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Abstract: The classification of fetuses as Small for Gestational Age (SGA) and Large for Gestational
Age (LGA) is a critical aspect of neonatal health assessment. SGA and LGA, terms used to describe
fetal weights that fall below or above the expected weights for Appropriate for Gestational Age
(AGA) fetuses, indicate intrauterine growth restriction and excessive fetal growth, respectively. Early
prediction and assessment of latent risk factors associated with these classifications can facilitate
timely medical interventions, thereby optimizing the health outcomes for both the infant and the
mother. This study aims to leverage first-trimester data to achieve these objectives. This study
analyzed data from 7943 pregnant women, including 424 SGA, 928 LGA, and 6591 AGA cases,
collected from 2015 to 2021 at the Third Affiliated Hospital of Sun Yat-sen University in Guangzhou,
China. We propose a novel algorithm, named the Weighted Inheritance Voting Ensemble Learning
Algorithm (WIVELA), to predict the classification of fetuses into SGA, LGA, and AGA categories
based on biochemical parameters, maternal factors, and morbidity during pregnancy. Additionally,
we proposed algorithms for relevance determination based on the classifier to ascertain the impor-
tance of features associated with SGA and LGA. The proposed classification solution demonstrated a
notable average accuracy rate of 92.12% on 10-fold cross-validation over 100 loops, outperforming five
state-of-the-art machine learning algorithms. Furthermore, we identified significant latent maternal
risk factors directly associated with SGA and LGA conditions, such as weight change during the first
trimester, prepregnancy weight, height, age, and obstetric factors like fetal growth restriction and
birthing LGA baby. This study also underscored the importance of biomarker features at the end
of the first trimester, including HDL, TG, OGTT-1h, OGTT-0h, OGTT-2h, TC, FPG, and LDL, which
reflect the status of SGA or LGA fetuses. This study presents innovative solutions for classifying and
identifying relevant attributes, offering valuable tools for medical teams in the clinical monitoring
of fetuses predisposed to SGA and LGA conditions during the initial stage of pregnancy. These
proposed solutions facilitate early intervention in nutritional care and prenatal healthcare, thereby
contributing to enhanced strategies for managing the health and well-being of both the fetus and the
expectant mother.

Keywords: SGA (small for gestational age); LGA (large for gestational age); AGA (appropriate for
gestational age); machine learning; first trimester ending
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1. Introduction

Small for Gestational Age (SGA) infants, defined as having birth weights below the
10th percentile for their gestational age, constitute approximately 7–10% of newborns
globally. This percentage can escalate to 20–30% in developing countries [1,2]. The etiology
of SGA is multifactorial, involving maternal factors such as inadequate nutrition, smoking,
hypertension, and chronic kidney disease [3]. SGA is associated with an increased risk of
adverse perinatal outcomes, including prematurity, neonatal morbidity, developmental
delays, and long-term health issues. Severe cases of SGA may result in fetal death during the
antenatal period or lead to postnatal complications such as meconium aspiration syndrome,
respiratory distress syndrome, hypoglycemia, and metabolic syndrome in adulthood [4].

Conversely, Large for Gestational Age (LGA) infants, with birth weights exceeding the
90th percentile, occur in approximately 5–10% of newborns globally. In certain regions, this
prevalence can reach up to 15–30% [1,5,6]. Maternal factors such as gestational diabetes,
maternal obesity, excessive weight gain during pregnancy, and genetic predispositions
contribute to the development of LGA [7,8]. LGA births pose challenges during labor
and delivery, increasing the likelihood of cesarean sections, birth injuries, and metabolic
complications for the newborn. Moreover, LGA infants are at an increased risk of obesity,
insulin resistance, and hypertension in later life [7,9]. Given its potential impact on maternal
and neonatal health, the condition warrants attention in perinatal and pediatric medicine.

SGA and LGA infants present distinct implications for maternal, fetal, and postnatal
health, necessitating a comprehensive understanding of the associated risks. SGA infants
may progress into severe conditions potentially resulting in fetal demise during the antena-
tal period or leading to complications such as meconium aspiration syndrome, asphyxia,
respiratory distress syndrome, hypoglycemia, hypothermia, bronchopulmonary dysplasia,
and hyperviscosity thrombosis during the intranatal period [4]. Postnatally, SGA infants
are predisposed to developing metabolic syndrome, obesity, hypertension, diabetes, and
coronary heart disease, imposing significant consequences on the affected individuals and
their caregivers [10].

LGA infants face heightened risks of short-term complications, including birth trauma,
shoulder dystocia during delivery, and an increased likelihood of admission to the neonatal
intensive care unit. They may also encounter long-term metabolic and cardiovascular
issues such as obesity, insulin resistance, and hypertension [9]. Early detection and inter-
vention are crucial, involving antenatal care, dietary interventions, and glycemic control [8].
A comprehensive list of SGA and LGA implications for mothers, fetuses, and children
postbirth is provided in Table 1.

Table 1. SGA-LGA implications for mothers, fetuses, and in childhood [3,4,7–11].

SGA Implications Detail

Risk during pregnancy pre-eclampsia
Risk of neonatal complication respiratory distress syndrome, hypoglycemia, hypothermia
Infection weakened immune system, more susceptible to infections
Developmental delays motor skills, cognitive development, language development
Long-term growth issues shorter stature, lower weight
Chronic diseases type 2 diabetes, cardiovascular disease, hypertension
Cognitive and behavioral challenges learning disabilities, attention deficit hyperactivity disorder
Nutritional challenges special nutritional support; growth, development monitoring
Delayed puberty social, psychological
Psychosocial and emotional impacts
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Table 1. Cont.

LGA Implications Detail

Risk during pregnancy pre-eclampsia
Risk gestational diabetes
Birth complications shoulder dystocia, injuries for infant; injuries for mother
Cesarean section
Macrosomia
Neonatal hypoglycemia
Respiratory distress syndrome
Long-term health risks obesity, type 2 diabetes, cardiovascular
Metabolic issues metabolic syndrome, type 2 diabetes
Developmental delays developmental delays, cognitive challenges
Childhood obesity
Psychosocial and emotional impacts

Although many studies have found high risks of SGA and LGA for fetal, infant, mother,
and SGA/LGA outcomes during childhood, current studies have some limitations [12–23]
(detailed in Section 2):

1. Studies mainly concentrate on enhancing the estimation of fetal weight, fetal birth
weight, and fetal gestational age from ultrasound images [12,13,15–20].

