,
reflecting reduced water mobility.

- f : The perfusion fraction quantifies the fraction of the signal contributed by perfusion
effects. In tissues with high vascularity or blood flow, f is higher, indicating a larger
contribution of perfusion to the total signal.

- D: The diffusion coefficient represents the rate of pure molecular diffusion of water
molecules within tissue. Tissues with high cell density or structural barriers exhibit
lower D values, indicating restricted diffusion.

- D∗: The pseudo-diffusion coefficient reflects microcirculation-related effects such as
blood flow and capillary perfusion. Elevated D∗ values suggest increased microvas-
cular perfusion, as is often observed in highly vascularized tissues or regions with
increased blood flow.

Algorithm 1 presents the followed major steps in calculating the IVIM parameters.
Figure 3 reflects the algorithm in a graphical manner.

 Acquire DWI
Data 

 
 
 
 

Preprocessing 
 
 
 
 

 Initial
Parameter
Estimation 

 
D, f, D* 

Fitting
Procedure

Parameter
Optimization

Parameter
InterpretationMotion Correction  

Denoising  
Image Registration

Figure 3. Graphical presentation of Algorithm 1; the rightmost plot represents the PZ and CZ regions
for the left and right prostates using the gathered IVIM parameters.
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Algorithm 1: Major steps followed to calculate the IVIM parameters

1 Step 1: Acquire DWI Data: A series of DWI images with different diffusion
weighting factors (b-values) are acquired. The signal intensities (S(b)) are
obtained for each b-value.

2 Step 2: Preprocessing: Before fitting the IVIM model, some preprocessing steps
can be utilized. The current study utilized motion correction, denoising, and
image registration to ensure the quality and alignment of the DWI data.

3 Step 3: Initial Parameter Estimation: Initial estimates of the IVIM parameters
(S(0), f , D, D∗) are required to initialize the fitting procedure. These initial
estimates can be obtained through various methods, such as region-of-interest
(ROI) analysis, manual selection, or prior knowledge from literature.

4 Step 4: Fitting Procedure: The fitting procedure involves minimizing the
difference between the measured DWI data (S(b)) and the model-predicted
signal intensities based on the IVIM equation. Nonlinear least squares fitting is
commonly employed, which aims to minimize the sum of squared residuals. The
fitting algorithm iteratively adjusts the parameter values to minimize the
difference between the model and the measured data.

5 Step 5: Parameter Optimization: The fitting procedure continues until
convergence, where the optimal parameter values are obtained. Convergence is
typically determined based on a predefined criterion, such as reaching a specific
tolerance level or a maximum number of iterations.

6 Step 6: Parameter Interpretation: Once the optimal parameter values are
determined, they can be interpreted to gain different insights into tissue diffusion
and perfusion characteristics. For example, the perfusion fraction ( f ) provides
information about the contribution of perfusion to the overall signal, while the
diffusion coefficients (D and D∗) quantify the diffusion properties of tissue and
microcirculation-related effects.

When performing nonlinear least squares fitting, the objective is to minimize the dif-
ference/ residuals ((R)) between the measured DWI data ((Smeasured(b))) and the model-
predicted signal intensities (Sprediction(b)). This is presented in Equation (2), where Sprediction(b)
represents the model-predicted signal intensity, which can be calculated using Equation (3).
The Model in this equation refers to the trained machine learning classifier (see Section 4.4),
while (Smeasured(b)) is calculated using Equation (1).

The objective of this fitting procedure is to determine the IVIM parameter values
(S(0), f , D, D∗) that minimize the sum of squared residuals. As mentioned, the fitting
algorithm is run iteratively to adjust the parameter values with the aim of achieving this
minimization. The sum of the squares’ residuals (SSR) is presented in Equation (4), where
N reflects the number of data points. The Levenberg–Marquardt algorithm is utilized to
minimize the (SSR) value [46].

R = Smeasured(b)− Sprediction(b) (2)

Sprediction(b) = Model[(S(0), f , D, D∗)] (3)

SSR =
N

∑
i=1

R2
i =

N

∑
i=1

(
Smeasured(b)− Sprediction(b)

)2
(4)

Here, we are aiming to compare the effectiveness of the bi-exponential model’s IVIM
parameters with the mono-exponential ADC model in distinguishing between BPH and
PCa. The conventional ADC calculation was performed using Equation (5). As mentioned
earlier, the term S(b)

S(0) indicates the signal loss resulting from the movement of water in
the blood vessels at a specific b-value of the DWI scan. To reduce the impact of noise



Bioengineering 2024, 11, 629 13 of 29

and maintain the continuity of ADC, a continuity correction technique, also known as
smoothing, was used.

