Deep Learning Techniques for the Dermoscopic Differential Diagnosis of Benign/Malignant Melanocytic Skin Lesions: From the Past to the Present
Abstract
:1. Introduction
1.1. Historical Background
1.2. AI Application in Skin Cancer Diagnosis
1.3. Current Scenario
1.4. Aims
2. Methods
2.1. Information Source
2.2. Search
2.3. Eligibility and Exclusion Criteria
3. Results
3.1. AI Definitions
3.2. Included Studies for Melanoma/Nevi Differential Dermoscopic Diagnosis
4. Discussion
- Concerning the composition of the research team, they can be essentially grouped into a non-medical researcher team (e.g., engineers/mathematics/statistics/informatics) and a hybrid team (expert dermatologists collaborating with biomedical engineers/informatic engineers). Consequently, these differences are reflected in many aspects, such as the study methodology, the pre-processing phases, and attention to the data labelling the images. For example, the non-medical teams usually employ large publicly available datasets and achieve high computational power, but miss clinical tests with a human participant group, and/or do not pay attention to the details associated with the dataset (e.g., lesion body location) [18,30,32,58,60,62,64,65,66,67,69,70,71,72,73,74,75,76,77,78]. Technically, those works generally move the basis on the CAD analysis, dedicating large parts of the experiments to the border detection, segmentation, and identification of the region of interest, as well as the widespread use of data pre-processing and image augmentation strategies.
- Regarding the study nature, almost all studies are retrospective, having almost all the lesions tested via histology available, and thus the human decision assisted by DL is virtually deduced [17,18,19,20,21,22,23,24,25,26,27,28]. Moreover, dermatologists recruited for image classification and management tasks do not have the real patient in front of them, but only one dermoscopic picture, or, in a few cases, the picture plus some clinical objective data, while the single lesion history is missing in 98% of studies. Thus, the provided performance results should be interpreted bearing in mind that the study scheme fails to reproduce an in vivo setting.
- The dataset used in the pre-training/training/testing/validation phases is largely variable in terms of image acquisition (tool/conditions), dimension, quality, case selection, and labelling degree. From a technical point of view, dermoscopic and clinical images may differ in size/quality, possible artefacts (pencil marks, rulers/objects, etc.), the device of acquisition, light calibration, etc., and we are not able to understand which patterns the DCNNs/CNNs learn and take into account for the final “decision”, as the process is largely unsupervised. It should be also stressed that some authors use their own datasets for pre-training and testing, some others exploit only one publicly available dataset, while some others use a combination of different public datasets, always choosing a different ratio of MM/nevi/atypical nevi, without any specific explanation in most cases. Furthermore, in some studies, the number of cases does not match the number of lesions/patients not only in the pre-training phase, but also in the training phase; thus, multiple pictures of the same lesion appear to be included in the testing process, altering the final output [59,73]. Concerning clinical dataset characteristics, such as a patient’s phototype, ethnicity, and the body site of the lesion, are almost always not specified, especially in research studies carried out by engineers (without the collaboration of dermatologists). Finally, more and more investigations should be carried out on MM in acral sites, mucosae, or on nails in the future, given that, to date, the used datasets were generally indicated as “body lesions” when indicated.
- Nevertheless, more variability exists in the procedure scheme adopted by different research groups, ranging from pre-processing adopted techniques, segmentation, and feature extraction procedures, and mostly, the construction of the DL architecture (Table 2). The possible combinations in this phase are almost infinite, and we should say, they will persist as an intrinsic feature of this research topic. At present, we can just speculate that one scheme may be more suitable for multiclass classification rather than binary output, but specific comparative work should be carried out in this sense.
- Concerning the comparison with humans, many authors do not plan a “reader study” performed by dermatologists/residents and, when present, all studies report different compositions of these groups in terms of numerosity, professional degree, and, most importantly, dermoscopic skill. Indeed, the experience level should be regarded as the most important parameter influencing a participant’s performance (Table 3).
- Finally, some authors choose to compare the proposed model with the pre-existing ones, and some others do not. If present, the decision on which different architecture to use as a comparison in each original study seems to be totally arbitrary and often driven in order to show the superiority of the proposed model [37,38,39,40,56,58,64,65,66,67].