2. Fetuses are categorized based on one or more criteria, including fetal weight, head
circumference, abdominal circumference, fetal heart rate, and their integration with
other fetal attributes. Alternatively, the classification may be based on fetal weight
along with maternal attributes [21,22].

3. Studies often focus on binary classification between SGA/LGA and their respective
control groups [21,22].

4. There is a lack of studies exploring hidden risk factors associated with SGA and LGA
fetuses beyond isolated risk factors [11,15,23].

Consequently, these limitations raise two critical questions: (1) Is it feasible to diagnose
SGA and LGA fetuses before 24 weeks when definitions of SGA, LGA, and AGA are based
on fetal weight from 24 weeks to 36 weeks of gestation? (2) What latent risk factors lead to
SGA or LGA fetuses?

Therefore, the primary objective of this study is to introduce a machine learning
approach aimed at predicting fetal classification into three distinct groups, SGA, LGA,
or AGA, based solely on maternal demographics, maternal history factors, and maternal
biomarker attributes gathered at the end of the first trimester (around 13 weeks of gestation).
Subsequently, this study seeks to assess the significance of these attributes in influencing
the developmental trajectory of the fetuses and leading to SGA or LGA outcomes. The key
contributions of this research are delineated as follows:

• The first research work on early diagnosis of SGA, LGA, and AGA conditions at the
end of the first trimester and only used maternal demographics, maternal history
factors, and maternal biomarker attributes.

• Introduction of a novel algorithm designed to validate previous diagnoses of SGA-
LGA conditions. This algorithm achieves a classification accuracy (Acc) of 0.92, which
surpasses the performance of five state-of-the-art machine learning algorithms. It also
demonstrates a lower Mean Squared Error (MSE) in comparison. Furthermore, our
testing results include average accuracy and balanced certainty measurement scores
of approximately 0.92.

• Proposal of algorithms aimed at identifying latent risk factors potentially associated
with the likelihood of an SGA or LGA fetus based on our proposed classifier.

This initiative promises to aid medical practitioners in evaluating clinically relevant
patient data, bolstering diagnostic and therapeutic decision-making processes. The pro-
posed solutions have the potential to significantly impact the management of fetal health,
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particularly in the early stages of pregnancy, thereby contributing to improved health
outcomes for both the mother and the fetus.

2. Computation Techniques Applied for SGA-LGA Classification and Analysis

In recent years, the application of machine learning (ML) and deep learning (DL) tech-
niques in perinatal medicine has significantly increased. These advanced techniques have
proven valuable in diagnosing various fetal and maternal well-being complications, pre-
dicting SGA and LGA infants, estimating fetal weight and gestational age, and identifying
latent risk factors associated with fetal and maternal health. The multifaceted functionali-
ties of these applications extend beyond mere diagnosis, encompassing a broader spectrum
of tasks, including management, treatment, and an enriched understanding of the patho-
physiological aspects of perinatal conditions.

In 2015, Harper et al. proposed using ultrasound surveillance for LGA classifica-
tion [12]. Subsequently, Shen et al. (2017) utilized sonography to estimate fetal weight [13],
and Harper et al. integrated abdominal circumference (AC) into the approach [14]. In
2019, Feng et al. employed a Support Vector Machine (SVM) and Deep Belief Network
(DBN) to enhance the accuracy of fetal weight estimation and facilitate the identification
of potential delivery-related risks by clinicians [15]. In 2021, Jing Tao et al. conducted a
comparative analysis employing Convolutional Neural Networks (CNNs), Random Forest
(RF), Logistic Regression (LR), Support Vector Regression (SVR), a Back Propagation Neural
Network (BPNN), and a proposed algorithm named hybrid-LSTM for predicting fetal birth
weight [16].

In 2021, Mobadersany et al. used GestAltNet to estimate gestational age [17]. Moreover,
in 2022, Wasif Khan et al. employed Random Forest (RF) for SGA classification and Logistic
Regression (LR) with Synthetic Minority Over-sampling Technique (SMOTE) for birth
weight estimation [18]. Lee et al. use ultrasound images to apply a ResNet-50-based model
to estimate fetal gestational age [19]. YiFei et al. utilized Deep Neural Networks (DNNs)
for fetal weight estimation [20].

In 2018, Kuhle et al. compared LR with other ML algorithms such as Elastic Net
(EN), Classification Tree (CT), RF, Gradient Boosting (GB), and Neural Networks (NNs) in
SGA-LGA classification, maternal characteristics prepregnancy and gestational parameters
at 26 weeks were used to predict SGA and LGA, the AUC was poor, ranging from 0.563 to
0.748 [21]. Then, in 2019, Faheem Akhtar et al. introduced a GridSearch-based FRECV+IG
feature selection technique and evaluated various ML algorithms, including LR, SVM with
an FRB kernel, and Decision Tree (DT) to classify infants as either LGA or Non-LGA with
an accuracy of 92% when using historical demographics, maternal attributes, and fetus
weights at 24–33 gestational weeks [22].

In 2021, Sau et al. proposed a novel stacking ensemble algorithm to classify SGA and
control group with an accuracy of 94.73% and computed feature importance to identify
latent risk factors associated with SGA infants in their childhood [11]. Additionally, in 2023,
Faiza et al. conducted a study involving multiple ML algorithms, including Naïve Bayes
(NB), RF, Bagging, LR, and J48 to identify significant risk factors associated with newborn
sepsis with about 88.4% accuracy [23].

In summary, many studies have utilized machine learning (ML) and deep learning (DL)
to improve the estimation of fetal weight, birth weight, and gestational age, particularly
by using attributes from the late stage of gestation (24 to 36 weeks) or by combining them
with maternal attributes to classify fetuses or infants into binary classification SGA or LGA
and their respective control categories. However, there is a lack of studies employing ML
algorithms to uncover hidden risk factors associated with SGA and LGA. Therefore, there
is a gap in predicting multiple classifications into SGA, AGA, and LGA categories before
24 weeks of gestation and identifying latent risk factors leading to SGA and LGA outcomes.