ADC = −
ln
(

S(b)
S(0)

)
b

(5)

4.3. Dataset Normalization

Data normalization is an essential step in the data preparation process for any research
paper. It refers to the process of transforming data into a standard format that allows
for easier analysis and comparison across different variables and samples [47]. Data
normalization is important for several reasons. First, normalizing data reduces the impact
of differences in measurement units or scales, which can lead to bias in the analysis. By
ensuring that all variables are on a common scale, no variable can unduly influence the
results. Second, normalizing data allows data from different sources or different variables
to be compared meaningfully. This is particularly important in cases where the same
variable is measured using different units of measurement. Third, normalizing the data can
help to identify and correct errors or outliers in the data. This can improve the accuracy
of the analysis and increase the validity of the research findings. Finally, normalized data
are often easier to analyze and interpret than raw data. By ensuring that the data are
in a standard format, it is easier to apply statistical techniques and perform meaningful
comparisons [48].

4.4. Classification of Lesions

In this study, the performance of various machine learning classifiers was evaluated
for the task of lesion classification. Lesion classification is a critical step in medical image
analysis, as it plays a crucial role in assisting medical professionals in diagnosing and
treating diseases [49]. Multi-Layer Perceptron Classifiers (MLP) is a type of feedforward
neural network that consists of multiple layers of nodes (neurons) and is widely used for
classification tasks. It is capable of learning complex patterns and relationships in the data.
Decision Tree (DT) is a simple yet effective classifier that uses a hierarchical structure of
decision rules to classify instances. It partitions the feature space into distinct regions based
on their feature values, then makes predictions based on the majority class in each region.
K-Nearest Neighbors (KNN) is a nonparametric classifier that assigns labels to instances
based on the labels of their nearest neighbors in the feature space. It classifies an instance
by a majority vote of its k nearest neighbors.

Extra Tree Classifier (ERTC) is an ensemble learning method that combines multiple
decision trees. It introduces randomness into the process of constructing the decision tree
by selecting random thresholds for splitting and choosing random subsets of features [50].
AdaBoost Classifier (ADA) is an ensemble learning method that combines multiple weak
classifiers to create a strong classifier. It assigns weights to instances based on their classifi-
cation errors and adjusts the weights iteratively to focus on difficult instances. Random
Forest Classifier (RFC) is an ensemble learning method that combines multiple decision
trees to make predictions. It introduces randomness by using bootstrap samples of the
training data and randomly selecting a subset of features at each split. Extra Trees Classifier
(ETC) is another ensemble learning method that combines multiple decision trees. Similar
to RFC, it introduces randomness by using bootstrap samples and random feature subsets.
Gradient Boosting Classifier (GB) is an ensemble learning method that builds a strong
classifier by iteratively adding weak classifiers. It optimizes a loss function by adjusting
the weights of the weak classifiers based on their individual performance [51].

Histogram-Based Gradient Boosting Tree Classifier (HGB) is an extension of gradient
boosting that utilizes histograms to speed up computation and improve memory efficiency.
It constructs histograms of the features and uses them to find the best splits during the
boosting process. XGBoost Classifier (XGB) is an optimized implementation of gradient
boosting that utilizes a tree-based learning algorithm. It incorporates regularization tech-
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niques and parallel computing to enhance performance and accuracy. LightGBM Classifier
(LGBM) is another gradient boosting framework that aims to achieve high efficiency and
accuracy. It uses a novel tree-based learning algorithm and employs a leaf-wise strategy for
growing the trees. These classifiers were chosen based on their effectiveness and popularity
in the field of machine learning and their suitability for the task of lesion classification. Each
classifier has its own strengths and weaknesses, and their performance can vary depending
on the specific dataset and application. By evaluating and comparing the performance of
these classifiers, this study aims to identify the most effective and accurate classifier for
lesion classification. The evaluation is based on numerous performance metrics, including
accuracy, sensitivity, specificity, F1-score, precision, and area under the receiver operating
characteristic curve (AUC-ROC), as described below [52].

4.5. Performance Measures

To analyze the effectiveness of various modalities and classifiers for the assessment
and segmentation task, multiple performance metrics were used. These metrics provide
important information on the efficiency and dependability of the suggested methods. The
accuracy of a classifier’s predictions is a metric that indicates how generally accurate it
is. It is determined by dividing the number of correctly categorized samples by the total
number of samples [53,54]. Higher accuracy reflects the classifier’s improved ability to
properly classify both positive and negative cases. Sensitivity, commonly referred to as the
true positive rate or recall, measures how well a classifier can recognize positive cases. It is
computed as the ratio of true positive samples to the total of true positive and false negative
samples [55]. An important factor in reducing false negatives is the capacity to detect
actual positive samples, which is indicated by greater sensitivity scores. The classifier’s
specificity is measured by how well it can recognize negative occurrences. The ratio of true
negative samples to the total of true negative and false positive samples is used to compute
it. In order to reduce false positives, it is crucial to have a higher specificity value, which
indicates a greater capacity to detect actual negative samples [56].