- Then, in order to speculate if the CNNs/DCNNs were really helpful in a clinical setting, we looked, in detail, at the subset of 13 studies that tested the physicians’ diagnostic abilities to examine the same lesions [29,32,34,54,55,56,59,61,63,68,69,70]. Again, the main difference between algorithms and humans relies on the specificity values, with an +15,63% increase for the CNN/DCNN models (average SP = 84.87%) compared to that of the humans (average SP = 64.24%). Notably, the average sensitivity values of the two groups were very similar, with an SE of 79.77% for the DL models and 79.78% for the humans. According to the reported global performance values, the gap was 14.85% (mean ACC = 87.,6% CNN/DCNN vs. 72.75% of participants).
- As expected, when the participants had the possibility to reformulate their diagnosis based on the DL tool suggestion, they increased not only in SP (+11.6%), but also in SE (+15.8%) [70]; however, other studies are needed to be carried out with this perspective view to clearly demonstrate the usefulness of this kind of algorithm in clinical practice [37,38,39,40,80,81,82,83,84].
- Interestingly, the more relevant clinical patient/lesion data we give to the algorithm to learn, the more specific it becomes (+9% in SP in three studies [32,60,61], with minimal clinical data). Further experiments on larger datasets focused on this specific aim are needed to confirm this hypothesis in the future.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaul, V.; Enslin, S.; Gross, S.A. History of artificial intelligence in medicine. Gastrointest. Endosc. 2020, 92, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Haenlein, M.; Kaplan, A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 5–14. [Google Scholar] [CrossRef]
- Fradkov, A.L. Early History of Machine Learning. IFAC-Pap. 2020, 53, 1385–1390. [Google Scholar] [CrossRef]
- Terven, J.; Cordova-Esparza, D.M.; Ramirez-Pedraza, A.; Chavez-Urbiola, E.A. Loss Functions and Metrics in Deep Learning. arXiv 2023, arXiv:2307.02694. [Google Scholar] [CrossRef]
- Szandała, T. Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks. In Bio-Inspired Neurocomputing; Springer: Singapore, 2021; Volume 903. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Y. Delving into Fully Convolutional Networks Activations for Visual Recognition. In Proceedings of the Proceedings of the 3rd International Conference on Multimedia and Image Processing, Guiyang, China, 16–18 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 99–104. [Google Scholar]
- Guo, Y.; Ashour, A.S.; Si, L.; Mandalaywala, D.P. Multiple Convolutional Neural Network for Skin Dermoscopic Image Classification. In Proceedings of the 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA, 6–8 December 2018; pp. 365–369. [Google Scholar]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Kittler, H.; Pehamberger, H.; Wolff, K.; Binder, M. Diagnostic accuracy of dermoscopy. Lancet Oncol. 2002, 3, 159–165. [Google Scholar] [CrossRef]
- Williams, N.M.; Rojas, K.D.; Reynolds, J.M.; Kwon, D.; Shum-Tien, J.; Jaimes, N. Assessment of Diagnostic Accuracy of Dermoscopic Structures and Patterns Used in Melanoma Detection. JAMA Dermatol. 2021, 157, 1078–1088. [Google Scholar] [CrossRef]
- Rubegni, P.; Burroni, M.; Andreassi, A.; Fimiani, M. The Role of Dermoscopy and Digital Dermoscopy Analysis in the Diagnosis of Pigmented Skin Lesions. Arch. Dermatol. 2005, 141, 1444–1446. [Google Scholar] [CrossRef]
- Rubegni, P.; Burroni, M.; Cevenini, G.; Perotti, R.; Dell’Eva, G.; Barbini, P.; Fimiani, M.; Andreassi, L. Digital dermoscopy analysis and artificial neural network for the differentiation of clinically atypical pigmented skin lesions: A retrospective study. J. Investig. Dermatol. 2002, 119, 471–474. [Google Scholar] [CrossRef]
