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Abstract: Automated detection of cervical lesion cell/clumps in cervical cytological images is essential
for computer-aided diagnosis. In this task, the shape and size of the lesion cell/clumps appeared to
vary considerably, reducing the detection performance of cervical lesion cell/clumps. To address the
issue, we propose an adaptive feature extraction network for cervical lesion cell/clumps detection,
called AFE-Net. Specifically, we propose the adaptive module to acquire the features of cervical
lesion cell/clumps, while introducing the global bias mechanism to acquire the global average
information, aiming at combining the adaptive features with the global information to improve the
representation of the target features in the model, and thus enhance the detection performance of
the model. Furthermore, we analyze the results of the popular bounding box loss on the model and
propose the new bounding box loss tendency-IoU (TIoU). Finally, the network achieves the mean
Average Precision (mAP) of 64.8% on the CDetector dataset, with 30.7 million parameters. Compared
with YOLOv7 of 62.6% and 34.8M, the model improved mAP by 2.2% and reduced the number of
parameters by 11.8%.

Keywords: cervical cancer; target detection; bounding box loss; adaptive feature extraction

1. Introduction

Cervical cancer ranks as the fourth most common cancer globally, posing a significant
threat to female health. In 2020, there were 604,127 new cases of cervical cancer worldwide,
with 341,831 deaths attributed to the disease. Alarmingly, 85–90% of these new cases
occurred in developing countries [1]. Research has found that cervical cancer is almost
entirely preventable due to its long latency period. Research indicates that persistent
infection with high-risk types of human papillomavirus (HPV) is the primary cause of
cervical cancer. In recent years, HPV vaccination has been shown to effectively reduce
cervical diseases caused by HPV. However, widespread HPV vaccination is limited due
to various economic and policy differences among countries. Therefore, the thinprep
cytologic test (TCT) is essential. In medicine, TCT is an effective method for preventing
cervical cancer. This method requires pathologists to prepare and stain shed cervical cells,
and finally, under a microscope, to make preliminary diagnostic results based on subtle
differences in morphology and structure between cervical lesion cells and normal cells.
However, detecting thousands of cells in cytological images with gigapixel resolution is
extremely time-consuming and prone to errors, requiring pathologists to possess specialized
knowledge and extensive experience.
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In recent years, the rapid development of deep learning in the field of imaging has
enabled artificial intelligence to achieve good results in many medical tasks, including the
classification of skin malignancies [2], the classification of lung cancer [3], and the detection
and classification of retinal diseases [4]. In screening for cervical cancer, artificial intelligence
can help address the shortage of pathologists and effectively improve the efficiency of
cervical cancer diagnosis. Early detection methods for cervical lesion cells [5–7] usually
include candidate region segmentation, feature extraction, and classification. However,
the detection performance of this method relies on the accuracy of segmentation and
the effectiveness of hand-crafted features. In conjunction with deep learning models,
several convolutional neural networks-based methods [8–13] have emerged for cervical
lesion cell classification. Although these methods have improved the performance of
computer-aided diagnosis, numerous overlapping and adherent cells in cell images make
it difficult to achieve the required segmentation accuracy, limiting the identification of
cervical lesion cells.

The important goal of screening is to find diseased cells in cervical cell images and
recognize them in different lesion stages. As a result, methods have emerged to detect
lesion cell/clumps directly from cervical cell images in an end-to-end manner using target
detection models [14–21]. In [14], Faster-RCNN [22] and RetinaNet [23] were used directly
for the detection of large cervical cell datasets. Comparison detectors [15] are used to deal
with issues with limited data sets. Yi et al. [16] proposed a dense cascaded regional convo-
lutional neural network with three modules of data augmentation, training set balancing,
and dense cascaded R-CNN to enhance the performance of cervical cell detection. A specific
YOLOv3 [24] detector was integrated into [19] for cervical cell detection. However, all these
methods utilize only local features of the cervical cell images. In this regard, Liang et al. [17]
constructed a global context-aware framework to reduce false-positive predictions through
image classification branching and weighted loss. Enhancing the region of interest features
by exploring the context in [20] improves the detection accuracy.