The percentage of accurately anticipated positive cases out of all expected positive
instances is known as the precision. The ratio of true positive samples to the total number
of true positive and false positive samples is used to compute it [57]. A greater precision
value denotes a reduced rate of false positives. The harmonic mean of memory and
sensitivity is known as the F1 Score [58]. When the dataset is unbalanced, this metric
can offer greater balance between precision and sensitivity. A higher value denotes a
better balance between precision and sensitivity. The F1 score takes a value between 0
and 1. The Receiver Operating Characteristic (ROC) Curve is a graphical depiction of the
classifier’s performance at different discrimination thresholds. It plots the true positive
rate (sensitivity) against the false positive rate (1-specificity) for different threshold values.
The area under the ROC curve (AUC) provides a measure of the classifier’s discrimination
ability, with a higher AUC indicating better performance [59].

Balanced Accuracy calculates the average of sensitivity and specificity. It provides an
overall measure of the classifier’s performance that takes into account both true positive
and true negative rates [60]. It is particularly useful when the dataset is imbalanced, as it
accounts for uneven distribution of the classes. The Dice coefficient quantifies the similarity
between the predicted and ground truth segmentations by calculating the ratio of the
overlap between the two to the total number of pixels in both. It provides a balanced
measure that rewards both precision and recall, making it suitable for evaluating the
segmentation of irregularly shaped lesions. Additionally, the IoU measures the overlap
between the predicted and ground truth segmentations by calculating the intersection
divided by the union of the two regions [60,61].

Figure 4 shows a visualization of the Dice coefficient and IoU metrics regarding the
segmentation. Figure 5 displays visual examples of the segmented sections for the prostate
and lesion accompanied by the corresponding true positives (TP), false positives (FP), and
false negatives (FN). The two subplots on the left depict the prostate segmentation, while
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the four subplots on the right show the lesion segmentation plotted on the whole scan
and prostate, respectively. In the images, green indicates FN, blue represents TP, orange
indicates TN, and red signifies FP.

Predicted

Union

Intersection

Intersection Over Union (IoU)

+

+

Dice Coef

Original

Figure 4. Visualization of the Dice coefficient and intersection over union metrics for segmentation.
The color scheme for the contours is as follows: yellow for the original, purple for the prediction, red
for the union, and green for the intersection.

TP
FN

FP

Prostate Segmentation Lesion Segmentation

TN
TN

TP

FP

FN

Figure 5. Images displaying visual samples of the segmented sections along with the true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN). The two subplots on the left
refer to the prostate segmentation, while the four subplots on the right refer to the lesion segmentation
plotted on the whole scan and prostate, respectively. In the images, green indicates FN, blue represents
TP, orange indicates TN, and red signifies FP.

4.6. Pseudocode for the Overall Framework

Algorithm 2 outlines the suggested detection and segmentation framework for PCa
using DW-MRI. The algorithm encompasses a multistage process, beginning with the acqui-
sition of DW-MRI images with varying diffusion weighting factors (b-values). Subsequently,
preprocessing steps, including motion correction, denoising, and image registration, are
applied to ensure data quality. The algorithm then proceeds to prostate and lesion segmen-
tation using U-net architecture variants, namely, Attention U-Net and V-Net, to identify
and separate cancerous regions. Following this, the IVIM model is employed to extract
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essential parameters such as S(0), perfusion fraction ( f ), diffusion coefficient (D), and
pseudo-diffusion coefficient (D∗). The dataset normalization step scales and centers the
DW-MRI images and IVIM parameters to a common scale. Subsequently, ML algorithms
are trained on the normalized data for cancer detection and segmentation. The final stage
involves model evaluation on a testing dataset, utilizing performance metrics such as
balanced accuracy, specificity, sensitivity, and Dice coefficient. This pseudocode encapsu-
lates a systematic approach to prostate cancer analysis, integrating imaging, mathematical
modeling, and machine learning for enhanced diagnostic capabilities.

Algorithm 2: Prostate cancer detection and segmentation framework
Data: DW-MRI Images
Result: Segmented Prostate and Lesion Regions, IVIM Parameters, Normalized

Dataset, Trained ML Model
1 Stage 1: DW-MRI Acquisition
2 Acquire DW-MRI images with varying b-values
3 Stage 2: Preprocessing
4 Motion correction, denoising, and image registration
5 Stage 3: Prostate and Lesion Segmentation
6 Utilize U-Net architecture with Attention U-Net and V-Net
7 Stage 4: Extract IVIM Parameters
8 Apply IVIM model fitting to obtain S(0), f , D, and D∗

9 Stage 5: Dataset Normalization
10 Scale and center DW-MRI images and IVIM parameters
11 Stage 6: ML Learning and Optimization
12 Train ML algorithm on normalized data for prostate cancer detection
13 Stage 7: Model Evaluation
14 Evaluate the tuned model on a testing dataset
15 Use metrics like balanced accuracy, specificity, sensitivity, and Dice coefficient

5. Experiments

The experiments conducted in this study were implemented using the Python pro-
gramming language on an environment equipped with 256 GB of RAM and a 4 GB NVIDIA
GPU. As previously mentioned, the study focused on 80 cases displaying indications of
potential prostate cancer.

