A Multi-View Deep Learning Model for Thyroid Nodules Detection and Characterization in Ultrasound Imaging
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cancer of the Thyroid—Cancer Stat Facts. In SEER. Available online: https://seer.cancer.gov/statfacts/html/thyro.html (accessed on 8 March 2023).
- Doghish, A.S.; El-Mahdy, H.A.; Ismail, A.; Hegazy, M.; Mokhtar, M.M.; Elkhawaga, S.Y.; Elkady, M.A.; Yehia, A.M.; Elsakka, E.G.E. Significance of miRNAs on the thyroid cancer progression and resistance to treatment with special attention to the role of cross-talk between signaling pathways. Pathol. Res. Pract. 2023, 243, 154371. [Google Scholar] [CrossRef] [PubMed]
- Kangelaris, G.T.; Kim, T.B.; Orloff, L.A. Role of ultrasound in thyroid disorders. Otolaryngol. Clin. N. Am. 2010, 43, 1209–1227. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Kim, E.-K.; Park, S.I.; Kim, B.M.; Kwak, J.Y.; Kim, S.J.; Youk, J.H.; Park, S.H. US-guided fine-needle aspiration of thyroid nodules: Indications, techniques, results. Radiographics 2008, 28, 1869–1886, discussion 1887. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, R.; Kapoor, T.; Alam, M.N.; Galimzianova, A.; Syed, S.A.; Ugur Akdogan, M.; Alkim, E.; Wentland, A.L.; Madhuripan, N.; Goff, D.; et al. Toward Reduction in False-Positive Thyroid Nodule Biopsies with a Deep Learning-based Risk Stratification System Using US Cine-Clip Images. Radiol. Artif. Intell. 2022, 4, e210174. [Google Scholar] [CrossRef]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Grani, G.; Lamartina, L.; Cantisani, V.; Maranghi, M.; Lucia, P.; Durante, C. Interobserver agreement of various thyroid imaging reporting and data systems. Endocr. Connect. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Low, G.; Bara, M.; Du, Y.; Katlariwala, P.; Croutze, R.; Resch, K.; Porter, J.; Sam, M.; Wilson, M. Tips for improving consistency of thyroid nodule interpretation with ACR TI-RADS. J. Ultrason. 2022, 22, e51–e56. [Google Scholar] [CrossRef]
- Li, W.; Sun, Y.; Xu, H.; Shang, W.; Dong, A. Systematic Review and Meta-Analysis of American College of Radiology TI-RADS Inter-Reader Reliability for Risk Stratification of Thyroid Nodules. Front. Oncol. 2022, 12, 840516. [Google Scholar] [CrossRef]
- Fresilli, D.; David, E.; Pacini, P.; Del Gaudio, G.; Dolcetti, V.; Lucarelli, G.T.; Di Leo, N.; Bellini, M.I.; D’Andrea, V.; Sorrenti, S.; et al. Thyroid Nodule Characterization: How to Assess the Malignancy Risk. Update of the Literature. Diagnostics 2021, 11, 1374. [Google Scholar] [CrossRef]
- Chang, T.-C. The Role of Computer-aided Detection and Diagnosis System in the Differential Diagnosis of Thyroid Lesions in Ultrasonography. J. Med. Ultrasound 2015, 23, 177–184. [Google Scholar] [CrossRef]
- Buda, M.; Wildman-Tobriner, B.; Hoang, J.K.; Thayer, D.; Tessler, F.N.; Middleton, W.D.; Mazurowski, M.A. Management of Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists. Radiology 2019, 292, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Anari, S.; Tataei Sarshar, N.; Mahjoori, N.; Dorosti, S.; Rezaie, A. Review of Deep Learning Approaches for Thyroid Cancer Diagnosis. Math. Probl. Eng. 2022, 2022, 5052435. [Google Scholar] [CrossRef]
- Yu, X.; Wang, H.; Ma, L. Detection of Thyroid Nodules with Ultrasound Images Based on Deep Learning. Curr. Med. Imaging Rev. 2020, 16, 174–180. [Google Scholar] [CrossRef]
- Sharifi, Y.; Bakhshali, M.A.; Dehghani, T.; DanaiAshgzari, M.; Sargolzaei, M.; Eslami, S. Deep learning on ultrasound images of thyroid nodules. Biocybern. Biomed. Eng. 2021, 41, 636–655. [Google Scholar] [CrossRef]
- Alghanimi, G.B.; Aljobouri, H.K.; Al-shimmari, K.A. CNN and ResNet50 Model Design for Improved Ultrasound Thyroid Nodules Detection. In Proceedings of the 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain, 28–29 January 2024; pp. 1000–1004. [Google Scholar]
- Song, J.; Chai, Y.J.; Masuoka, H.; Park, S.W.; Kim, S.J.; Choi, J.Y.; Hyoun-Joong, K.; Eun, L.K.; March, L.J.; Nojun, K.; et al. Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules. Medicine 2019, 98, e15133. [Google Scholar] [CrossRef]