Despite some notable achievements made by these methods, they have not fully
exploited the characteristics of cervical lesion cells in cervical cell images. Cao et. [18] intro-
duced an attention feature pyramid network, which utilizes attention modules to enhance
or suppress feature learning, thereby improving detection accuracy. Chen et al. [21] di-
vided the same type into individual cells and clumps through task decomposition, thereby
enhancing the ability of model to learn features of a single category. Unlike these methods,
our approach employs adaptive feature extraction for cervical lesion cell/clumps, integrat-
ing global information from cervical cell images while extracting features of cell/clumps
of various shapes and sizes, thereby enhancing the feature representation of cervical
lesion cell/clumps.

Adaptive methods are primarily derived from deformable convolutions [25–27], which
achieve adaptive feature extraction by altering sampling positions with additional offsets.
In recent years, many methods have extended deformable convolutions to obtain better
feature representations, such as conditional parameterized convolutions [28], dynamic
convolutions [29], and decoupled dynamic filtering networks [30]. In medical imaging,
adaptive methods hold tremendous potential. Gao et al. [31] embedded adaptive feature
extraction methods into U-Net for liver tumor segmentation. An adaptive feature extraction
method has been used for COVID-19 X-ray image classification [32].

The bounding box loss plays a crucial role in object detection tasks. In object detection
tasks, IoU is commonly used as the bounding box loss, which calculates the intersection
over union ratio between the predicted box and the ground truth box. This effectively
reflects the degree of overlap between the predicted and ground truth boxes, accelerating
model convergence. However, IoU loss also has two drawbacks. Firstly, when the predicted
box and the ground truth box do not intersect, IoU is always 0, leading to vanishing
gradients during backpropagation. Secondly, when two predicted boxes have the same IoU
loss with the ground truth box, it cannot reflect which predicted box is better. Subsequent
researchers proposed enhancing model performance by incorporating geometric factors
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of bounding boxes into penalty terms to address the drawbacks of IoU [33–35]. GIoU [33]
uses the minimum enclosing box to construct the penalty term. DIoU [34] utilizes the
normalized center distance between the predicted box and the target box to construct the
penalty term. CIoU [34] adds the aspect ratio of the predicted box and the target box to
the penalty term based on DIoU. SIoU [35] constructs the penalty term by considering
angle cost, distance cost, and aspect ratio. In [36], it is argued that a good loss function
should attenuate the penalty of geometric factors when the predicted box overlaps with
the ground truth box. Less intervention during training enables the model to achieve better
generalization capabilities. In response to this, WIoU [36] is proposed as the bounding
box loss. WIoU [36] scales the IoU loss through dynamic focusing and attention distance,
reducing the impact of outlier anchor boxes. Considering the effect of bounding box loss
on the accuracy of cervical lesion cell detection, We introduce angle attention into WIoU for
metric evaluation, termed TIoU, as detailed in Section 2.3.

We propose an adaptive feature extraction network (AFE-Net) for cervical lesion
cell/clumps detection, as shown in Figure 1. Specifically, we propose the Global adaptive
bias module (GABM), which includes the adaptive module (AM) with dilated and the
global bias mechanism (GBM). That is, the adaptive module acquires adaptive features of
cervical lesion cell/clumps while introducing the global bias mechanism to obtain global
average information, and then combines the adaptive features with global information.
This approach allows our network to better learn the features of each lesion cell/clumps,
thereby improving the detection performance of the model. Additionally, we analyze the
impact of popular bounding box losses on the model and propose a new bounding box
loss, tendency-IoU (TIoU), to enhance the detection accuracy of AFE-Net.

Figure 1. Adaptive feature extraction. Regular convolutions extract features only from specific
regions. Deformable convolutions have the ability of geometric transformation, but the transformation
ability is limited. Dilated deformable convolutions can adjust the size of dilation to enhance the
deformation capability.

In summary, the contribution of this paper is as follows:

(1) We propose an adaptive feature extraction network, named AFE-Net, for detecting
cervical lesion cell/clumps.

