Finite Element Analysis of Cervical Spine Kinematic Response during Ejection Utilising a Hill-Type Dynamic Muscle Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modelling
Mathematical Modelling of Skeletal Muscles
2.2. Boundary and Loading Conditions
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tortora, G.J.; Grabowski, S.R. Introduction to Human Body: The Essentials of Anatomy and Physiology, 5th ed.; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Marieb, E.; Keller, S. Essentials of Human Anatomy and Physiology, 10th ed.; PEARSON Education Limited: London, UK, 2016; 317p. [Google Scholar]
- Pearce, E. Anatomy and Physiology for Nurses: Including Notes on Their Clinical Application, 16th ed.; Faber & Faber: London, UK, 1975. [Google Scholar]
- Pashaei, M.; Babakhani, F.; Banihashemi, K. Evaluation of surface electromyography of selected neck muscles during the whiplash mechanism in aware and unaware conditions due to safe punching in kickboxing. BMC Musculoskelet. Disord. 2023, 24, 429. [Google Scholar] [CrossRef] [PubMed]
- Li, T.C.; Liu, C.J.; Liu, S.Y.; Wang, X.; Feng, J.J.; Wang, J.T.; Du, C.F. Effect of muscle activation on dynamic responses of neck of pilot during emergency ejection: A finite element study. Med. Biol. Eng. Comput. 2023, 61, 2255–2268. [Google Scholar] [CrossRef] [PubMed]
- Sadegh, A.M.; Tchako, A. Vertebral stress of a cervical spine model under dynamic load. Technol. Health Care Off. J. Eur. Soc. Eng. Med. 2000, 8, 143–154. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, H.; Teo, E.C.; Gu, Y. Finite Element Analysis of Head-Neck Kinematics in Rear-End Impact Conditions with Headrest. Bioengineering 2023, 10, 1059. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.G.; Ostler, D. The geometry of high angle of attack maneuvers and the implications for Gy-induced neck injuries. Aviat. Space Environ. Med. 2011, 82, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Teo, E.C.; Zhang, Q.H.; Tan, K.W. Effect of muscles activation on head-neck complex under simulated ejection. J. Musculoskelet. Res. 2004, 8, 155–165. [Google Scholar] [CrossRef]
- Panzer, M.B.; Fice, J.B.; Cronin, D.S. Cervical spine response in frontal crash. Med. Eng. Phys. 2011, 33, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Jost, R.; Nurick, G.N. Development of a finite element model of the human neck subjected to high g-level lateral deceleration. Int. J. Crashworthiness 2000, 5, 259–270. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Teo, E.C.; Ng, H.W. Development and validation of a C0-C7FE complex for biomechanical study. J. Biomech. Eng. Trans. Asme 2005, 127, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Gilad, I.; Nissan, M. A study of vertebra and disc geometric relations of the human cervical and lumbar spine. Spine 1986, 11, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, S.; Yoganandan, N.; Pintar, F.A. Finite element modeling approaches of human cervical spine facet joint capsule. J. Biomech. 1998, 31, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.C.; Goldsmith, W. Response of a human head/neck/upper-torso replica to dynamic loading--II. Analytical/numerical model. J. Biomech. 1987, 20, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Shirazi-Adl, S.A.; Shrivastava, S.C.; Ahmed, A.M. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Spine 1984, 9, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Goel, V.K.; Clausen, J.D. Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach. Spine 1998, 23, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Vasavada, A.N.; Li, S.P.; Delp, S.L. Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles. Spine 1998, 23, 412–422. [Google Scholar] [CrossRef]