- Zhu, P.-S.; Zhang, Y.-R.; Ren, J.-Y.; Li, Q.-L.; Chen, M.; Sang, T.; Li, W.-X.; Li, J.; Cui, X.-W. Ultrasound-based deep learning using the VGGNet model for the differentiation of benign and malignant thyroid nodules: A meta-analysis. Front. Oncol. 2022, 12, 944859. [Google Scholar] [CrossRef] [PubMed]
- Namsena, P.; Songsaeng, D.; Keatmanee, C.; Klabwong, S.; Kunapinun, A.; Soodchuen, S.; Tarathipayakul, T.; Tanasoontrarat, W.; Ekpanyapong, M.; Dailey, M.N. Diagnostic performance of artificial intelligence in interpreting thyroid nodules on ultrasound images: A multicenter retrospective study. Quant. Imaging Med. Surg. 2024, 14, 3676–3694. [Google Scholar] [CrossRef] [PubMed]
- Sankar, S.; Potti, A.; Chandrika, G.N.; Ramasubbareddy, S. Thyroid disease prediction using XGBoost algorithms. J. Mob. Multimed. 2022, 18, 1–18. [Google Scholar] [CrossRef]
- Müller, D.; Soto-Rey, I.; Kramer, F. An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks. IEEE Access 2022, 10, 66467–66480. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar Mahanti, G.; Panda, G.; Singh, A. Thyroid Nodules Classification using Weighted Average Ensemble and D-CRITIC Based TOPSIS Methods for Ultrasound Images. Curr. Med. Imaging Rev. 2023. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Qian, L.; Wang, Z.; Hu, X. Deep learning diagnostic performance and visual insights in differentiating benign and malignant thyroid nodules on ultrasound images. Exp. Biol. Med. 2023, 248, 2538–2546. [Google Scholar] [CrossRef]
- Zhang, F.; Russell, Y.X.; Guber, H.A. Transverse and Longitudinal Ultrasound Location of Thyroid Nodules and Risk of Thyroid Cancer. Endocr. Pract. 2021, 27, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.-L.; Ma, S.-Y.; Zhou, L.; Yu, C.; Xu, H.-S.; Xu, L.-L.; Li, S.-Y. Diagnostic performance of artificial intelligence-based computer-aided diagnosis system in longitudinal and transverse ultrasonic views for differentiating thyroid nodules. Front. Endocrinol. 2023, 14, 1137700. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, T.J.; Huemann, Z.; Hu, J.; Rahmim, A. A Guide to Cross-Validation for Artificial Intelligence in Medical Imaging. Radiol. Artif. Intell. 2023, 5, e220232. [Google Scholar] [CrossRef] [PubMed]
- Ragab, M.G.; Abdulkadir, S.J.; Muneer, A.; Alqushaibi, A.; Sumiea, E.H.; Qureshi, R.; Al-Selwi, S.M.; Alhussian, H. A Comprehensive Systematic Review of YOLO for Medical Object Detection (2018 to 2023). IEEE Access 2024, 12, 57815–57836. [Google Scholar] [CrossRef]
- Horvat, M.; Gledec, G. A comparative study of YOLOv5 models performance for image localization and classification. In Proceedings of the 33rd Central European Conference on Information and Intelligent Systems (CECIIS), Dubrovnik, Croatia, 21–23 September 2022; p. 349. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York, NY, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Xie, Y.; Yu, W.; Song, S.; Wang, W.; Gao, W.; Jia, Y.; Wen, S.; Wang, C.; Wang, S. Thyroid disease diagnosis based on feature interpolation and dynamic weighting ensemble model. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, Y.-G.; Ahn, Y.; Park, S.; Kong, H.J.; Choi, J.Y.; Kim, K.; Nam, I.-C.; Lee, M.-C.; Masuoka, H.; et al. Investigation of optimal convolutional neural network conditions for thyroid ultrasound image analysis. Sci. Rep. 2023, 13, 1360. [Google Scholar] [CrossRef] [PubMed]
- Brito, J.P.; Gionfriddo, M.R.; Al Nofal, A.; Boehmer, K.R.; Leppin, A.L.; Reading, C.; Callstrom, M.; Elraiyah, T.A.; Prokop, L.J.; Stan, M.N.; et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: Systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2014, 99, 1253–1263. [Google Scholar] [CrossRef]
- Jin, Z.; Pei, S.; Ouyang, L.; Zhang, L.; Mo, X.; Chen, Q.; You, J.; Chen, L.; Zhang, B.; Zhang, S. Thy-Wise: An interpretable machine learning model for the evaluation of thyroid nodules. Int. J. Cancer 2022, 151, 2229–2243. [Google Scholar] [CrossRef]
- Ma, J.; Wu, F.; Zhu, J.; Xu, D.; Kong, D. A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 2017, 73, 221–230. [Google Scholar] [CrossRef]