Segmentation performance assessment experiment: Table 3 presents the results of
the suggested segmentation approach, showcasing the achieved accuracy, IoU, and Dice
coefficient for evaluation. The results presented in the table provide valuable insights into
the performance of different segmentation models and their impact on medical applications.
The table displays the accuracy, Dice coefficient, and intersection over union (IoU) metrics
achieved by the various models on different regions and modalities. In analyzing the results,
we observed that the segmentation models consistently achieved high accuracy across
most modalities and regions, indicating their ability to accurately segment the desired
ROIs. The Dice coefficient and IoU metrics also demonstrate a high level of agreement
between the predicted segmentation and the ground truth, validating the effectiveness of
the models. For instance, in the case of the “Axial DWI” modality, all three models (U-Net,
Attention U-Net, and V-Net) achieved accuracy levels above 96%, with Dice coefficients
and IoU values around 97%. These results highlight the models’ proficiency in accurately
segmenting lesions in DWI images, which is crucial for medical diagnosis and treatment
planning. Similarly, when examining the “T2-Weighted” modality and “Prostate” region,
the U-Net and Attention U-Net models achieved relatively high accuracy levels, while
the V-Net model showed lower performance. These results indicate that the U-Net and
Attention U-Net models are more effective in accurately segmenting the prostate region in
T2-weighted images, which is crucial for prostate cancer diagnosis and treatment planning.
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The rows highlighted in red were chosen based on their superior performance metrics, with
the aim of selecting the most suitable architecture for the segmentation task.

Table 3. Results of the suggested segmentation approach, showcasing the achieved accuracy, IoU, and
Dice coefficient for evaluation. The red colored rows reflect the best reported results for each category.

Modality Region Model Loss Accuracy Dice IoU

Axial DWI Lesion U-Net 0.112 96.56% 97.19% 97.09%

Axial DWI Lesion Attention U-Net 0.109 96.48% 96.44% 96.33%

Axial DWI Lesion V-Net 0.082 96.54% 97.26% 97.10%

Axial DWI Prostate U-Net 0.319 96.70% 98.29% 98.27%

Axial DWI Prostate Attention U-Net 0.292 96.53% 98.19% 98.17%

Axial DWI Prostate V-Net 0.119 95.63% 97.14% 97.02%

T2-Weighted Lesion U-Net 0.055 96.97% 98.32% 98.20%

T2-Weighted Lesion Attention U-Net 0.071 96.97% 98.47% 98.36%

T2-Weighted Lesion V-Net 0.051 97.89% 98.37% 98.26%

T2-Weighted Prostate U-Net 0.213 93.62% 93.27% 93.14%

T2-Weighted Prostate Attention U-Net 0.142 95.94% 96.26% 96.03%

T2-Weighted Prostate V-Net 0.160 95.45% 95.13% 95.01%

Further, Figures 6 and 7 display visual examples of the segmented sections for the
prostate and lesion of two test cases. In the images, the left column represents the scan, the
middle column represents the prostate, and the right column represents the lesion.

Comparison of IVIM parameters with ADC model: In this experiment, the aim was to
compare the effectiveness of the bi-exponential model’s IVIM parameters with the mono-
exponential ADC model in distinguishing between BPH and PCa. Table 4 compares the
performance of different modalities, specifically the IVIM parameters and the ADC model.
The evaluation metrics used to assess the performance of each modality included accuracy,
sensitivity, specificity, precision, F1 score, ROC curve, and balanced accuracy. Additionally,
the table includes information about the classifier, PCA, scaler, and best parameters for
each combination of features and modalities.
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Figure 6. Images displaying visual samples of the segmented sections for a test case. The left column
represents the scan, the middle column represents the prostate, and the right column represents the
lesion. Each row represents a scan slice.
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Figure 7. Images displaying visual samples of the segmented sections for another test case. The
left column represents the scan, the middle column represents the prostate, and the right column
represents the lesion. Each row represents a scan slice.
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Table 4. Comparison of the performance of different modalities, showing IVIM parameters versus the ADC model. The reported metrics are accuracy, sensitivity,
specificity, precision, F1 score, ROC, and balanced accuracy, with mean and standard deviation values reported for each metric. # means the number of.

Features Classifier PCA
Accuracy Sensitivity Specificity Precision F1 ROC Balanced Accuracy

Scaler Best Params
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

ADC MLP N/A 77.00% 5.540 91.86% 1.560 59.73% 12.174 73.07% 5.448 81.26% 3.493 77.86% 4.091 75.80% 5.994 L1 Normalizer Activation: TanH, HLS: 100, LR: Adaptive, Solver:
LBFGS

ADC MLP 17 79.25% 2.250 87.91% 2.712 69.19% 3.461 76.87% 2.155 81.99% 1.943 79.13% 2.235 78.55% 2.283 None Activation: ReLU, HLS: 200, LR: Adaptive, Solver:
LBFGS