- Yoganandan, N.; Kumaresan, S.; Pintar, F.A. Geometric and mechanical properties of human cervical spine ligaments. J. Biomech. Eng. Trans. Asme 2000, 122, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Kim, Y.E.; Lee, C.S.; Hong, Y.M.; Jung, J.M.; Goel, V.K. Impact response of the intervertebral disc in a finite-element model. Spine 2000, 25, 2431–2439. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.W.; Teo, E.C. Nonlinear finite-element analysis of the lower cervical spine (C4–C6) under axial loading. J. Spinal Disord. 2001, 14, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H. Strength of biological materials. J. Anat. 1970, 108, 582. [Google Scholar]
- Puttlitz, C.M.; Goel, V.K.; Clark, C.R.; Traynelis, V.C.; Scifert, J.L.; Grosland, N.M. Biomechanical rationale for the pathology of rheumatoid arthritis in the craniovertebral junction. Spine 2000, 25, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Ransford, A. The cervical spine. In The Cervical Spine Research Society Editorial Committee; Lippincott-Raven Publishers: Philadelphia, PA, USA, 1998. [Google Scholar]
- Hill, A.V. The shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 1938, 126, 136–195. [Google Scholar]
- Wittek, A.; Kajzer, J. Mathematical Modelling of Muscle Effect on the Kinematics of the Head-Neck Complex in a Frontal Car Collision: A Parameter Study. Int. J. Occup. Saf. Ergon. 1998, 4, 201–220. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.; Pato, M.; Pires, E. A finite element model of skeletal muscles. Virtual Phys. Prototyp. 2006, 1, 159–170. [Google Scholar] [CrossRef]
- Kleinbach, C.; Martynenko, O.; Promies, J.; Haeufle, D.F.; Fehr, J.; Schmitt, S. Implementation and validation of the extended Hill-type muscle model with robust routing capabilities in LS-DYNA for active human body models. Biomed. Eng. Online 2017, 16, 109. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.Y.; Tsui, C.P.; Stojanovic, B.; Kojic, M. Finite element modelling of skeletal muscles coupled with fatigue. Int. J. Mech. Sci. 2007, 49, 1179–1191. [Google Scholar] [CrossRef]
- Lu, Y.T.; Beldie, L.; Walker, B.; Richmond, S.; Middleton, J. Parametric study of a Hill-type hyperelastic skeletal muscle model. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Nasim, M.; Galvanetto, U. Muscle activity on head-first compression responses of a finite element neck model. Forces Mech. 2023, 10, 100163. [Google Scholar] [CrossRef]
- Wittek, A.; Kajzer, J.; Haug, E. Hill-type muscle model for analysis of mechanical effect of muscle tension on the human body response in a car collision using an explicit finite element code. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 2000, 43, 8–18. [Google Scholar] [CrossRef]
- Panzer, M.B. Numerical Modelling of the Human Cervical Spine in Frontal Impact. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2006. [Google Scholar]
- Winters, J.M.; Stark, L. Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. J. Biomech. 1988, 21, 1027–1041. [Google Scholar] [CrossRef] [PubMed]
- Hatze, H. Neuromusculoskeletal control systems modeling—A critical survey of recent developments. IEEE Trans. Autom. Control 1980, 25, 375–385. [Google Scholar] [CrossRef]
- Nightingale, R.W.; Richardson, W.J.; Myers, B.S. The effects of padded surfaces on the risk for cervical spine injury. Spine 1997, 22, 2380–2387. [Google Scholar] [CrossRef] [PubMed]