Recently, RF, SVM, CART, XGB, and KNN algorithms have been highly recommended
for classifying SGA-LGA data. These algorithms are inherently capable of calculating
feature importance for biomedical data. Additionally, significant efforts are being made to
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develop explainable deep learning (DL) models that outperform traditional classification
methods in some complex tasks [24–27]. However, Rudin Cynthia has argued that we
should avoid using DL models for high-stakes decisions [28].

The application of machine learning (ML) and DL in perinatal medicine reflects the
significant potential of these advanced methods to enhance the understanding, diagnosis,
and management of perinatal conditions. The multifaceted functionalities of these applica-
tions promise to revolutionize the field further, contributing to improved health outcomes
for both mothers and fetuses.

3. Materials and Methods

Figure 1 illustrates our methodology for classifying the SGA-LGA dataset. These steps
are important and practical in machine learning. These procedures can be combined and
followed according to the steps outlined below:

• Step 1. Data Exploration and Preprocessing: The initial step involves comprehensive
data exploration and preprocessing, a fundamental and imperative phase in machine
learning. This step aims to clean the dataset, ensuring optimal data utilization while
conducting essential preprocessing tasks.

• Step 2. Feature Selection: Feature selection is performed using our proposed feature
selection algorithm, domain expertise, and the incorporation of state-of-the-art algo-
rithms. The objective is to identify relevant features, representing our data accurately
and effectively enhancing the selected algorithms’ performance.

• Step 3. Algorithm Fine-Tuning and Comparative Analysis: The fine-tuning process
is to find the best parameters for each algorithm and then compare algorithmic per-
formances, assessing accuracies and Mean Squared Errors (MSEs) to determine the
optimal algorithm for the classification task.

• Step 4. Feature Importance Calculation: Feature importance is calculated based on
identifying the most effective or proposed algorithm if it is more outstanding than
others. This step involves ascertaining the significance of each feature in contributing
to the classification outcomes.

• Step 5. Results Presentation on Feature Importance: The final step entails presenting
the results derived from the calculated feature importance. This includes a comprehen-
sive exposition of the contribution of individual features to the classification process.

Further details about these steps are provided in the subsequent sections.

Figure 1. Our methodology for classifying SGA-LGA data.

3.1. Data and Preprocessing
3.1.1. Dataset

The present research utilizes a dataset comprising 7943 subjects, including 1752 over-
weight pregnancies (BMI ≥ 24) and 6191 normal or underweight pregnancies (BMI < 24).
The data were collected from 2015 to 2021 at the Third Affiliated Hospital of Sun Yat-sen
University, Guangzhou, China. Inclusion criteria were as follows: (1) aged 17 to 47 years,
and (2) intending to deliver at our affiliated hospital. The exclusion criteria were (1) a
history of cardiac or hepatic disease and (2) participation in other clinical research. The
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use of the dataset was approved by ethics approval number “201902-338-01”. The dataset
includes 424 SGA (≈5.33%), 928 LGA (≈11.68%), and 6591 AGA (≈82.99%) infants.

This study examines various measurements, encompassing biochemical parameters,
maternal demographics, maternal factors, and morbidity during pregnancy. The biochem-
ical parameters include plasma protein A, the free beta subunit of human chorionic go-
nadotropin (free β-HCG), fasting plasma glucose (FPG), total cholesterol (TC), triglycerides
(TG), and high- and low-density lipoproteins (HDL, LDL), measured at 11 to 13 weeks of
gestation. Maternal factors incorporate maternal age, obesity, parous, history of Gestational
Diabetes Mellitus (GDM), and family history of diabetes.

This study also undertakes several key tasks, such as analyzing the correlation among
features related to SGA and LGA from clinical experts. It then selects characteristic groups
to reduce data dimensionality for data analysis and grouping. Furthermore, this study
applies several state-of-the-art machine learning algorithms and our proposed algorithm
to predict SGA, LGA, and normal fetuses. The groups of attributes and a detailed list are
presented in Table 2.

Table 2. SGA-LGA attributes by group.

Group Name

Common maternal attributes age, height, prepregnancy weight
Maternal history attributes education time, diabetes family history, GDM history, birthing

LGA baby, parous
Current maternal attributes postpregnancy weight, weight change, pre-BMI, premature mem-

brane rupture, placental abruption, gestational hypertension, pre-
eclampsia, placenta previa, polyhydramnios, oligohydramnios,
postpartum bleeding volume, postpartum bleeding, FPG, TC, TG,
HDL, LDL, TyG index, OGTT-0h, OGTT-1h, OGTT-2h

Fetal attributes gender, fetal growth restriction
Infant attributes low Apgar (1–7 min), birth weight, preterm birth, week of gesta-

tional delivery, LGA, SGA

3.1.2. Data Preprocessing

Preprocessing is essential before utilizing the dataset to explore correlations and trends,
serving as an initial and crucial step in machine learning. This step ensures that we have
well-processed data. It involves removing duplicate and invalid data (such as invalid
entered value(s) or outliers that fall outside the normal/valid range), addressing missing
values (such as through removal or imputation, etc.), and handling imbalanced classification
data. Additionally, if the data are high-dimensional, we can employ techniques to reduce
its dimensionality, such as automatic feature selection approaches, Principal Component
Analysis (PCA), the Pareto rule proposed by Roccetti Marco et al. [29], or our proposed
algorithm, as detailed in Section 3.1.3. Special preprocessing methods, such as Zelaya’s
proposed method for data sensitive to outliers [30], can also be employed.

After removing 45 duplication/invalid (invalid entered values or values outside
the normal range) rows from 7943 rows × 34 columns in the dataset, it is composed of
7898 unique rows consisting of 422 SGA (5.34%), 922 LGA (11.67%), and 6554 AGA (82.99%),
respectively. The data contain 1133 rows (≈14.34%) and 11 columns with missing values
(for more details, see Table 3).

The objective is to uncover hidden attributes associated with SGA and LGA fetuses
by the end of the first trimester. Consequently, instead of employing all features, certain
unnecessary features are eliminated, such as height (cm) (retaining height (m)), or merging
diagnosed/labeled SGA and LGA columns into a single InfantType column.

As in Table 3, the percentage of missing values is relatively small (4448/(7943× 34) ≈
1.65%), with 1133/7943 (14.26%) samples containing missing values. However, the number
of samples with missing values is not insignificant, predominantly in the TC, TG, HDL, and
LDL columns, while the remaining columns with missing values account for 152 missing
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values (≈0.056%), which is negligible. Therefore, finding an appropriate approach for
processing data is crucial, with steps such as cleaning and maximizing data usage being
important for the proposed solution.

