Detection of Cervical Lesion Cell/Clumps Based on Adaptive Feature Extraction
Abstract
:1. Introduction
- (1)
- We propose an adaptive feature extraction network, named AFE-Net, for detecting cervical lesion cell/clumps.
- (2)
- Through the adaptive module (AM) and the global bias mechanism (GBM), we divide feature extraction into adaptive feature and global average information extraction, enhancing the ability of the network to extract various shape and size features of cervical lesion cell/clumps.
- (3)
- We discuss the influence of mainstream bounding box losses on cervical lesion cell/clumps detection and propose a new bounding box loss, tendency-IoU (TIoU), to improve the detection accuracy of the model.
- (4)
- Using AFE-Net, we achieve the highest mAP (64.8%) on cervical cell datasets Comparison Detector (CDetector), with a reduction of 11.8% in model parameters compared to the baseline model.
2. Materials and Methods
2.1. Network Structure
2.2. Global Adaptive Bias Network
2.3. Bounding Box Loss
2.4. Datasets
2.5. Experimental Setup
2.6. Evaluation Metrics
3. Results
3.1. Comparison with State-of-the-Art Methods
3.2. Ablation Study
3.2.1. Adaptive Feature Extraction Experiments
3.2.2. Generalization Experiment
3.2.3. Bounding Box Loss Experiment
3.3. Experimental Results on the DCCL Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viveros-Carreño, D.; Fernandes, A.; Pareja, R. Updates on cervical cancer prevention. Int. J. Gynecol. Cancer 2023, 33, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, A.; Tsukamoto, T.; Kiriyama, Y.; Fujita, H. Automated classification of lung cancer types from cytological images using deep convolutional neural networks. BioMed Res. Int. 2017, 2017, 4067832. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin. Eye Res. 2018, 67, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kong, H.; Ting Chin, C.; Liu, S.; Fan, X.; Wang, T.; Chen, S. Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin and eosin staining. Cytom. Part A 2014, 85, 214–230. [Google Scholar] [CrossRef] [PubMed]
- Chankong, T.; Theera-Umpon, N.; Auephanwiriyakul, S. Automatic cervical cell segmentation and classification in Pap smears. Comput. Methods Programs Biomed. 2014, 113, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Phoulady, H.A.; Zhou, M.; Goldgof, D.B.; Hall, L.O.; Mouton, P.R. Automatic quantification and classification of cervical cancer via adaptive nucleus shape modeling. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2658–2662. [Google Scholar]
- Liu, L.; Wang, Y.; Ma, Q.; Tan, L.; Wu, Y.; Xiao, J. Artificial classification of cervical squamous lesions in ThinPrep cytologic tests using a deep convolutional neural network. Oncol. Lett. 2020, 20, 113. [Google Scholar] [CrossRef] [PubMed]
- Hussain, E.; Mahanta, L.B.; Das, C.R.; Talukdar, R.K. A comprehensive study on the multi-class cervical cancer diagnostic prediction on pap smear images using a fusion-based decision from ensemble deep convolutional neural network. Tissue Cell 2020, 65, 101347. [Google Scholar] [CrossRef] [PubMed]
- Alquran, H.; Alsalatie, M.; Mustafa, W.A.; Al Abdi, R.; Ismail, A.R. Cervical Net: A Novel Cervical Cancer Classification Using Feature Fusion. Bioengineering 2022, 9, 578. [Google Scholar] [CrossRef]
- Manna, A.; Kundu, R.; Kaplun, D.; Sinitca, A.; Sarkar, R. A fuzzy rank-based ensemble of CNN models for classification of cervical cytology. Sci. Rep. 2021, 11, 14538. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, T.; Gong, Z.; Huang, X. High Precision Cervical Precancerous Lesion Classification Method Based on ConvNeXt. Bioengineering 2023, 10, 1424. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wang, R.; Zheng, Y.; Jiang, Z.; Zhang, H.; Yu, L. Cervical cell classification with graph convolutional network. Comput. Methods Programs Biomed. 2021, 198, 105807. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, D.; Wang, L.; Li, Y.; Chen, X.; Luo, R.; Che, S.; Liang, H.; Li, Y.; Liu, S.; et al. DCCL: A benchmark for cervical cytology analysis. In Proceedings of the Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, 13 October 2019; Proceedings 10. Springer International Publishing: Cham, Switzerland, 2019; pp. 63–72. [Google Scholar]