(2) Through the adaptive module (AM) and the global bias mechanism (GBM), we divide
feature extraction into adaptive feature and global average information extraction,
enhancing the ability of the network to extract various shape and size features of
cervical lesion cell/clumps.
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(3) We discuss the influence of mainstream bounding box losses on cervical lesion
cell/clumps detection and propose a new bounding box loss, tendency-IoU (TIoU),
to improve the detection accuracy of the model.

(4) Using AFE-Net, we achieve the highest mAP (64.8%) on cervical cell datasets Compar-
ison Detector (CDetector), with a reduction of 11.8% in model parameters compared
to the baseline model.

2. Materials and Methods

We address the issues encountered in detecting cervical lesion cell images and pro-
pose a method based on an adaptive feature extraction network (AFE-Net) built upon
YOLOv7 [37]. To tackle the problem of overlapping cell shapes and significant variations
in size, leading to lower detection accuracy, we introduce an adaptive feature extraction
approach that effectively captures features of cervical lesion cells. Furthermore, considering
the global impact of cervical cell images, we propose a global bias mechanism to acquire
global average information. Finally, we analyze the impact of different bounding box losses
on detection accuracy and propose TIoU loss.

2.1. Network Structure

Figure 2a depicts the structural framework of AFE-Net. It mainly consists of three
parts: the input end, the backbone network, and the detection head. Effective preprocessing
methods are provided at the input end, such as the Mosaic high-order data augmentation
strategy, adaptive image adjustment strategy, and multi-scale training, to help improve
model accuracy. The backbone network extracts features from input images, comprising
an efficient layer aggregation network, MP structure, and global adaptive bias network
(GABN). The efficient layer aggregation network enhances feature learning from differ-
ent features by adding feature bases through residual and grouped convolution meth-
ods. GABN primarily consists of a connection-based model scaling network and GABM,
as shown in Figure 2b. The connection-based model scaling network utilizes residual
connections and channel reduction methods to obtain multi-scale features. The specific
details of GABM are in Section 2.2. The detection head adopts the scheme of the base model.

2.2. Global Adaptive Bias Network

To address the challenges in cervical cell image detection, we designed a global
adaptive bias network, which primarily utilizes a connection-based model scaling network
and GABM. The connection-based model scaling network is constructed using numerous
residual structures and methods for reducing channels. GABM consists of AM and GBM,
as illustrated in Figure 2c. In the design of GABM, we not only consider the shape and size
of cervical cell/clumps but also take into account the influence of global information.

Adaptive Module (AM): Unlike regular convolutions, we divide the input features
into two groups along channels and apply deformable convolutions with different dilation
sizes to each group separately [26], in order to obtain adaptive feature maps under different
receptive fields. Then, the resulting feature maps are concatenated to obtain adaptive
features for cervical lesion cell/clumps.

Given an input x ∈ ℜC×H×W , a void size d (in this experiment d is 6 and 12),
and the current pixel p0, which is divided into two groups by channel, the input becomes
x ∈ ℜC/2×H×W , and the deformable convolution can be expressed as:

y(p0) =
K

∑
k=1

wkmkx(p0 + pk +△pk) (1)

where K denotes the total number of sampling points, k denotes the enumerated sampling
points. wk, mk and △pk denote the weights, modulation scalars, and offsets, respectively,
of the k location. pk ∈ {(−1 − d,−1 − d), (−1 − d, 0), . . . , (1 + d, 1 + d)} denotes the posi-
tion of sampling.
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Global Bias Mechanism (GBM): In order to incorporate global characteristics into
the output features, we designed a global bias mechanism. Firstly, bias is acquired
through adaptive average pooling of the input features. Then, it is adjusted through
a 1 × 1 convolution, and finally, outputted through an FC layer with the Silu activation
function. This approach enables GABM to generate coherent outputs considering global
cell image information.

Compared to previous work, we propose GABM. On one hand, it reduces the feature
disparity caused by targets at different scales. On the other hand, our grouping operation
effectively reduces computational resources.
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Figure 2. Block diagram of AFE-Net. (a) AFE-Net overall structure diagram. (b) GABN structure
diagram. (c) GABM structure diagram with the adaptive module (AM) in the upper half and the
global bias mechanism (GBM) in the lower half.