Table 3. Data brief after removing unnecessary columns and duplicate/invalid rows.

Columns/Features/Attributes No. Missing Values

Gestational Hypertension 1
Pre-eclampsia 3
Postpartum Bleeding Volume 4
FPG 15
TC 1065
TG 1073
HDL, LDL 1079
OGTT-0h 39
OGTT-1h 44
OGTT-2h 46

1133 rows/samples with missing values 4448 missing values

There are three primary approaches to handling missing values: imputation (i.e.,
imputed by mean, median, interpolation, and most frequent), data removal, or employing
an algorithm that accommodates missing data. Some algorithms address missing values by
learning the optimal imputation values based on the reduction in training loss (i.e., Random
Forest), while others will disregard them (i.e., LightGBM). However, certain algorithms
will encounter an error when faced with missing data (i.e., Logistic Regression). In this
case, the missing data will be handled and cleaned before feeding them to the algorithm.
Thus, we employ median imputation in this research to maximize data usage.

Subsequently, the dataset is standardized. In addition to the strategies mentioned
earlier, the Synthetic Minority Oversampling Technique (SMOTE) is employed to address
the imbalance in our classification dataset, which comprises Appropriate for Gestational
Age (AGA) (82.99%), LGA (11.67%), and SGA (5.34%) infants. SMOTE, a widely used
oversampling method, selects examples close to the feature space, constructs a line between
these examples, and generates a new sample at a point along this line. Furthermore, an
undersampling technique is also implemented on our dataset, as recommended by the
authors [31]. This combination of oversampling and undersampling techniques aids in
enhancing the robustness of the classification model.

3.1.3. Feature Selection

The computation and determination of feature importance are crucial in this phase,
identifying the most pertinent features that best represent our dataset and contribute to
optimal classification accuracy. We combine expert-driven feature selection to remove
irrelevant features with a proposed feature selection algorithm to evaluate a classifier
and its generated feature importance list, addressing the drawbacks of automatic fea-
ture selection approaches in machine learning. This multifaceted approach enhances the
model’s performance by retaining only the most relevant features, fostering robust and
accurate predictions.

First, our research aims to identify factors associated with SGA-LGA at the end of
the first trimester. Therefore, we exclude irrelevant features from the full feature set.
This process results in a subset termed ManualFeature, which excludes features such as
postpregnancy weight, postpartum bleeding, postpartum bleeding volume, birth weight,
week of gestational delivery, preterm birth, and low Apgar scores (1–7 min).

Second, we propose a feature selection algorithm, detailed in pseudocode of Algorithm 1.
This algorithm requires the input classifier to support the calculation of feature importance
scores or coefficients. If our proposed classifier (Algorithm 2) is used in Algorithm 1, these
scores are calculated as in Section 3.1.5. The calculation steps are as follows:



Bioengineering 2024, 11, 657 8 of 21

• In Step 1, the feature importance scores are computed, converted to absolute val-
ues, and sorted in descending order. A table named results is initialized to store
the outcomes.

• In Step 2, each score is treated as a threshold for selecting features and the correspond-
ing data with importance scores greater than or equal to this threshold. Subsequently,
k-fold cross-validation with a stratified strategy is applied across n iterations to train
the classifier. The mean accuracy, standard deviation, and accuracy change (delta
accuracy) are then computed from the validation fold and saved to the results table,
along with the selected features, for later comparison.

• In Step 3, the results table is sorted in descending order by mean accuracy and in
ascending order by standard deviation. The optimal feature group is selected based
on the highest mean accuracy (or close to it), smaller standard deviation of accuracy,
and smaller number of features. This group is identified as the last element of the first
row of the sorted table.

Algorithm 1: Find the best feature group.
Input: Classifier supports calculating feature importance scores or coefficients,

and training set D = {xi, yi}N
i=1(xi ∈ Rd, yi ∈ Y)

Output: the best feature group
Step 1. Calculate the feature importance scores or coefficients (named as

importances) from the classifier;
thresholds = sorted(absolute(importances)) ;
Init table results;
Step 2. Find the best feature group;
foreach threshold do

selectedFeatures is all features possess importance ≥ threshold;
Select data with selectedFeatures group;
Train model, then calculate mean accuracy, its standard deviation, and ∆

accuracy by k-fold cross-validation, repeat n times;
results.append(mean accuracy, standard deviation, ∆accuracy, selectedFeatures);

end
Step 3. Sort results descending by mean accuracy, ascending by standard deviation;

return value of the last column of the first row of table results;

The main idea of our feature selection algorithm is that as each feature is added from
the descending sorted list of absolute feature importance scores, the classifier’s performance
will increase and reach a peak if the list and the classifier are appropriate. It will then
achieve stability with the remaining features in the list. Our proposed feature selection
algorithm can evaluate both the feature importance list and the classifier.

To illustrate the disadvantages of conventional automatic feature selection approaches
in machine learning, which typically select the top k features based on a feature importance
list, we use the Random Forest (RF) classifier to generate feature importance scores for
the ManualFeature group, as shown in Figure 2a. We then run Algorithm 1 with the RF
classifier, and the result is presented in Figure 2b. From Figure 2, it is evident that the top
five features, from TG to preBMI, contribute approximately 85.0% to the RF’s performance
accuracy. Despite having high importance scores, the next six features, from WeightChange
to Polyhydramnios, do not significantly enhance the RF’s performance. This indicates that
these features, generated by the RF classifier, are inappropriate for inclusion in the list.
The subsequent four features, from Prepregnancy Weight to Gestational Hypertension, add
approximately 1.0% (86%− 85%) to the accuracy, and the remaining features contribute
only about 0.4% to the accuracy.
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(a)

(b)
Figure 2. Illustration of the disadvantages of automatic feature selection approaches in ML. (a) Feature
importance list generated by Random Forest classifier. (b) Run Algorithm 1 with Random Forest
classifier to find the best feature group.