- Marchetti, M.A.; Codella, N.C.F.; Dusza, S.W.; Gutman, D.A.; Helba, B.; Kalloo, A.; Mishra, N.; Carrera, C.; Celebi, M.E.; DeFazio, J.L.; et al. Results of the 2016 International Skin Imaging Collaboration ISBI Challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J. Am. Acad. Dermatol. 2018, 78, 270–277.e1. [Google Scholar] [CrossRef]
- Murphree, D.H.; Ngufor, C. Transfer learning for melanoma detection: Participation in ISIC 2017 skin lesion classification challenge. arXiv 2017, arXiv:1703.05235. [Google Scholar] [CrossRef]
- Nasr-Esfahani, E.; Samavi, S.; Karimi, N.; Soroushmehr, S.M.R.; Jafari, M.H.; Ward, K.; Najarian, K. Melanoma detection by analysis of clinical images using convolutional neural network. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1373–1376. [Google Scholar]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Han, S.S.; Kim, M.S.; Lim, W.; Park, G.H.; Park, I.; Chang, S.E. Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J. Investig. Dermatol. 2018, 138, 1529–1538. [Google Scholar] [CrossRef]
- Fujisawa, Y.; Otomo, Y.; Ogata, Y.; Nakamura, Y.; Fujita, R.; Ishitsuka, Y.; Watanabe, R.; Okiyama, N.; Ohara, K.; Fujimoto, M. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br. J. Dermatol. 2019, 180, 373–381. [Google Scholar] [CrossRef]
- Han, S.S.; Lim, W.; Kim, M.S.; Park, I.; Park, G.H.; Chang, S.E. Interpretation of the Outputs of a Deep Learning Model Trained with a Skin Cancer Dataset. J. Investig. Dermatol. 2018, 138, 2275–2277. [Google Scholar] [CrossRef]
- Huang, R.; Liang, J.; Jiang, F.; Zhou, F.; Cheng, N.; Wang, T.; Lei, B. Melanomanet: An effective network for melanoma detection. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1613–1616. [Google Scholar] [CrossRef]
- Ba, W.; Wu, H.; Chen, W.W.; Wang, S.H.; Zhang, Z.Y.; Wei, X.J.; Wang, W.J.; Yang, L.; Zhou, D.M.; Zhuang, Y.X.; et al. Convolutional neural network assistance significantly improves dermatologists’ diagnosis of cutaneous tumours using clinical images. Eur. J. Cancer 2022, 169, 156–165. [Google Scholar] [CrossRef]
- Fink, C.; Blum, A.; Buhl, T.; Mitteldorf, C.; Hofmann-Wellenhof, R.; Deinlein, T.; Stolz, W.; Trennheuser, L.; Cussigh, C.; Deltgen, D.; et al. Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1355–1361. [Google Scholar] [CrossRef]
- Tschandl, P.; Kittler, H.; Argenziano, G. A pretrained neural network shows similar diagnostic accuracy to medical students in categorizing dermatoscopic images after comparable training conditions. Br. J. Dermatol. 2017, 177, 867–869. [Google Scholar] [CrossRef]
- Haenssle, H.A.; Fink, C.; Toberer, F.; Winkler, J.; Stolz, W.; Deinlein, T.; Hofmann-Wellenhof, R.; Lallas, A.; Emmert, S.; Buhl, T.; et al. Man against machine reloaded: Performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Ann. Oncol. 2020, 31, 137–143. [Google Scholar] [CrossRef]
- Lee, S.; Chu, Y.S.; Yoo, S.K.; Choi, S.; Choe, S.J.; Koh, S.B.; Chung, K.Y.; Xing, L.; Oh, B.; Yang, S. Augmented decision-making for acral lentiginous melanoma detection using deep convolutional neural networks. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1842–1850. [Google Scholar] [CrossRef]
- Tschandl, P.; Rosendahl, C.; Akay, B.N.; Argenziano, G.; Blum, A.; Braun, R.P.; Cabo, H.; Gourhant, J.-Y.; Kreusch, J.; Lallas, A.; et al. Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks. JAMA Dermatol. 2019, 155, 58–65. [Google Scholar] [CrossRef]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Berking, C.; Haferkamp, S.; Hauschild, A.; Weichenthal, M.; Klode, J.; Schadendorf, D.; Holland-Letz, T.; et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer 2019, 119, 11–17. [Google Scholar] [CrossRef]
- Tschandl, P.; Codella, N.; Akay, B.N.; Argenziano, G.; Braun, R.P.; Cabo, H.; Gutman, D.; Halpern, A.; Helba, B.; Hofmann-Wellenhof, R.; et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: An open, web-based, international, diagnostic study. Lancet Oncol. 2019, 20, 938–947. [Google Scholar] [CrossRef]