2.3. Bounding Box Loss

To enhance focus on the prediction boxes, this paper constructs the TIoU bounding box
loss. The angle cost (Equation (2)) in SIoU is utilized to build angle attention (Equation (3)),
where the angle cost is 0 when the center point connects parallel to the x-axis or y-axis.
The angle cost is 1 when the center point connects at a 45-degree angle to the x-axis. This
angle attention enables bounding boxes to move towards the x-axis or y-axis, reducing the
freedom of the boxes. This method allows for a better tendency of bounding box loss even
when sharing the same attention.

The mathematical representation of the TIoU loss function is as follows:

Λ = sin(2sin−1 min(
∣∣x − xgt

∣∣, ∣∣y − ygt
∣∣)√

(x − xgt)2 + (y − ygt)2
) (2)
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η =
Λ + 1

2
(3)

LTIoU =
β

δαβ−δ
e

η
(x−xgt)

2+(y−ygt)
2

(W2
g+H2

g)∗ LIoU (4)

LIoU =
A ∩ B
A ∪ B

(5)

In which, x and y respectively represent the horizontal and vertical coordinates of the center
point of the predicted box. xgt and ygt respectively represent the horizontal and vertical
coordinates of the center point of the ground truth box. Λ represents the angle cost, while
η represents the angle attention. A and B respectively represent the predicted bounding
box and the ground truth bounding box. Wgt and Hgt respectively represent the width
and height of the minimum closed interval, as illustrated in Figure 3. According to [36],
α and δ are both constants, with values of 1.9 and 3 respectively, where β represents the
abnormality level of the predicted box.

b

bgt

A

B C

gW

gH

( , )gt gtx y

( , )x y

Figure 3. The smallest enclosing box (orange) and the central points’ connection (red). A represents
the predicted box. B represents the ground truth box. C represents the minimum closed interval.

2.4. Datasets

In the study of cervical cell analysis using deep learning, common datasets for classifi-
cation and segmentation tasks include ISBI [38], Sipakmed [39], FNAC [40], and LBC [41].
In contrast, there are fewer datasets available for detection tasks, and most of them are
private datasets. In this study, we utilized the public dataset CDetector [15] for our ex-
periments. This dataset comprises 7410 microscopic images of cervical lesion cell/clumps
cropped from the whole slide images (WSI) obtained from the Pannoramic MIDI II dig-
ital slide scanner. The corresponding specimens were prepared using the Papanicolaou
staining method. We divided these images into training and testing sets, with 6666 images
in the training set and 744 images in the testing set. The dataset includes 11 categories,
and some sample images are shown in Figure 4. The distribution of annotation boxes in the
experimental data is shown in Table 1.
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HSIL

ASCUS

ASCH

LSIL

ACTIN

SCC

AGC

TRICH

CAND

FLORA

HERPS

Figure 4. Cervical cell/clumps at different stages of lesions. Cell/clumps within the same category
exhibit various features, while different categories share similar characteristics.

Table 1. The distribution of annotation boxes for different lesion cells.

Lesion Type Train Test Total

ASCUS 1835 222 2057
ASCH 3891 410 4301
HSIL 26,305 2823 29,128
LSIL 1466 173 1639

ACTIN 144 18 162
SCC 1991 229 2290
AGC 4989 668 5657

TRICH 4977 481 5458
CAND 336 27 363
FLORA 127 24 151
HERPS 272 37 309

total 46,333 5112 51,445

2.5. Experimental Setup

During training and validation, we resize the images to 640 × 640 for input, preprocess
them using Mosaic data augmentation [42] (Randomly crop four images and then stitch
them together into one image for training data) and multi-scale training (Randomly scale
the input image by a factor of 0.5 or 1.5) methods, and initialize the training weights using
MS COCO (A large-scale image dataset developed and maintained by Microsoft). We
utilize the SGD optimizer with an initial learning rate of 0.01, which is reduced using
Cosine annealing. After the 100th epoch, the training stops. Each batch randomly samples
8 images, with weight decay set to 0.0005 and momentum to 0.937.
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2.6. Evaluation Metrics