- Teo, E.C. Effect of muscle activation on head-neck complex under simulated frontal car impact. In Proceedings of the Sixth International Forum of Automotive Traffic Safety, Xiamen, China, 1–4 December 2008. [Google Scholar]
- Karimi, A.; Shojaei, A.; Razaghi, R. Viscoelastic mechanical measurement of the healthy and atherosclerotic human coronary arteries using DIC technique. Artery Res. 2017, 18, 14–21. [Google Scholar] [CrossRef]
- Karimi, A.; Razaghi, R.; Rahmati, S.M.; Downs, J.C.; Acott, T.S.; Kelley, M.J.; Wang, R.K.; Johnstone, M. The effect of intraocular pressure load boundary on the biomechanics of the human conventional aqueous outflow pathway. Bioengineering 2022, 9, 672. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, F.; Gligor, A.; Bataga, T. Structured integration and alignment algorithm: A tool for personalized surgical treatment of tibial plateau fractures. J. Pers. Med. 2021, 11, 190. [Google Scholar] [CrossRef] [PubMed]
S/N | Variable | Value | Descriptions |
---|---|---|---|
1 | Lo | - | initial muscle length |
2 | Vmax | - | the maximum contractile element shortening velocity |
3 | SV | 1.0 | scale factor for Vmax against active state |
4 | A | - | activation level-time function (Na(t)) |
5 | Fmax | - | peak isometric force |
6 | TL | - | active tension-length function (FL(L)) |
7 | TV | - | active tension-velocity function (Fv(V)) |
8 | Fpe | 0.0 | force-length function for the parallel elastic element |
9 | Lmax | 0.8 | relative length when passive force Fpe reaches Fmax |
10 | Ksh | 2.0 | constant which governs the exponential rise of Fpe |
S/N | Muscle Groups | Lo (mm) | Vmax (mm/s) | Fmax (kg*mm/s2) | A (mm2) |
---|---|---|---|---|---|
1 | Sternocleidomastoid | 180 | 1980 | 44,825 | 358.6 |
2 | Longus colli | 60 | 650 | 25,000 | 200 |
15 | 165 | 25,000 | 200 | ||
40 | 440 | 25,000 | 200 | ||
3 | Longus capitis | 85 | 935 | 50,000 | 200 |
55 | 605 | 50,000 | 200 | ||
4 | Scalenus anterior | 110 | 1210 | 41,400 | 165.6 |
80 | 880 | 41,400 | 165.6 | ||
5 | Scalenus medius | 65 | 715 | 10,900 | 43.5 |
6 | Scalenus posterior | 60 | 660 | 34,000 | 136 |
7 | Trapezius | 160 | 1760 | 87,500 | 350 |
8 | Semispinalis capitis | 120 | 1320 | 37,500 | 150 |
90 | 990 | 37,500 | 150 | ||
9 | Semispinalis cervicis | 80 | 880 | 17,950 | 71.8 |
10 | Longissimus capitis | 115 | 1265 | 20,000 | 80 |
75 | 825 | 20,000 | 80 | ||
11 | Longissimus cervicis | 75 | 825 | 20,000 | 80 |
12 | Splenius capitis | 175 | 1925 | 18,700 | 224.4 |
13 | Splenius cervicis | 110 | 1210 | 18,700 | 84.7 |
Segment | C1–C2 | C6–C7 | |
---|---|---|---|
Times | |||
40 ms | |||
80 ms | |||
120 ms | |||
150 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Cheng, Z.; Teo, E.-C.; Gu, Y. Finite Element Analysis of Cervical Spine Kinematic Response during Ejection Utilising a Hill-Type Dynamic Muscle Model. Bioengineering 2024, 11, 655. https://doi.org/10.3390/bioengineering11070655
Gong Y, Cheng Z, Teo E-C, Gu Y. Finite Element Analysis of Cervical Spine Kinematic Response during Ejection Utilising a Hill-Type Dynamic Muscle Model. Bioengineering. 2024; 11(7):655. https://doi.org/10.3390/bioengineering11070655
Chicago/Turabian StyleGong, Yikang, Zhenghan Cheng, Ee-Chon Teo, and Yaodong Gu. 2024. "Finite Element Analysis of Cervical Spine Kinematic Response during Ejection Utilising a Hill-Type Dynamic Muscle Model" Bioengineering 11, no. 7: 655. https://doi.org/10.3390/bioengineering11070655
APA StyleGong, Y., Cheng, Z., Teo, E. -C., & Gu, Y. (2024). Finite Element Analysis of Cervical Spine Kinematic Response during Ejection Utilising a Hill-Type Dynamic Muscle Model. Bioengineering, 11(7), 655. https://doi.org/10.3390/bioengineering11070655