In conclusion, if the feature importance score list and the classifier that generated
this list are accurate, adding features in order from the highest to the lowest score should
enhance the model’s performance and achieve stability. Conversely, if the feature impor-
tance list and classifier are inaccurate, this improvement will not occur, as illustrated in
Figure 2. Algorithm 1 can assess the accuracy of the feature importance list and determine
whether the classifier is appropriate. If the classifier is suitable, Algorithm 1 can identify
the optimal feature group corresponding to the highest or near-highest mean accuracy and
the narrowest standard deviation. This ensures the classifier remains stable even when
additional, less important features are included. Further details on the results of feature
selection using our proposed classifier are provided in Section 4.2.

We execute Algorithm 1 using our proposed classifier (Algorithm 2) as the input clas-
sifier to validate our proposed classifier and identify the best feature group representative
of our dataset. The results are presented in Section 4.2.
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Algorithm 2: Propose classifier for SGA-LGA dataset.

Input: Training set D = {xi, yi}N
i=1(xi ∈ Rd, yi ∈ Y), and weight

W = {wC0 , wC1 , wC2}, and θ
Output: An ensemble classifier H
Step 1. Learn from classifiers C = {C0, C1, C2};
foreach c in C do

Learn a base classifier hc based on D;
end
for i← 1 to N do

if hC0(xi) ≥ (1− θ) then
hC1(xi) = hC0(xi);
hC2(xi) = hC0(xi);

end
end
Step 2. Construct new datasets D′ = {x′ i, yi}N

i=1 from D;
for i← 1 to N do

x′ i = {hC0(xi), hC1(xi), hC2(xi)};
end
Step 3. Learn a new classifier (predictor) h′ based on the newly constructed
dataset D′;

for i =← 1 to N do

h(xi) =
hC0 (xi)×wC0+hC1

(xi)×wC1
+hC2 (xi)×wC2

wC0+wC1
+wC2

;

end
return H(x) = h′(h(x1), h(x2), . . . , h(xN));

3.1.4. Selection of the Most Effective Algorithm

The algorithm proposed for classifying SGA, LGA, and AGA fetuses is illustrated
in Figure 3. The process involves the construction of new data based on the classifiers’
predictions. Three distinct prediction metrics, namely PC0 , PC1 , and PC2 , are associated
with the primary classifier C0, and two secondary classifiers C1 and C2, respectively. Each
prediction metric is divided into corrected (or inherited from the primary classifier C0) and
voting metrics. This results in the decomposition of PC0 into PC

C0
and PV

C0
, PC1 into PC

C1
and

PV
C1

, and PC2 into PC
C2

and PV
C2

. The corrected or inherited part is specifically determined by
the primary classifier (C0), denoted as PC

C0
, from data with corrected predictions represented

by 1− θ (where θ signifies a low or uncertain probability prediction). Subsequently, PC
C1

and PC
C2

are replaced (or inherited) by PC
C0

, i.e., PC
C0
≡ PC

C1
≡ PC

C2
. The voting metrics,

including PV
C0

, PV
C1

, and PV
C2

, are utilized to classify using a weighted voting mechanism
with the weight matrix W = {wC0 , wC1 , wC2}, ultimately resulting in the creation of a new
predictor. Further details about this proposed classifier are elucidated through pseudocode
in Algorithm 2.

In this phase, we standardize the dataset and then split the data into a training set
(75%) and a testing set (25%) using a stratified strategy. Five state-of-the-art machine
learning algorithms are scrutinized, including (1) RF, (2) k-Nearest Neighbors (KNNs),
(3) CART, (4) SVM, and (5) XGB. Each algorithm was fine-tuned to optimize performance
on the same dataset. The optimal hyperparameters for each algorithm are as follows:

1. RF’s parameters: criterion = ‘log_loss’, max_depth = 13;
2. KNN’s parameters: leaf_size = 5, n_neighbors = 24, p = 1, weights = ‘distance’;
3. CART’s parameter: criterion = ‘entropy’;
4. SVM’s parameters: C = 100, cache_size = 1000, decision_function_shape = ‘ovo’,

degree = 2, probability = True;



Bioengineering 2024, 11, 657 11 of 21

5. XGB’s parameters: booster = ‘gbtree’, colsample_bytree = 0.5, learning_rate = 0.01,
colsample_bylevel = 0.6, max_depth = 4, min_child_weight = 2, missing = nan,
n_estimators = 1000, num_class = 3.
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Figure 3. Our proposed classifier for SGA-LGA data.

From Figure 4, the ranking of the five state-of-the-art algorithms in terms of mean
accuracy is RF, SVM, CART, XGB, and KNN. To identify three classifiers and the weight
metric W for our proposed classifier, we designate the primary classifier, either RF or
SVM (RF is the best among ensemble tree algorithms—RF, CART, XGB—and SVM, ranked
second, is a different type of algorithm). We then select two secondary classifiers from
the remaining algorithms (RF/SVM (whichever differs from the primary classifier), CART,
XGB, and KNN) by executing Algorithm 3. This algorithm allows us to determine the
optimal classifiers, W = {wC0 , wC1 , wC2}, and θ. The optimal parameters are as follows: the
primary classifier is RF, the two secondary classifiers are XGB and SVM, and the parameter
set (θ, wRF, wXGB, wSVM) = (0.001, 0.19, 0.01, 0.73). These parameters will be applied to
other relevant algorithms for execution. The proposed solution is then implemented and
compared to identify the most effective approach.
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Figure 4. Comparison of algorithms using the ManualFeature group, evaluated by mean accuracy
across 100 iterations of 10-fold cross-validation.

Subsequently, identifying a subset of features representing the entire dataset is per-
formed. To achieve this, fine-tuning of all algorithms is conducted to ascertain the optimal
parameters, ensuring the highest accuracy for each algorithm. Then, implementation of
10-fold cross-validation with the training set and iterate the process 100 times to assess the
performance of six distinct approaches for data classification. The best accuracy (Acc) and
Mean Squared Errors (MSE) of the fine-tuned algorithms are compared, aiding in selecting
the most robust model. This selected model is then used to determine the best feature
group described in Section 3.1.3, which is used in the subsequent step to find the feature
importance within the dataset.

Algorithm 3: Fine-tuning θ and classifiers’ weights for Algorithm 2.