PZ ADA N/A 78.23% 1.462 83.24% 2.111 71.61% 2.180 79.50% 1.286 81.31% 1.341 77.66% 1.448 77.43% 1.452 Robust LR: 1.0, # Estimators: 300,

PZ RFC 6 78.00% 1.341 85.41% 1.576 68.21% 1.557 78.03% 1.022 81.54% 1.172 77.29% 1.331 76.81% 1.335 None CW: Balanced, Criterion: Gini, MD: 15, # Estimators:
200, # PCA Components: 6

CZ DT N/A 73.82% 3.493 92.30% 2.706 35.83% 8.094 74.79% 2.573 82.60% 2.214 70.21% 2.950 64.07% 4.509 Robust Criterion: Entropy, MD: 5, Splitter: Random

CZ MLP 4 70.64% 3.016 82.57% 4.207 46.11% 3.557 75.88% 1.509 79.05% 2.508 66.93% 2.827 64.34% 2.699 Min Max Activation: ReLU, HLS: 100, LR: Adaptive, # PCA Com-
ponents: 4, Solver: LBFGS

CZ + PZ RFC N/A 84.08% 1.144 93.24% 1.351 71.96% 1.964 81.48% 1.071 86.96% 0.930 83.30% 1.134 82.60% 1.192 Standardization CW: None, Criterion: Gini, MD: 5, # Estimators: 100

CZ + PZ DT 8 77.54% 2.403 84.59% 2.847 68.21% 3.977 77.91% 2.256 81.08% 2.020 76.88% 2.401 76.40% 2.490 None Criterion: Entropy, MD: 5, # PCA Components: 8, Split-
ter: Best

MLP: Multi-Layer Perceptron Classifier; DT: Decision Tree, RFC: Random Forest Classifier; ADA: AdaBoost Classifier; LR: Learning Rate; HLS: Hidden Layer Sizes; CW: Class Weight;
MD: Max Depth; Std: Standard Deviation.
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Looking at the ADC model, it is evident that the multi-layer perceptron (MLP) classifier
achieves a mean accuracy of 77.00% with a standard deviation of 5.540. The sensitivity and
specificity values are 91.86% and 59.73%, respectively, indicating higher ability to detect
true positive samples compared to true negative samples. The precision and F1 score are
73.07% and 81.26%, respectively, indicating a good balance between precision and recall.
The area under the ROC curve (AUC) is 77.86%, suggesting a reasonable discrimination
ability. The balanced accuracy, which considers both sensitivity and specificity, is 75.80%.
The best scaler for this modality is the L1 normalizer, and the best parameters for the MLP
classifier are as follows: activation, TanH; hidden layer size, 100; learning rate, adaptive;
solver, LBFGS.

For the ADC model with PCA (17 components), the performance improves slightly.
The mean accuracy increases to 79.25%, with a lower standard deviation of 2.250. The
sensitivity remains high at 87.91%, while the specificity increases to 69.19%. The precision
and F1 score improve to 76.87% and 81.99%, respectively. The AUC is 79.13%, the balanced
accuracy is 78.55%, and the best parameters for the MLP classifier are as follows: activation,
ReLU; hidden layer size, 200; learning rate, adaptive; solver, LBFGS. The inclusion of PCA
components enhances the performance by capturing the most relevant information from
the data.

Moving on to the prostate zone (PZ), the AdaBoost classifier achieves a mean accuracy
of 78.23% with a standard deviation of 1.462. The sensitivity and specificity values are
83.24% and 71.61%, respectively, indicating a balanced ability to detect true positive and
true negative samples. The precision and F1 score are 79.50% and 81.31%, respectively,
indicating good overall performance. The AUC and balanced accuracy are 77.66% and
77.43%, respectively. The best scaler for this modality is “Robust,” and the best parameters
for the AdaBoost classifier are a learning rate 1.0 and 300 estimators.

When using the random forest classifier (RFC) with PCA (6 components) for the PZ,
the mean accuracy is slightly lower at 78.00%, with a standard deviation of 1.341. The
sensitivity remains high at 85.41%, while the specificity decreases to 68.21%. The precision
and F1 score are 78.03% and 81.54%, respectively. The AUC is 77.29%, the balanced
accuracy is 76.81%, and the best parameters for the RFC classifier are as follows: class
weight, balanced; criterion, Gini; max depth, 15; number of estimators, 200; number of PCA
components, 6. Overall, both classifiers perform well for the PZ, with AdaBoost showing
slightly better results.

Moving on to the central zone (CZ), the decision tree (DT) classifier without PCA
achieves a mean accuracy of 73.82% with a standard deviation of 3.493. The sensitivity is
high at 92.30%, while the specificity is considerably lower at 35.83%. The precision and F1
score are 74.79% and 82.60%, respectively. The AUC and balanced accuracy are 70.21% and
64.07%, respectively. The best scaler for this modality is “Robust,” and the best parameters
for the DT classifier are the entropy criterion and a maximum depth of 5.