- Tschandl, P.; Codella, N.; Halpern, A.; Puig, S.; Apalla, Z.; Rinner, C.; Soyer, P.; Rosendahl, C.; Malvehy, J.; Zalaudek, I.; et al. Human–computer collaboration for skin cancer recognition. Nat. Med. 2020, 26, 1229–1234. [Google Scholar] [CrossRef]
- Combalia, M.; Codella, N.; Rotemberg, V.; Carrera, C.; Dusza, S.; Gutman, D.; Helba, B.; Kittler, H.; Kurtansky, N.R.; Liopyris, K.; et al. Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: The 2019 International Skin Imaging Collaboration Grand Challenge. Lancet Digit. Health 2022, 4, e330–e339. [Google Scholar] [CrossRef]
- Pérez, E.; Reyes, O.; Ventura, S. Convolutional neural networks for the automatic diagnosis of melanoma: An extensive experimental study. Med. Image Anal. 2021, 67, 101858. [Google Scholar] [CrossRef]
- Aractingi, S.; Pellacani, G. Computational neural network in melanocytic lesions diagnosis: Artificial intelligence to improve diagnosis in dermatology? Eur. J. Dermatol. 2019, 29, 4–7. [Google Scholar] [CrossRef]
- Yee, J.; Rosendahl, C.; Aoude, L.G. The role of artificial intelligence and convolutional neural networks in the management of melanoma: A clinical, pathological, and radiological perspective. Melanoma Res. 2024, 34, 96–104. [Google Scholar] [CrossRef]
- Nugroho, A.K.; Wardoyo, R.; Wibowo, M.E.; Soebono, H. Image dermoscopy skin lesion classification using deep learning method: Systematic literature review. Bull. Electr. Eng. Inform. 2024, 13, 1042–1049. [Google Scholar] [CrossRef]
- Sukhera, J. Narrative Reviews in Medical Education: Key Steps for Researchers. J. Grad. Med. Educ. 2022, 14, 418–419. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Al Kuwaiti, A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; Al Muhanna, D.; Al-Muhanna, F.A. A Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [Google Scholar] [CrossRef]
- Briganti, G.; Le Moine, O. Artificial Intelligence in Medicine: Today and Tomorrow. Front. Med. 2020, 7, 27. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2016, arXiv:1511.06434. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef]
- Chan, Y. Biostatistics 304. Cluster analysis. Singap. Med. J. 2005, 15, 153–159, quiz 160. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar] [CrossRef]
- Cartocci, A. The Facial iDScore Project: Artificial Intelligence Models for Diagnosis Support; Universty of Siena: Siena, Italy, 2023. [Google Scholar]
- Fischman, S.; Pérez-Anker, J.; Tognetti, L.; Di Naro, A.; Suppa, M.; Cinotti, E.; Viel, T.; Monnier, J.; Rubegni, P.; del Marmol, V.; et al. Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using Deep Learning. Sci. Rep. 2022, 12, 481. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836–1842. [Google Scholar] [CrossRef]
- Yu, C.; Yang, S.; Kim, W.; Jung, J.; Chung, K.-Y.; Lee, S.W.; Oh, B. Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS ONE 2018, 13, e0193321. [Google Scholar] [CrossRef]
- Chandra, T.G.; Nasution, A.M.T.; Setiadi, I.C. Melanoma and nevus classification based on asymmetry, border, color, and GLCM texture parameters using deep learning algorithm. In Proceedings of the 4th Biomedical Engineering’s Recent Progress in Biomaterials, Drugs Development, Health, and Medical Devices: Proceedings of the International Symposium of Biomedical Engineering, ISBE 2019, Padang, Indonesia, 22–24 July 2019; American Institute of Physics Inc.: College Park, MD, USA, 2019; p. 050016. [Google Scholar]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Holland-Letz, T.; et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur. J. Cancer 2019, 113, 47–54. [Google Scholar] [CrossRef]
- Abbas, Q.; Celebi, M.E. DermoDeep-A classification of melanoma-nevus skin lesions using multi-feature fusion of visual features and deep neural network. Multimed. Tools Appl. 2019, 78, 23559–23580. [Google Scholar] [CrossRef]