- Wang, L.; Yang, S.; Yang, S.; Zhao, C.; Tian, G.; Gao, Y.; Chen, Y.; Lu, Y. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network. World J. Surg. Oncol. 2019, 17, 12. [Google Scholar] [CrossRef]
- He, L.-T.; Chen, F.-J.; Zhou, D.-Z.; Zhang, Y.-X.; Li, Y.-S.; Tang, M.-X.; Tang, J.-X.; Liu, S.; Chen, Z.-J.; Tang, Q. A Comparison of the Performances of Artificial Intelligence System and Radiologists in the Ultrasound Diagnosis of Thyroid Nodules. Curr. Med. Imaging Rev. 2022, 18, 1369–1377. [Google Scholar]
- Slabaugh, G.; Beltran, L.; Rizvi, H.; Deloukas, P.; Marouli, E. Applications of machine and deep learning to thyroid cytology and histopathology: A review. Front. Oncol. 2023, 13, 958310. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.W.; Choi, I.J.; Kang, J.Y.; Jang, W.I.; Lee, G.-H.; Lee, M.-C. Ultrasonographic Thyroid Nodule Classification Using a Deep Convolutional Neural Network with Surgical Pathology. J. Digit. Imaging 2020, 33, 1202–1208. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, C.; Wang, Q.; Zhang, H.; Shi, L.; Zhang, Z. A deep learning-based method for detecting and classifying the ultrasound images of suspicious thyroid nodules. Med. Phys. 2021, 48, 7959–7970. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Yu, Y.; Wu, T.; Xu, X.; Dai, Q.; Kong, H.; Zhang, L.; Yu, W.; Leng, X.; Qiu, W.; et al. Deep learning for the diagnosis of suspicious thyroid nodules based on multimodal ultrasound images. Front. Oncol. 2022, 12, 1012724. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Xie, R.; Zhao, Y.; Zhao, Z.; Xu, D.; Ding, M.; Lin, T.; Xu, W.; Nie, Z.; Miao, E.; et al. A machine learning-based approach to predicting the malignant and metastasis of thyroid cancer. Front. Oncol. 2022, 12, 938292. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Gao, M.; Yu, R.; Liu, Z.; Gu, Q.; Liu, X.; Zheng, Z.; Zheng, X.; Zhu, J.; Zhang, S. Ensemble Deep Learning Model for Multicenter Classification of Thyroid Nodules on Ultrasound Images. Med. Sci. Monit. 2020, 26, e926096. [Google Scholar] [CrossRef]
- Koh, J.; Lee, E.; Han, K.; Kim, E.K.; Son, E.J.; Sohn, Y.M.; Seo, M.; Kwon, M.-R.; Yoon, J.H.; Lee, J.H.; et al. Diagnosis of thyroid nodules on ultrasonography by a deep convolutional neural network. Sci. Rep. 2020, 10, 15245. [Google Scholar] [CrossRef] [PubMed]
TIRAD Score | Sensitivity | Specificity |
---|---|---|
TIRAD < 1 | 97% | 11% |
TIRAD < 2 | 97% | 13% |
TIRAD < 3 | 78% | 34% |
TIRAD < 4 | 36% | 86% |
Ground Truth | Prediction | TIRAD Score | Percent |
---|---|---|---|
Benign | Benign | TIRAD > 3 | 8.4% (23/81) |
Benign | Benign | TIRAD ≤ 3 | 18.5% (15/81) |
Benign | Malignant | TIRAD ≤ 3 | 0 |
Benign | Malignant | TIRAD > 3 | 6.17% (5/81) |
Malignant | Malignant | TIRAD > 3 | 33.3% (27/81) |
Malignant | Malignant | TIRAD ≤ 3 | 3.7% (3/81) |
Malignant | Benign | TIRAD > 3 | 6.17% (5/81) |
Malignant | Benign | TIRAD ≤ 3 | 3.7% (3/81) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahdati, S.; Khosravi, B.; Robinson, K.A.; Rouzrokh, P.; Moassefi, M.; Akkus, Z.; Erickson, B.J. A Multi-View Deep Learning Model for Thyroid Nodules Detection and Characterization in Ultrasound Imaging. Bioengineering 2024, 11, 648. https://doi.org/10.3390/bioengineering11070648
Vahdati S, Khosravi B, Robinson KA, Rouzrokh P, Moassefi M, Akkus Z, Erickson BJ. A Multi-View Deep Learning Model for Thyroid Nodules Detection and Characterization in Ultrasound Imaging. Bioengineering. 2024; 11(7):648. https://doi.org/10.3390/bioengineering11070648
Chicago/Turabian StyleVahdati, Sanaz, Bardia Khosravi, Kathryn A. Robinson, Pouria Rouzrokh, Mana Moassefi, Zeynettin Akkus, and Bradley J. Erickson. 2024. "A Multi-View Deep Learning Model for Thyroid Nodules Detection and Characterization in Ultrasound Imaging" Bioengineering 11, no. 7: 648. https://doi.org/10.3390/bioengineering11070648
APA StyleVahdati, S., Khosravi, B., Robinson, K. A., Rouzrokh, P., Moassefi, M., Akkus, Z., & Erickson, B. J. (2024). A Multi-View Deep Learning Model for Thyroid Nodules Detection and Characterization in Ultrasound Imaging. Bioengineering, 11(7), 648. https://doi.org/10.3390/bioengineering11070648