When utilizing the MLP classifier with PCA (4 components) for the CZ, the mean
accuracy decreases to 70.64%, with a standard deviation of 3.016. The sensitivity remains
high at 82.57%, while the specificity increases to 46.11%. The precision and F1 score are
75.88% and 79.05%, respectively. The AUC and balanced accuracy are 66.93% and 64.34%,
respectively. The best scaler for this modality is “Min Max,” and the best parameters for
the MLP classifier are as follows: activation, ReLU; hidden layer size, 100; learning rate,
adaptive; number of PCA components, 4; solver, LBFGS.

When combining the CZ and PZ features, the RFC classifier achieves a mean accuracy
of 84.08% with a standard deviation of 1.144. The sensitivity and specificity values are
93.24% and 71.96%, respectively. The precision and F1 score are 81.48% and 86.96%, respec-
tively, indicating high overall performance. The AUC and balanced accuracy are 83.30%
and 82.60%, respectively. The best scaler for this combined modality is “Standardization,”
and the best parameters for the RFC classifier are as follows: class weight, none; criterion,
Gini; maximum depth, 5; number of estimators, 100.
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Finally, when combining the CZ and PZ features with the DT classifier and PCA
(8 components), the mean accuracy is 77.54%, with a standard deviation of 2.403. The
sensitivity and specificity are 84.59% and 68.21%, respectively. The precision and F1 score
are 77.91% and 81.08%, respectively. The AUC and balanced accuracy are 76.88% and
76.40%, respectively. The best parameters for the DT classifier are the entropy criterion, a
maximum depth of 5, and eight PCA components.

Overall, the best performance is achieved by the combination of the CZ and PZ features
and the RFC classifier, resulting in an accuracy of 84.08% and a balanced accuracy of
82.60%. This combination demonstrates high sensitivity (93.24%) and reasonable specificity
(71.96%) along with good precision (81.48%) and F1 score (86.96%). The best scaler for this
combination is “Standardization,” and the best parameters for the RFC classifier are as
follows: class weight, none; criterion, Gini; max depth, 5; number of estimators, 100.

Related Studies: Segmentation Comparison

Table 5 provides a comprehensive comparison between our proposed segmentation
approach and related studies, showcasing the accuracy, Dice coefficient, and AUC metrics.
Our approach stands out by achieving higher accuracy and Dice coefficient values for both
prostate and lesion segmentation compared to previous studies. This indicates that our
approach provides more accurate and precise segmentation results, which has significant
medical implications. In the medical field, accurate segmentation of prostate and lesion
regions is crucial for diagnosis, treatment planning, and disease monitoring, particularly
for PCa. Precise segmentation enables clinicians to accurately analyze the size, shape,
and location of the prostate or the lesions, aiding in treatment decisions and assessment
of treatment response over time. Additionally, precise segmentation can help to reduce
unnecessary biopsies or surgeries and improve overall patient outcomes.

In the context of prostate classification, the accuracy and AUC of the current approach
are reasonable, but are not the highest achieved among all the mentioned studies. Chal-
lenges in tumor classification might stem from the intricacies of tumor detection in medical
images, which often require specialized techniques and fine-tuning to achieve optimal
accuracy. Further optimization and fine-tuning of the machine learning model used in the
current approach could potentially improve its classification performance.

Unfortunately, the two studies conducted by Meng et al. [32] and Hu et al. [33] in
2023, while being relevant to lesion segmentation, chose to employ manual segmentation
methodologies rather than exploring automatic segmentation approaches. As a result, these
studies do not contribute to the evaluation of automatic segmentation techniques as the
focus of their investigation.

The current study also introduces an expansion of the segmentation evaluation land-
scape, with novel results for both prostate and lesion segmentation employing T2-weighted
images. Notably, this approach achieves an accuracy of 0.9594 and a Dice coefficient
of 0.9626 for prostate segmentation using T2-weighted images, while attaining an even
higher accuracy of 0.9789 and a Dice coefficient of 0.9837 for lesion segmentation with the
same modality.

The suggested approach stands out, as it achieves higher accuracy and Dice coefficient
values for both prostate and lesion segmentation compared to the previous studies. This
indicates that the suggested approach provides more accurate and precise segmentation
results, which can have significant medical implications. In the medical field, accurate
segmentation of prostate and lesion regions plays a crucial role in diagnosis, treatment
planning, and monitoring of diseases such as prostate cancer. Accurate segmentation
allows clinicians to precisely analyze the size, shape, and location of the prostate or lesions,
aiding in treatment decisions and the assessment of treatment response over time. Addi-
tionally, precise segmentation can assist in reducing unnecessary biopsies or surgeries and
improving overall patient outcomes.
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Table 5. Comparison between the suggested approach and related studies, showcasing the metrics of accuracy, Dice coefficient, and AUC. ↑ means the more the
value, the better the metric. ✓means achieved by the study.