This experiment evaluates the performance of various methods using the mean
Average Precision from popular object detection competitions such as Pascal VOC and
MS COCO. When calculating, the IoU threshold is set to 0.5. The computation process of
mAP is as follows:

Step 1: Obtain the Precision (the proportion of true positives among the samples
predicted as positive) and Recall (the proportion of samples predicted as positive among
the actual positive samples) for each class.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

In the formula, TP represents the true positives, referring to the number of correctly
detected cervical lesion cell/clumps. FP represents the false positives, indicating the num-
ber of incorrectly detected cervical lesion cell/clumps. FN represents the false negatives,
referring to the missed cervical lesion cell/clumps.

Step 2: Plot the AP curve for individual classes using precision and recall, then
calculate the Average Precision AP value for each class using the AP formula.

AP =
∫ 1

0
P(R)dR (8)

Step 3: Sum up all the AP values obtained for each class, then calculate the average to
obtain the final mAP

mAP =
∑m

i=1 APi

m
(9)

In addition to this, this experiment will also use the number of model parameters
as a reference.

3. Results
3.1. Comparison with State-of-the-Art Methods

We compared our proposed AFE-Net with known methods for cervical lesion cell/clumps
detection. Table 2 shows the results, from which it can be observed that: (1) Among the
object detection models, YOLOv7 demonstrates superior detection performance compared
to other models. (2) Based on YOLOv7, our method significantly improves the model’s
detection accuracy while reducing the model’s parameter count, indicating the effectiveness
of our proposed adaptive feature extraction network and TIoU. (3) Compared to state-of-
the-art models, our AFE-Net outperforms other models, demonstrating the superiority of
our approach.

Table 2. The experimental results of AFE-Net compared with state-of-the-art methods.

Method Parameters mAP (%)

Faster R-CNN [22] 41.7 M 45.5
RetinaNet [23] 36.3 M 45.2

* Comparison detector [15] - 48.8
* Faster R-CNN [43] 41.7 M 61.6

YOLOv7 [37] 34.8 M 62.6
AFE-Net (our) 30.7 M 64.8

* Indicates the improved method.
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Furthermore, Figure 5 illustrates some example cases of cervical lesion cell/clumps
detection using YOLOv7 and AFE-Net. In (a) and (b), the results for detecting individual
lesion cells and clumps are presented, respectively. YOLOv7 exhibits instances of missed
detections in both (a) and (b), while AFE-Net does not encounter such issues, demonstrating
higher detection accuracy than YOLOv7. Based on this observation, we conclude that our
AFE-Net is capable of detecting regions missed by YOLOv7 and exhibits excellent capability
in identifying both lesion cells and lesion clumps.

Label

YOLOv7

AFE-Net

a b

Figure 5. Results of cervical lesion cell/clumps detection by YOLOv7 and AFE-Net. Text boxes
of different colors represent cervical cells belonging to different lesion categories. (a) Detection
of individual lesion cells by YOLOv7 and AFE-Net. (b) Detection of lesion clumps by YOLOv7
and AFE-Net.

To demonstrate the effectiveness of GABM, this paper visualizes partial outputs of
YOLOv7 and AFE-NET using heatmap visualization. These output feature maps are
derived from the Conv37 and Conv50 stages of the backbone. Firstly, the output feature
maps of these two stages are summed and averaged along the channel dimension, and then
upsampled using the sigmoid function to restore the feature maps to the original image
size, as shown in Figure 6. At Conv37, YOLOv7 exhibits good focus on two targets,
while AFE-NET shows good focus on all targets, as depicted in Figure 6a and Figure 6c,
respectively. However, at Conv50, the attention of YOLOv7 is relatively dispersed, lacking
sufficient focus on all targets, whereas the attention of AFE-Net to all targets is more
pronounced, as shown in Figure 6b and Figure 6d, respectively. This indicates that when
detecting cervical lesion cells using AFE-Net, the model can better focus on the features of
cervical lesion cell/clumps.
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Label

(a) (b)

(c) (d)

YOLOv7

AFE-Net

Figure 6. The feature map visualizations of YOLOv7 and AFE-Net, where deeper warm colors
indicate higher attention. (a,b) represent the visualizations of YOLOv7 at Conv37 and Conv50,
respectively, while (c,d) depict AFE-Net at Conv37 and Conv50, respectively.