- Liang, Y.; Tang, Z.; Yan, M.; Chen, J.; Liu, Q.; Xiang, Y. Comparison detector for cervical cell/clumps detection in the limited data scenario. Neurocomputing 2021, 437, 195–205. [Google Scholar] [CrossRef]
- Yi, L.; Lei, Y.; Fan, Z.; Zhou, Y.; Chen, D.; Liu, R. Automatic detection of cervical cells using dense-cascade R-CNN. In Proceedings of the Pattern Recognition and Computer Vision: Third Chinese Conference, PRCV 2020, Nanjing, China, 16–18 October 2020; Proceedings, Part II 3. Springer International Publishing: Cham, Switzerland, 2020; pp. 602–613. [Google Scholar]
- Liang, Y.; Pan, C.; Sun, W.; Liu, Q.; Du, Y. Global context-aware cervical cell detection with soft scale anchor matching. Comput. Methods Programs Biomed. 2021, 204, 106061. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Yang, J.; Rong, Z.; Li, L.; Xia, B.; You, C.; Lou, G.; Jiang, L.; Du, C.; Meng, H.; et al. A novel attention-guided convolutional network for the detection of abnormal cervical cells in cervical cancer screening. Med. Image Anal. 2021, 73, 102197. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, X.; Ong, K.; Zhang, W.; Li, W.; Li, L.; Young, D.; Su, Y.; Shang, B.; Peng, L.; et al. Hybrid AI-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears. Nat. Commun. 2021, 12, 3541. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Feng, S.; Liu, Q.; Kuang, H.; Liu, J.; Liao, L.; Du, Y.; Wang, J. Exploring contextual relationships for cervical abnormal cell detection. IEEE J. Biomed. Health Inform. 2023, 27, 4086–4097. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zheng, W.; Ying, H.; Tan, X.; Li, K.; Li, X.; Chen, D.Z.; Wu, J. A task decomposing and cell comparing method for cervical lesion cell detection. IEEE Trans. Med. Imaging 2022, 41, 2432–2442. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28, Montreal, QC, Canada, 7–12 December 2015. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable convnets v2: More deformable, better results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9308–9316. [Google Scholar]
- Wang, W.; Dai, J.; Chen, Z.; Huang, Z.; Li, Z.; Zhu, X.; Hu, X.; Lu, T.; Lu, L.; Li, H.; et al. Internimage: Exploring large-scale vision foundation models with deformable convolutions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 14408–14419. [Google Scholar]
- Yang, B.; Bender, G.; Le, Q.V.; Ngiam, J. Condconv: Conditionally parameterized convolutions for efficient inference. In Proceedings of the Advances in Neural Information Processing Systems 32, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Chen, Y.; Dai, X.; Liu, M.; Chen, D.; Yuan, L.; Liu, Z. Dynamic convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11030–11039. [Google Scholar]
- Zhou, J.; Jampani, V.; Pi, Z.; Liu, Q.; Yang, M.H. Decoupled dynamic filter networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 6647–6656. [Google Scholar]
- Gao, Q.; Almekkawy, M. ASU-Net++: A nested U-Net with adaptive feature extractions for liver tumor segmentation. Comput. Biol. Med. 2021, 136, 104688. [Google Scholar] [CrossRef]
- Gündoğar, Z.; Eren, F. An adaptive feature extraction method for classification of Covid-19 X-ray images. Signal Image Video Process. 2023, 17, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.Y.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Gevorgyan, Z. SIoU loss: More powerful learning for bounding box regression. arXiv 2022, arXiv:2205.12740. [Google Scholar]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. arXiv 2023, arXiv:2301.10051. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Lu, Z.; Carneiro, G.; Bradley, A.P.; Ushizima, D.; Nosrati, M.S.; Bianchi, A.G.C.; Carneiro, C.M.; Hamarneh, G. Evaluation of three algorithms for the segmentation of overlapping cervical cells. IEEE J. Biomed. Health Inform. 2016, 21, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Plissiti, M.E.; Dimitrakopoulos, P.; Sfikas, G.; Nikou, C.; Krikoni, O.; Charchanti, A. SIPAKMED: A new dataset for feature and image based classification of normal and pathological cervical cells in Pap smear images. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3144–3148. [Google Scholar]