Input: Training set D = {xi, yi}N
i=1(xi ∈ Rd, yi ∈ Y), no. loops iters and model

(Algorithm 2)
Output: The best θ and weight matrix W for training set D
wC0 , wC1 , wC2 ∈ [0.0, 1.0], step = 0.01; θ ∈ [0.0, 0.3], step = 0.001 ;
foreach θ, weight=(wC0 , wC1 , wC2 ) do

Step 1. Evaluate proposed classifier by 10-fold cross-validation, and iters loops;
Step 2. Calculate accuracy, standard deviation from Step 1;
Step 3. Sort results in Step 2 decrease by accuracy and increase by standard
deviation;

end
return the first element of the result in Step 3;

3.1.5. Determination of Feature Importance

Assume that we need to classify data D = {xn, yn}N
n=1(xn ∈ Rd, yn ∈ Y) into three

classes (N = 3): SGA, AGA, and LGA. From Figure 3, the determination of feature
importance is proposed to be achieved through a two-phase analysis: (1) analysis of
classifiers and (2) proposal of a new predictor. For phase (1), three classifiers are selected:
RF, XGB, and SVM. The feature importance scores (or coefficients) are calculated for each
classifier. The detailed methods are presented below:

Extreme Gradient Boost (XGBoost or XGB) is an ensemble learning method that uses
tree ensembles as base learners, with the trees belonging to the CART family. In XGB,
the ensemble model comprises a set of these trees constructed sequentially, where each
subsequent iteration aims to reduce misclassification rates. Assuming we have K trees, the
model predicts the nth training data, xn, as ŷn = ∑K

k=1 fk(xn), fk ∈ F where F represents
the function space containing all regression trees [11]. XGB focuses on creating learning
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functions (trees) that store scores in their leaves. XGB employs a boosting technique
consisting of three steps:

1. Defining an initial model ŷ(0)n to predict the target variable yn, with this model associ-
ated with a residual (yn − f0(xn));

2. Fitting a new model f1(xn) to the residuals from the previous step;

3. Combining ŷ(0)n and f1(xn) to obtain ŷ(1)n , the boosted version of ŷ(0)n .

This process can be iterated for t rounds, resulting in ŷ(t)n until residuals are minimized.
The objective at round t is expressed as Obj(t) = ∑N

n=1 l(yn, ŷ(t−1)
n + ft(xn)) + Ω( ft) +

constant, where the goal is to find ft to minimize this objective. To enhance readability, we
use the notation XGB = [xgb1, xgb2, . . . , xgbd] to represent the scores of attributes instead
of [ f1, f2, . . . , fd] [11].

Support Vector Machine (SVM) uses a hyperplane and maximal margin between
classes (binary classification). Let us build N(N − 1) = 3× (3− 1) = 6 classifiers where
each classifier distinguishes each pair of classes i and j. And denote fij(x) = wT

ijxij + bi is a
classifier where class i is all positive samples, and the rest belongs to class j. Our problem is
equal to: (wi, bi) = arg max(wi ,bi)

(
wi

Txi + bi
)
. Solve this equation to obtain coefficients w

and intercept b of SVM. They are feature importance scores. Conveniently, w will replaced
by SVM = [svm1, svm2, . . . , svmd].

Random Forest (RF) is a popular machine learning algorithm that belongs to the
ensemble learning method. It operates by constructing many decision trees at training time
and outputting the class, that is, the mode of the classes (classification) or mean prediction
(regression) of the individual trees.

Random Forests are corrected for decision trees’ habit of overfitting their training set.
The fundamental concept behind RF is to combine the predictions made by many decision
trees into a single model. Individually, decision trees’ predictions may not be accurate, but
combined, they can produce accurate and stable predictions.

The goal of RF algorithm is to construct a function f : D → Y such that the error
∑N

i | fi(x)− yi|2 is minimized. While constructing trees by adding nodes, we calculate the
importance of the features. The importance of a feature is computed as the total reduction
in the criterion brought by that feature. It is also known as the Gini importance. It is a
measure of the contribution of each feature to the overall reduction in impurity (Gini index)
achieved by the decision tree. It is calculated as follows:

Gini Importance = 1−
3

∑
i=1

(pi)
2 − Nleft

Nparent
×Ginileft +

Nright

Nparent
×Giniright

where pi is the proportion of instances belonging to class i in the node (before splitting), and
Nleft and Nright are the number of instances in the left and right child nodes, respectively.
Ginile f t and Giniright are Gini left and right of the parent node.

The Gini importance provides a way to rank features based on their contribution to the
decision tree’s ability to make accurate predictions. Features with higher Gini importance
are considered more influential in the decision-making process of the tree. It’s worth noting
that this approach is specific to decision trees, and other machine learning algorithms
may have different methods for evaluating feature importance. We denote RF features
importance as RF = {rf1, rf2, . . . , rfd} for convenience.

According to the proposed classifier presented in Algorithm 2, as a result of phase
1, three sets of feature importance scores (or coefficients) are generated for each classi-
fier (XGB, SVM, and RF). In phase 2, to propose the new predictor, a set of weights
{wXGB, wSVM, wRF} is used for each corresponding classifier, respectively. Hence, the new
feature importance (denoted as f i) is calculated as follows:

f ii =
|xgbi| × wXGB + |svmi| × wSVM + |r fi| × wRF

wXGB + wSVM + wLR
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with i = 1..d.
The proposed calculation steps are explained as pseudocode in Algorithm 4:

Algorithm 4: Find feature importance scores based on our proposed classifier.
Input: features, data, fine-tuned models and W
Output: feature importance scores
Phase 1: Compute XGB, RF as feature importance scores of XGB and RF models;
SVM is the coefficients of the SVM model.

Phase 2: Compute feature importance scores FI;
for ithfeature do

f ii =
|xgbi |×wXGB+|svmi |×wSVM+|r fi |×wRF

wXGB+wSVM+wRF
;

end
return FI;

4. Results
4.1. Model Selection

We compared the average accuracies and Mean Squared Errors (MSEs) of five state-of-
the-art algorithms using ManualFeature group with our proposed algorithm. Each algorithm
has been fine-tuned on ManualFeature to obtain the best parameters. From Figure 4, our
proposed solution is outstanding in mean accuracy (90.80%), and the standard deviation of
accuracy is the narrowest. Then, two good models, RF and SVM, achieve mean accuracy of
89.85% and 87.81%, respectively. The other models achieve mean accuracies from 79.22% to
82.17%. It means our proposal algorithm achieves the highest accuracy and is more stable
than others.