3.2. Ablation Study
3.2.1. Adaptive Feature Extraction Experiments

We conducted relevant experiments on the feature extraction network for cervical le-
sion cell/clumps. Our experimental settings are as follows: (1) replacing the Efficient Layer
Aggregation Network with a connectivity-based model scaling network (V1), (2) adding
AM on top of V1 (V2), (3) adding GBM on top of V1 (V3), and (4) adding GABM on top
of V1 (V4). The experimental results are shown in Table 3. It can be observed that the
proposed GABM achieves better performance without increasing computational param-
eters. Additionally, the connectivity-based model scaling network is more conducive to
feature extraction for cervical cells. On the other hand, networks utilizing AM and GBM
demonstrate better performance, validating the effectiveness of these modules in the feature
extraction network.

Table 3. Experimental results of ablation experiments with adaptation networks.

Method Parameters mAP(%)

YOLOv7 34.8 M 62.6
YOLO (V1) 30.7 M 63.1

YOLO+AM (V2) 30.6 M 63.7
YOLO+GBM (V3) 30.4 M 63.6

YOLO+GABM (V4) 30.7 M 64.2

3.2.2. Generalization Experiment

To validate the generality of GABM, we conducted experiments at different positions
within the connectivity-based model scaling network. We replaced the 3 × 3 convolutions
in the network with GABM. The detailed configurations are shown in Figure 7. From the re-
sults in Table 4, it can be observed that the performance of the model improves consistently
when using GABM. The largest performance improvement is achieved when replacing the
convolution at Figure 7: (4). Therefore, we propose locating GABM at Figure 7: (4).
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C C

Conv 3×3

Conv 3×3

Conv 3×3

Conv 3×3

C/2 C/4 C/4 C/4 C/4 C/2

(1)

(2)

(3)

(4)

Figure 7. The plan is to replace the convolutions in the connectivity-based model scaling network
with GABM. The numbers indicate the positions.

Table 4. Experimental results at different positions of GABM.

Position Parameters mAP (%)

Figure 7: (1) 30.7 M 63.8
Figure 7: (2) 30.7 M 64.0
Figure 7: (3) 30.7 M 63.5
Figure 7: (4) 30.7 M 64.2

3.2.3. Bounding Box Loss Experiment

Relevant experiments were conducted on different bounding box losses for cervical
lesion cell/clumps. The experimental result is presented in Table 5. The results indicate
that replacing the model loss function directly with SIoU [35] and WIoU [36] improves
the detection accuracy of the model. When using TIoU as the loss function, the accuracy
reaches its peak. Among individual classes, except for the lowest accuracy in the “CAND”
category, the results for “ASCUS”, “ASCH”, “AGC”, and “FLORA” all surpass the detection
results of SIoU [35] and WIoU [36]. The accuracy for other individual classes lies between
SIoU [35] and WIoU [36]. The features of some low-quality examples in the samples are
challenging to learn. With the dynamic focusing mechanism reducing the impact of low-
quality bounding boxes, focusing on ordinary-quality bounding boxes through angle and
distance attention can better improve the accuracy of the model. Therefore, we adopt the
TIoU loss function.

Table 5. The experimental results of TIoU compared to mainstream bounding box losses under the
baseline model.Values shown in bold indicate the highest values.