Study Year Region Methodology Classification Segmentation Extracted Parameters Accuracy ↑ Dice ↑ AUC ↑

Li et al. [35] 2018 Prostate SVM-Gaussian ✓ IVIM and ADC - - 0.91

Liu et al. [39] 2019 Lesion Mask R-CNN and Weakly Supervised Deep
Neural Network

✓ ✓ ADC - - 0.92

Chen et al. [24] 2020 Lesion SVM ✓ IVIM - - 0.786

Akamine et al. [36] 2020 Prostate Hierarchical clustering (HC) ✓ IVIM, DKI, and permeability 0.978 - -

sen et al. [34] 2022 Lesion Deep Learning ✓ ADC, IVIM, DKI, and VERDICT - - 0.9086

Alkadi et al. [37] 2022 Lesion Generic FeedForward Neural Network ✓ ADC and IVIM 0.9 - 0.978

Meng et al. [32] 2023 Lesion Logistic regression models ✓ IVIM and clinical characteristics Manual

Hu et al. [33] 2023 Lesion Statistical analysis ✓ ✓ 3D APTw, DWI, and IVIM Manual

Suggested Approach 2024

Prostate (Axial DWI) U-Net,

✓
IVIM and ADC

0.9670 0.9829 -

Lesion (Axial DWI) Attention U-Net, 0.9654 0.9726 -

Prostate (T2-Weighted) and V-Net 0.9594 0.9626 -

Lesion (T2-Weighted) 0.9789 0.9837 -

Tumor Machine Learning ✓ 0.8408 0.8696 0.8330
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6. Discussion

The present study represents a significant advancement in the field of PCa detec-
tion and diagnosis by introducing a comprehensive framework that combines DW-MRI
with ML techniques. The study’s objectives were successfully met, as evidenced by the
developed cascaded framework for PCa detection and segmentation, the utilization of
the U-Net architecture for accurate prostate and lesion segmentation, the extraction of
IVIM parameters from DW-MRI images, and the comparison of IVIM parameters with the
conventional ADC model. These contributions collectively enhance the understanding of
noninvasive methods for early detection and diagnosis of PCa, with a particular focus on
the CZ and PZ of the prostate. The utilization of the cascaded framework for PCa detection
and segmentation represents a novel approach that streamlines the process of identifying
and localizing PCa lesions. By integrating multiple stages, including image acquisition,
prostate and lesion segmentation, IVIM parameter extraction, dataset normalization, learn-
ing and optimization, and model evaluation, the proposed framework ensures systematic
and accurate analysis of DW-MRI data. This systematic approach contributes to the reliable
identification of PCa lesions and the subsequent enhancement of diagnostic accuracy.

The application of the U-net architecture to prostate and lesion segmentation is a
significant advancement in the field of PCa detection. This architecture’s effectiveness
in accurately locating and separating PCa lesions within the prostate region underscores
the potential of deep learning techniques for improving segmentation precision. The
successful segmentation of prostate and lesion regions using the U-net architecture provides
a solid foundation for subsequent analyses and contributes to the overall reliability of the
proposed framework. Furthermore, the experiments conducted in this study aimed to
assess the performance of a proposed segmentation approach for prostate cancer diagnosis
and treatment planning. The results presented in Table 3 offer valuable insights into the
effectiveness of different segmentation models across various modalities and regions.

In our evaluation of segmentation performance, diverse models consistently achieved
remarkable accuracy levels. Notably, in the “Axial DWI” modality, all models attained
accuracy surpassing 96%, accompanied by Dice coefficients and IoU values nearing 97%.
Additionally, in T2-weighted images, both the U-Net and Attention U-Net models exhibited
superior proficiency in precisely delineating the prostate region, which holds critical sig-
nificance for diagnosis and treatment planning. This superior performance in segmenting
the prostate region in T2-weighted images suggests their suitability for prostate cancer
diagnosis and treatment planning. Comparing our results with previous studies, it becomes
evident that the suggested segmentation approach outperforms several previous investiga-
tions in terms of accuracy and spatial overlap. This superiority is especially noteworthy
considering the diverse range of segmentation outcomes observed in different studies. The
high accuracy and Dice coefficient values achieved by the proposed approach emphasize its
potential for improving medical image analysis and enhancing the reliability of diagnosis
and treatment decisions.

The extraction of IVIM parameters from DW-MRI images represents a key innovation
in this study. The IVIM model’s ability to capture information about tissue microstructure
through molecular diffusion and microcirculation processes enriches the diagnostic poten-
tial of the proposed framework. The inclusion of IVIM parameters enhances the accuracy
of PCa detection and diagnosis by providing valuable insights into tissue characteristics
that are not captured by conventional ADC models. This integration of advanced diffusion
modeling techniques enhances the framework’s ability to differentiate between benign
BPH and PCa, contributing to more accurate diagnostic outcomes.