Furthermore, the negative MSE results are also presented in Figure 5. They show that
the error rate for the proposed solution is the smallest MSE (synonym with the biggest
negative MSE) and narrowest compared with other machine learning algorithms. Next, in
order, are RF, SVM, CART, and XGB; the last is KNN. In other words, the proposed solution
has a better prediction performance.

KNN XGB CART SVM RF Proposed
Algorithms

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

Ne
ga

tiv
e 

M
SE

Figure 5. Comparison of algorithms using the ManualFeature group, evaluated by negative MSE
across 100 iterations of 10-fold cross-validation.

In conclusion, the proposed solution outperforms other state-of-the-art algorithms
regarding prediction accuracy, stability, and error minimization.

4.2. Feature Selection

After identifying the best model (in this case, our proposed model), we executed
Algorithm 1 using the ManualFeature group to determine the optimal feature group. Figure 6
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presents the result of finding the best feature group by executing Algorithm 1 with the
ManualFeature group and our proposed classifier. As explained in Section 3.1.3, the per-
formance of our proposed classifier increases from the weight change feature to the infant
gender feature, reaches a peak, and then stabilizes. This indicates that the classifier achieved
its highest accuracy with 16 out of 24 features in the feature importance list (presented
in Figure 7) generated by our proposed classifier. This optimal feature group, named the
BestFeature group, consists of weight change, fetal growth restriction, prepregnancy weight, height,
age, birthing LGA baby, HDL, TG, OGTT-1h, OGTT-0h, OGTT-2h, TC, FPG, LDL, education
time, and infant gender.

Figure 6. Find the best feature group based on Algorithm 1.

Figure 7. Feature importance list generated by our proposed classifier on ManualFeature group.

We rerun five selected algorithms and our proposed algorithm using the BestFeature
group, evaluated by mean accuracy and negative MSE across 100 iterations of 10-fold
cross-validation. We combine these results with the previously reported outcomes for the
ManualFeature group, as presented in Table 4. It shows the proposed algorithm achieves the
highest accuracy again, about 92.12%, higher before around 1.32%, and narrower standard
deviation than before (0.0059 vs. 0.0066), while others stand lower. Almost all models
achieve higher accuracy and smaller standard deviation; only CART and XGB get slightly
lower accuracy (0.8215 vs. 0.8217 and 0.7794 vs. 0.7939).

Furthermore, Table 4 shows that our model’s negative MSE is approximately −0.1197,
an improvement over the previous value of −0.1356 evaluated in the ManualFeature group.
Additionally, our proposed algorithm demonstrates the lowest standard deviation in MSE,
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recorded at 0.0117, compared with the earlier value of 0.0120. In contrast, other models
exhibit higher MSEs and lower standard deviations, except for the XGB and CART models.

Table 4. Comparison of algorithms performance: accuracy and negative MSE for ManualFeature
versus BestFeature groups.

Group Model Mean Acc Stddev Negative MSE Stddev
M

an
ua

lF
ea

tu
re KNN 0.7922 0.0068 −0.4675 0.0182

XGB 0.7939 0.0089 −0.3404 0.0215
CART 0.8217 0.0091 −0.3040 0.0234
SVM 0.8781 0.0071 −0.2226 0.0161
RF 0.8985 0.0078 −0.1489 0.0154
Proposed 0.9080 0.0066 −0.1356 0.0120

Be
st

Fe
at

ur
e

KNN 0.7961 0.0056 −0.4556 0.0173
XGB 0.7794 0.0100 −0.3623 0.0197
CART 0.8215 0.0102 −0.3138 0.0280
SVM 0.8478 0.0070 −0.1197 0.0117
RF 0.9131 0.0064 −0.1323 0.0127
Proposed 0.9212 0.0059 −0.1197 0.0117

In conclusion, our proposed model is the most outperforming, and the BestFeature
group represents our dataset’s most suitable feature group.

Suppose we choose a testing size = 0.25 with a random partition. In this case, we
have a confusion matrix and classification report of BestFeature, as in Table 5. The average
accuracy is 92%; besides that, the precision, recall, and F1-score of the SGA classification
are the most balanced and achieve the highest scores, corresponding to 0.95, 0.96, and 0.95,
respectively, while the values of the LGA classification correspond to 0.85, 0.95, and 0.90.
Furthermore, the scores of the AGA classification are 0.96, 0.85, and 0.90. Overall, these
values are high and balanced in classification.

Table 5. Confusion matrix and classification report of our proposed classifier on BestFeature group.

Confusion Matrix Precision Recall F1-Score Support

AGA LGA SGA
Predicted label

AGA

LGA

SGA

Tr
ue

 la
be

l

1386 216 36

39 1553 47

12 56 1571 250

500

750

1000

1250

1500
AGA 0.96 0.85 0.90 1638
LGA 0.85 0.95 0.90 1639
SGA 0.95 0.96 0.95 1639

accuracy 0.92 4916
macro avg 0.92 0.92 0.92 4916

weighted avg 0.92 0.92 0.92 4916

4.3. Find Feature Importance

We use Algorithm 4 to determine the feature importance for the SGA-LGA dataset
based on the BestFeature group. The results are presented in Figure 8. Additionally, we em-
ploy the SHAP (SHapley Additive exPlanations) beeswarm plot in our feature importance
analysis. This plot, a powerful visualization tool, helps interpret the output of machine
learning models by displaying the impact of each feature on the model’s predictions. This
allows for a detailed understanding of feature importance and interaction [32].
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Figure 8. Feature importance generated by Algorithm 4 on BestFeature group.

Figure 9 presents a beeswarm plot of feature importance for our BestFeature group
based on SHAP values. This figure indicates that fetal growth restriction is a high-risk factor
leading to SGA outcomes, while birthing LGA baby is more likely to result in LGA outcomes.
Other features in the list also exhibit mixed and unclear effects on the classification of SGA,
LGA, and AGA. Moreover, the order of feature importance in this figure differs from that
in Figure 8, which is proved correctly as discussed in Section 4.2 above.

Figure 9. Beeswarm plot of feature importance based on SHAP values using BestFeature group.