IoU GIoU CIoU SIoU WIoU TIoU

ASCUS 52.2 52.0 52.4 51.4 49.6 51.9
ASCH 28.5 28.8 29.5 28.8 31.3 31.6
LSIL 54.9 59.0 56.0 59.3 60.8 60.5
HSIL 58.4 56.9 56.6 58.8 58.0 58.6
SCC 39.8 31.9 35.6 38.4 37.1 37.8
AGC 72.6 72.5 69.7 69.8 71.8 72.3

TRICH 69.0 68.8 69.8 68.3 66.6 66.6
CAND 84.2 92.3 80.8 85.9 82.3 77.4
FLORA 76.0 67.0 77.4 80.0 76.8 83.4
HERPS 83.3 85.4 86.3 80.6 84.5 82.8
ACTIN 74.8 70.1 74.7 71.2 77.8 74.4

mAP (%) 63.1 62.2 62.6 63.0 63.3 63.4
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3.3. Experimental Results on the DCCL Dataset

To further validate the effectiveness of our proposed method, we applied it to the
DCCL dataset. This dataset comprises slices from 933 positive cases and 234 normal
cases. Samples were prepared using the Papanicolaou staining Thinprep method and
scanned by three different digital slide scanners, all magnified at 200 times and cropped
into images of 1200 × 2000 pixels. Boundary boxes were annotated by six board-certified
pathologists with an average of 8 years of experience. The entire dataset consists of
6301 images, including 3343 images for training, 1193 for validation, and 1765 for testing.
The labels in the dataset encompass six lesion types: ASC-US, ASC-H, LSIL, HSIL, SCC,
and AGC, along with one false positive label: NILM. The specific distribution of classes is
outlined in Table 6.

Table 6. The class distribution of the DCCL dataset.

Lesion Type Train Val Test Total

ASC-US 2471 838 1378 4687
ASC-H 1147 543 591 2281
HSIL 5890 1807 3482 11,179
LSIL 1739 356 595 2690
SCC 3006 1225 2731 6962
AGC 122 20 31 173
NILM 2588 1540 2292 6420
total 16,963 6329 11,100 34,392

The comparison between the proposed method and the baseline model is presented
in Table 7. It can be observed that AFE-Net achieves higher precision in both fine-grained
and coarse-grained detection compared to the baseline. There is a noticeable improvement
in the detection accuracy for ASC-US, LSIL, ASC-H, and HSIL. However, the detection
accuracy is still not high. This is attributed to the incomplete labeling of the DCCL dataset,
making it suitable for semi-supervised learning.

Table 7. Comparison of experimental results between AFE-Net and mainstream detection models on
the DCCL dataset.

Method
Fine-Grained Coarse-Grained

mAP ASCUS LSIL ASCH HSIL SCC AGC mAP

Faster R-CNN [14] 17.1 21.01 20.46 14.1 10.73 10.41 25.71 19.35
Retina-Net [14] 15.93 18.71 19.89 11.86 10.08 12.67 22.39 18.07

Yolov7 [37] 17.29 26.0 16.7 20.8 20.8 10.9 8.56 18.60
AFE-Net 19.02 26.7 21.8 21.7 21.3 9.79 12.8 20.60

4. Discussion

We propose using AFE-Net for the detection of cervical lesion cell/clumps, with sev-
eral noteworthy points: (1) Our approach involves leveraging the popular one-stage
detector YOLOv7 to enhance performance. Subsequent research can select appropriate
baseline detectors based on different needs. (2) The adaptive module is an effective method
for capturing features of different sizes and shapes. However, in experiments, the adaptive
module generally performs well in detecting clusters but less effectively for small cells.
Therefore, further research is needed on how to more precisely capture adaptive features.
(3) Considering the impact of bounding box loss on the detection results of cervical lesion
cell/clumps, the TIoU loss function is a method to improve detection accuracy. While
considering generalization ability, exploring factors such as angle and center distance is
worth further investigation.
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5. Conclusions

In this paper, we propose AFE-Net for the detection of cervical lesion cell/clumps. Ad-
dressing the issue of significant variations in the appearance of cervical lesion cell/clumps
of the same lesion type in cervical cytology images, we introduce the adaptive module
(AM) for adaptive feature extraction. Simultaneously considering the influence of global in-
formation, we employ the global bias module (GBM) to capture global average information.
By combining adaptive features with global average information, we enhance the model’s
ability to extract features of cervical lesion cells, thereby improving detection performance.
Additionally, we analyze the impact of popular bounding box losses on the model and
propose the TIoU loss to enhance detection accuracy. Finally, experimental results on
public datasets demonstrate that our method achieves good detection performance with
a relatively small number of parameters.
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