- Saikia, A.R.; Bora, K.; Mahanta, L.B.; Das, A.K. Comparative assessment of CNN architectures for classification of breast FNAC images. Tissue Cell 2019, 57, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Hussain, E.; Mahanta, L.B.; Borah, H.; Das, C.R. Liquid based-cytology Pap smear dataset for automated multi-class diagnosis of pre-cancerous and cervical cancer lesions. Data Brief 2020, 30, 105589. [Google Scholar] [CrossRef] [PubMed]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Xu, C.; Li, M.; Li, G.; Zhang, Y.; Sun, C.; Bai, N. Cervical cell/clumps detection in cytology images using transfer learning. Diagnostics 2022, 12, 2477. [Google Scholar] [CrossRef]
Lesion Type | Train | Test | Total |
---|---|---|---|
ASCUS | 1835 | 222 | 2057 |
ASCH | 3891 | 410 | 4301 |
HSIL | 26,305 | 2823 | 29,128 |
LSIL | 1466 | 173 | 1639 |
ACTIN | 144 | 18 | 162 |
SCC | 1991 | 229 | 2290 |
AGC | 4989 | 668 | 5657 |
TRICH | 4977 | 481 | 5458 |
CAND | 336 | 27 | 363 |
FLORA | 127 | 24 | 151 |
HERPS | 272 | 37 | 309 |
total | 46,333 | 5112 | 51,445 |
Method | Parameters | mAP (%) |
---|---|---|
Faster R-CNN [22] | 41.7 M | 45.5 |
RetinaNet [23] | 36.3 M | 45.2 |
* Comparison detector [15] | - | 48.8 |
* Faster R-CNN [43] | 41.7 M | 61.6 |
YOLOv7 [37] | 34.8 M | 62.6 |
AFE-Net (our) | 30.7 M | 64.8 |
Method | Parameters | mAP(%) |
---|---|---|
YOLOv7 | 34.8 M | 62.6 |
YOLO (V1) | 30.7 M | 63.1 |
YOLO+AM (V2) | 30.6 M | 63.7 |
YOLO+GBM (V3) | 30.4 M | 63.6 |
YOLO+GABM (V4) | 30.7 M | 64.2 |
Position | Parameters | mAP (%) |
---|---|---|
Figure 7: (1) | 30.7 M | 63.8 |
Figure 7: (2) | 30.7 M | 64.0 |
Figure 7: (3) | 30.7 M | 63.5 |
Figure 7: (4) | 30.7 M | 64.2 |
IoU | GIoU | CIoU | SIoU | WIoU | TIoU | |
---|---|---|---|---|---|---|
ASCUS | 52.2 | 52.0 | 52.4 | 51.4 | 49.6 | 51.9 |
ASCH | 28.5 | 28.8 | 29.5 | 28.8 | 31.3 | 31.6 |
LSIL | 54.9 | 59.0 | 56.0 | 59.3 | 60.8 | 60.5 |
HSIL | 58.4 | 56.9 | 56.6 | 58.8 | 58.0 | 58.6 |
SCC | 39.8 | 31.9 | 35.6 | 38.4 | 37.1 | 37.8 |
AGC | 72.6 | 72.5 | 69.7 | 69.8 | 71.8 | 72.3 |
TRICH | 69.0 | 68.8 | 69.8 | 68.3 | 66.6 | 66.6 |
CAND | 84.2 | 92.3 | 80.8 | 85.9 | 82.3 | 77.4 |
FLORA | 76.0 | 67.0 | 77.4 | 80.0 | 76.8 | 83.4 |
HERPS | 83.3 | 85.4 | 86.3 | 80.6 | 84.5 | 82.8 |
ACTIN | 74.8 | 70.1 | 74.7 | 71.2 | 77.8 | 74.4 |
mAP (%) | 63.1 | 62.2 | 62.6 | 63.0 | 63.3 | 63.4 |
Lesion Type | Train | Val | Test | Total |
---|---|---|---|---|
ASC-US | 2471 | 838 | 1378 | 4687 |
ASC-H | 1147 | 543 | 591 | 2281 |
HSIL | 5890 | 1807 | 3482 | 11,179 |
LSIL | 1739 | 356 | 595 | 2690 |
SCC | 3006 | 1225 | 2731 | 6962 |
AGC | 122 | 20 | 31 | 173 |
NILM | 2588 | 1540 | 2292 | 6420 |
total | 16,963 | 6329 | 11,100 | 34,392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Li, X.; Wang, Y.; Gong, S.; Yang, Y.; Xu, C. Detection of Cervical Lesion Cell/Clumps Based on Adaptive Feature Extraction. Bioengineering 2024, 11, 686. https://doi.org/10.3390/bioengineering11070686
Li G, Li X, Wang Y, Gong S, Yang Y, Xu C. Detection of Cervical Lesion Cell/Clumps Based on Adaptive Feature Extraction. Bioengineering. 2024; 11(7):686. https://doi.org/10.3390/bioengineering11070686
Chicago/Turabian StyleLi, Gang, Xingguang Li, Yuting Wang, Shu Gong, Yanting Yang, and Chuanyun Xu. 2024. "Detection of Cervical Lesion Cell/Clumps Based on Adaptive Feature Extraction" Bioengineering 11, no. 7: 686. https://doi.org/10.3390/bioengineering11070686
APA StyleLi, G., Li, X., Wang, Y., Gong, S., Yang, Y., & Xu, C. (2024). Detection of Cervical Lesion Cell/Clumps Based on Adaptive Feature Extraction. Bioengineering, 11(7), 686. https://doi.org/10.3390/bioengineering11070686