- Phillips, M.; Marsden, H.; Jaffe, W.; Matin, R.N.; Wali, G.N.; Greenhalgh, J.; McGrath, E.; James, R.; Ladoyanni, E.; Bewley, A.; et al. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions. JAMA Netw. Open 2019, 2, e1913436. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Diaz, I. DermaKNet: Incorporating the Knowledge of Dermatologists to Convolutional Neural Networks for Skin Lesion Diagnosis. IEEE J. Biomed. Health Inform. 2019, 23, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Tognetti, L.; Bonechi, S.; Andreini, P.; Bianchini, M.; Scarselli, F.; Cevenini, G.; Moscarella, E.; Farnetani, F.; Longo, C.; Lallas, A.; et al. A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi. J. Dermatol. Sci. 2021, 101, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.K.; Sies, K.; Fink, C.; Toberer, F.; Enk, A.; Deinlein, T.; Hofmann-Wellenhof, R.; Thomas, L.; Lallas, A.; Blum, A.; et al. Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations. Eur. J. Cancer 2020, 127, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Han, S.S.; Park, I.; Eun Chang, S.; Lim, W.; Kim, M.S.; Park, G.H.; Chae, J.B.; Huh, C.H.; Na, J.-I. Augmented Intelligence Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders. J. Investig. Dermatol. 2020, 140, 1753–1761. [Google Scholar] [CrossRef] [PubMed]
- Adegun, A.A.; Viriri, S. Deep Learning-Based System for Automatic Melanoma Detection. IEEE Access 2020, 8, 7160–7172. [Google Scholar] [CrossRef]
- Grove, R.; Green, R. Melanoma and Nevi Classification using Convolution Neural Networks. In Proceedings of the 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), Wellington, New Zealand, 25–27 November 2020; pp. 1–6. [Google Scholar]
- Nasiri, S.; Helsper, J.; Jung, M.; Fathi, M. DePicT Melanoma Deep-CLASS: A deep convolutional neural networks approach to classify skin lesion images. BMC Bioinform. 2020, 21, 84. [Google Scholar] [CrossRef] [PubMed]
- Ningrum, D.N.A.; Yuan, S.-P.; Kung, W.-M.; Wu, C.-C.; Tzeng, I.-S.; Huang, C.-Y.; Li, J.Y.-C.; Wang, Y.-C. Deep Learning Classifier with Patient’s Metadata of Dermoscopic Images in Malignant Melanoma Detection. J. Multidiscip. Healthc. 2021, 14, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.-C.; Luong, C.-M.; Hoang, V.-D.; Doucet, A. AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function. Sci. Rep. 2021, 11, 17485. [Google Scholar] [CrossRef]
- Winkler, J.K.; Tschandl, P.; Toberer, F.; Sies, K.; Fink, C.; Enk, A.; Kittler, H.; Haenssle, H.A. Monitoring patients at risk for melanoma: May convolutional neural networks replace the strategy of sequential digital dermoscopy? Eur. J. Cancer 2022, 160, 180–188. [Google Scholar] [CrossRef]
- Winkler, J.K.; Blum, A.; Kommoss, K.; Enk, A.; Toberer, F.; Rosenberger, A.; Haenssle, H.A. Assessment of Diagnostic Performance of Dermatologists Cooperating with a Convolutional Neural Network in a Prospective Clinical Study: Human with Machine. JAMA Dermatol. 2023, 159, 621–627. [Google Scholar] [CrossRef]
- Piccolo, D.; Ferrari, A.; Peris, K.; Diadone, R.; Ruggeri, B.; Chimenti, S. Dermoscopic diagnosis by a trained clinician vs. a clinician with minimal dermoscopy training vs. computer-aided diagnosis of 341 pigmented skin lesions: A comparative study. Br. J. Dermatol. 2002, 147, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Burroni, M.; Wollina, U.; Torricelli, R.; Gilardi, S.; Dell’Eva, G.; Helm, C.; Bardey, W.; Nami, N.; Nobile, F.; Ceccarini, M.; et al. Impact of digital dermoscopy analysis on the decision to follow up or to excise a pigmented skin lesion: A multicentre study. Skin. Res. Technol. 2011, 17, 451–460. [Google Scholar] [CrossRef]
- Rubegni, P.; Cevenini, G.; Nami, N.; Argenziano, G.; Saida, T.; Burroni, M.; Quaglino, P.; Bono, R.; Hofmann-Wellenhof, R.; Fimiani, M. A simple scoring system for the diagnosis of palmo-plantar pigmented skin lesions by digital dermoscopy analysis. J. Eur. Acad. Dermatol. Venereol. JEADV 2012, 27, e312–e319. [Google Scholar] [CrossRef]