A thorough comparative analysis between IVIM parameters and the widely-utilized
ADC model underscores the superiority of the IVIM-based approach. Employing the
MLP classifier yielded a mean accuracy of 77.00%, with sensitivity and specificity values
of 91.86% and 59.73%, respectively. The integration of PCA with seventeen components
further elevated the accuracy to 79.25%. Particularly noteworthy was the amalgamation of
features from the CA and PZ using the RFC, which demonstrated outstanding performance,
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achieving an accuracy of 84.08% and a balanced accuracy of 82.60%. These results under-
score the potential of the proposed methodologies in advancing medical image analysis
for prostate cancer diagnosis and treatment planning. Such findings pave the way for en-
hanced PCa management, offering promising prospects for refining patient care, treatment
outcomes, and healthcare efficiency.

Our proposed segmentation approach and the comparative analysis of IVIM param-
eters and the ADC model offer significant contributions to the field of medical imaging
and PCa diagnosis. Accurate segmentation is crucial for precise disease assessment and
treatment planning, ultimately leading to improved patient outcomes. The ability to differ-
entiate between BPH and PCa using noninvasive imaging techniques holds considerable
promise for early detection and personalized treatment. Overall, the findings presented
in this manuscript pave the way for improved medical imaging methodologies and more
informed clinical decision-making in PCa management.

7. Conclusions and Future Directions

This study significantly advances prostate cancer (PCa) detection and diagnosis
through the integration of intravoxel incoherent motion (IVIM) imaging and machine
learning. In light of the grave global health implications and economic burdens of PCa,
early detection is vital. This study’s novel approach, driven by IVIM imaging and ma-
chine learning, has the potential to revolutionize PCa management and improve patient
outcomes. Our research introduces a comprehensive framework combining IVIM imaging
and machine learning to enhance the accuracy of PCa detection and diagnosis. This frame-
work encompasses various stages, including image acquisition, precise prostate and lesion
segmentation, IVIM parameter extraction, dataset normalization, machine learning-based
optimization, and model evaluation. This structured methodology ensures precise lesion
identification and localization, ultimately improving diagnostic accuracy and treatment
planning.

The adoption of U-net architectures for prostate and lesion segmentation represents
a significant advancement in PCa detection. The success of the U-net architectures in
accurately identifying and segmenting PCa lesions within the prostate demonstrates the
potential of artificial intelligence for enhancing segmentation precision. This achievement
serves as a strong foundation for further analyses and reinforces the overall credibility
of the developed framework. This study’s proposed segmentation approach for PCa
diagnosis and treatment planning has yielded impressive outcomes. In the segmentation
performance assessment, various models consistently achieved high accuracy levels. This
was particularly notable in the “Axial DWI” modality, where all models attained accuracy
above 96%, accompanied by Dice coefficients and IoU values around 97%. Moreover,
in T2-weighted images, the U-Net and Attention U-Net models demonstrated superior
proficiency in accurately delineating the prostate region, which is crucial for diagnosis and
treatment planning.

The integration of IVIM parameters into the diagnostic framework represents a pivotal
innovation. By capturing microstructural information through molecular diffusion and
microcirculation processes, the IVIM model enhances the accuracy of PCa detection and
diagnosis. This integration provides insights into tissue characteristics overlooked by
conventional ADC models, significantly improving the ability to differentiate between
benign BPH and PCa. A compelling comparative analysis between IVIM parameters and
the widely-used apparent diffusion coefficient (ADC) model demonstrates the superiority
of the IVIM-based approach. The MLP classifier achieved a mean accuracy of 77.00%,
with sensitivity and specificity values of 91.86% and 59.73%, respectively. Incorporating
PCA with seventeen components enhanced the accuracy to 79.25%. Notably, combining
features from the central zone (CZ) and prostate zone (PZ) with the RFC classifier yielded
the best performance, boasting an accuracy of 84.08% and a balanced accuracy of 82.60%,
highlighting the potential of the proposed methodologies in advancing medical image
analysis for prostate cancer diagnosis and treatment planning. These findings pave the
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way for improved PCa management, demonstrating potential improvements in patient
care, treatment outcomes, and healthcare efficiency.

Future directions: While this study represents a pivotal advancement in PCa detection
and diagnosis, there remain promising avenues for future exploration. The expansion of
the dataset to accommodate a broader diversity of cases and demographics could refine
and validate the robustness of the developed framework. Integrating additional imaging
modalities such as multiparametric MRI could further enrich the diagnostic power of the
CAD system. Advanced feature selection and fusion techniques stand to augment the
discriminatory capabilities of the CAD system. Incorporating clinical data, including patient
histories and biomarker profiles, could facilitate personalized risk assessment and treatment
planning, elevating the CAD system’s clinical utility. The eventual implementation of the
proposed IVIM-based CAD system within clinical settings holds substantial promise for
enhancing PCa management. Conducting rigorous clinical validation studies is imperative
in order to establish the real-world efficacy of the CAD system. Collaborations with medical
practitioners and radiologists could provide valuable insights for refining and fine-tuning
the CAD system’s performance. As technology continues to evolve, continuous updates
to the CAD system could integrate the latest advancements in both IVIM imaging and
machine learning techniques, ensuring its relevance and accuracy in an ever-changing
medical landscape.
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