For a deeper understanding of the feature importance list, we divide features into
groups based on the effect or change in importance of each feature in order of feature
importance score:
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1. Maternal and Obstetric Factors: In order, the features with the highest feature impor-
tance score are weight change, fetal growth restriction, prepregnancy weight, height,
age, and birthing LGA baby. Referring to Figure 6, this feature group is estimated
to achieve an overall accuracy of approximately 82.5% within the BestFeature group,
indicating their significant relevance to the SGA or LGA outcomes. To elucidate fur-
ther, we reorganize this group into two categories: Maternal Factors (weight change,
prepregnancy weight, height, age) and Obstetric Factors (fetal growth restriction,
birthing LGA baby). The rationale behind this classification is that maternal factors
are likely to influence the SGA or LGA outcomes. In contrast, obstetric factors such
as fetal growth restriction or a history of birthing LGA baby may exacerbate the
likelihood of subsequent SGA or LGA infants.

2. First Trimester Biomarker Factors: They are medium feature importance scores. In
descending order, this group comprises the following features HDL, TG, OGTT-1h,
OGTT-0h, OGTT-2h, TC, FPG, and LDL. Thus, this group is estimated to contribute
approximately 7.2% (89.7–82.5%) (more details in Figure 6) to the classification perfor-
mance, enhancing diagnostic accuracy by providing additional factors.

3. Other Factors: Including other features, such as education time and infant gender,
improves the model’s accuracy by approximately 2.4% (92.1–89.7%) marginally.

5. Discussion

Exploring clinical demographics and biomarkers at the first trimester ending for
fetuses with SGA-LGA conditions presents a promising avenue for research. The proposed
system aims to aid medical practitioners and researchers identify critical features from
SGA-LGA data essential for clinical practice.

As presented in the results, the system highly recommends clinical experts focus on
the most significant maternal and obstetric attributes are weight change, prepregnancy
weight, height, age and fetal growth restriction, birthing LGA baby, respectively. It also
emphasizes the importance of double-checking biomarker features at the end of the first
trimester, including HDL, TG, OGTT-1h, OGTT-0h, OGTT-2h, TC, FPG, and LDL. These
features of importance are illustrated in Figure 8.

From Figure 8, inadequate weight gain in early pregnancy is associated with a higher
risk of SGA, while excessive weight gain increases the likelihood of LGA [33,34]. A higher
prepregnancy BMI (calculated from weight and height) correlates with LGA, whereas a
lower BMI is linked to SGA. Short maternal stature is a risk factor for SGA, while taller
mothers have a higher likelihood of LGA [33]. Advanced maternal age raises the risk of both
SGA and LGA due to complications such as gestational diabetes and hypertension [34,35].
These findings underscore the importance of monitoring maternal characteristics such as
weight, height, and age during prenatal care to reduce the risks associated with abnormal
fetal growth [34,35].

Additionally, biomarkers measured at the end of the first trimester reflect the status of
SGA or LGA fetuses. Elevated OGTT-1h and OGTT-2h levels are linked to increased risks
of gestational diabetes and LGA, while lower levels may be associated with SGA due to
insufficient glucose supply. Similarly, elevated fasting plasma glucose (FPG) in the first
trimester predicts a higher risk of LGA due to persistent maternal hyperglycemia, whereas
lower FPG levels can be a risk factor for SGA [36,37]. Higher triglyceride (TG) levels are
related to LGA risk, whereas lower high-density lipoprotein (HDL) levels are associated
with SGA, indicating the importance of lipid balance for optimal fetal growth [37]. These
findings emphasize the need for early monitoring and management of maternal metabolic
health to improve pregnancy outcomes.

The human biological system is complex and dynamic: a small change initially can
lead to significant changes later in life. Although our findings highlight high-risk factors
that can support clinical practitioners in assessing and then applying timely and suitable
interventions, the effectiveness of such interventions remains uncertain. There is a lack
of research quantifying the effect of timely, completely isolated interventions on these
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high-risk factors for SGA and LGA. We highly recommend further research to quantify the
effect of timely interventions for SGA-LGA. As discussed in our study, many risk factors for
SGA-LGA affect fetuses, infants, mothers, and their childhood development. Quantifying
the impact of interventions and applying proven effective measures can result in significant
positive changes in the outcomes for mothers, fetuses, and children.

In terms of performance, the proposed solution has demonstrated superior accuracy
and lower MSE levels compared with five contemporary algorithms on both the ManualFea-
ture and BestFeature groups, as depicted in Table 4.

Our proposed Algorithm 1 seeks to identify the optimal feature group by selecting
the feature importance threshold. It then returns the most suitable feature group with
the highest or near-highest accuracy and the smallest standard deviation of accuracy.
This approach proposes reducing the number of analysis features from 26 to 16, thereby
enhancing model performance.

Concerning the classification system, the proposed solution achieved an average
accuracy of 0.92. Each classification class—SGA, LGA, and AGA—demonstrated high and
balanced precision, recall, and F1-score values, as presented in Table 5. These results suggest
that our proposed solution surpasses others and will likely yield accurate predictions on
additional validation sets.

6. Conclusions

In conclusion, classifying SGA and LGA fetuses is essential for identifying at-risk
groups and developing targeted clinical management strategies. Effective interventions
for SGA include close monitoring, dietary adjustments, and maternal nutritional support,
while LGA management requires strict glycemic control and careful obstetric oversight to
prevent birth complications.

This study introduces a computational system that classifies fetuses as SGA, LGA, and
AGA by the end of the first trimester using maternal demographics, factors, and biomedical
parameters collected between 10 to 13 weeks of pregnancy. The system also identifies key
classification features to enhance computational and clinical analysis.

The proposed model demonstrated high accuracy, with an average of 92.12% through
10-fold cross-validation over 100 loops, and outperformed five advanced machine learning
algorithms in accuracy and MSE. It achieved 92% accuracy on the test set, showing high
and balanced precision, recall, and F1-score for SGA, LGA, and AGA classifications, as
detailed in Table 5.

Additionally, the system selected relevant attributes for medical analysis, such as
maternal factors (weight change, prepregnancy weight, height, age) and obstetric factors
(fetal growth restriction, birthing LGA baby), and certain biomarkers at the end of the first
trimester, including HDL, TG, OGTT-1h, OGTT-0h, OGTT-2h, TC, FPG, LDL, among others.
These were determined based on feature importance.

Future research may investigate the application of artificial intelligence techniques,
including recurrent neural networks (RNNs) and Convolutional Neural Networks (CNNs),
to enhance the predictive capabilities for classification tasks.
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