- Rubegni, P.; Feci, L.; Nami, N.; Burroni, M.; Taddeucci, P.; Miracco, C.; Munezero Butorano, M.A.G.; Fimiani, M.; Cevenini, G. Computer-assisted melanoma diagnosis: A new integrated system. Melanoma Res. 2015, 25, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Friedman, R.J.; Gutkowicz-Krusin, D.; Farber, M.J.; Warycha, M.; Schneider-Kels, L.; Papastathis, N.; Mihm, M.C.; Googe, P.; King, R.; Prieto, V.G.; et al. The diagnostic performance of expert dermoscopists vs a computer-vision system on small-diameter melanomas. Arch. Dermatol. 2008, 144, 476–482. [Google Scholar] [CrossRef]
- Tenenhaus, A.; Nkengne, A.; Horn, J.-F.; Serruys, C.; Giron, A.; Fertil, B. Detection of melanoma from dermoscopic images of naevi acquired under uncontrolled conditions. Skin. Res. Technol. 2010, 16, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Ferris, L.K.; Harkes, J.A.; Gilbert, B.; Winger, D.G.; Golubets, K.; Akilov, O.; Satyanarayanan, M. Computer-aided classification of melanocytic lesions using dermoscopic images. J. Am. Acad. Dermatol. 2015, 73, 769–776. [Google Scholar] [CrossRef]
- Codella, N.; Cai, J.; Abedini, M.; Garnavi, R.; Halpern, A.; Smith, J.R. Deep Learning, Sparse Coding, and SVM for Melanoma Recognition in Dermoscopy Images. In Proceedings of the Machine Learning in Medical Imaging, Munich, Germany, 5 October 2015; Zhou, L., Wang, L., Wang, Q., Shi, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 118–126. [Google Scholar]
- AlSadhan, N.A.; Alamri, S.A.; Ben Ismail, M.M.; Bchir, O. Skin Cancer Recognition Using Unified Deep Convolutional Neural Networks. Cancers 2024, 16, 1246. [Google Scholar] [CrossRef]
- Awal, M.A.; Naqvi, S.A.R.; Foong, D.; Abbosh, A. Adaptive Weighted Vector Means Optimization for Healthy and Malignant Skin Modeling at Microwave Frequencies Using Clinical Data. IEEE J. Electromagn. RF Microw. Med. Biol. 2024, 8, 170–181. [Google Scholar] [CrossRef]
- Hermosilla, P.; Soto, R.; Vega, E.; Suazo, C.; Ponce, J. Skin Cancer Detection and Classification Using Neural Network Algorithms: A Systematic Review. Diagnostics 2024, 14, 454. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, G.; Balato, A.; Malvehy, J.; Puig, S.; Argenziano, G.; Kittler, H. Artificial Intelligence in Skin Cancer Diagnosis: A Reality Check. J. Investig. Dermatol. 2024, 144, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Salinas, M.P.; Sepúlveda, J.; Hidalgo, L.; Peirano, D.; Morel, M.; Uribe, P.; Rotemberg, V.; Briones, J.; Mery, D.; Navarrete-Dechent, C. A systematic review and meta-analysis of artificial intelligence versus clinicians for skin cancer diagnosis. NPJ Digit. Med. 2024, 7, 125. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Tazin, T.; Zunaid Hussain, M.; Mostakim, M.; Rehman, T.; Singh, S.; Gupta, V.; Alomeir, O. Breast Tumor Detection Using Robust and Efficient Machine Learning and Convolutional Neural Network Approaches. Comput. Intell. Neurosci. 2022, 2022, 6333573. [Google Scholar] [CrossRef] [PubMed]
- Grossarth, S.; Mosley, D.; Madden, C.; Ike, J.; Smith, I.; Huo, Y.; Wheless, L. Recent Advances in Melanoma Diagnosis and Prognosis Using Machine Learning Methods. Curr. Oncol. Rep. 2023, 25, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Sangers, T.E.; Kittler, H.; Blum, A.; Braun, R.P.; Barata, C.; Cartocci, A.; Combalia, M.; Esdaile, B.; Guitera, P.; Haenssle, H.A.; et al. Position statement of the EADV Artificial Intelligence (AI) Task Force on AI-assisted smartphone apps and web-based services for skin disease. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Tognetti, L.; Cevenini, G.; Moscarella, E.; Cinotti, E.; Farnetani, F.; Lallas, A.; Tiodorovic, D.; Carrera, C.; Puig, S.; Perrot, J.L.; et al. Validation of an integrated dermoscopic scoring method in an European teledermoscopy web platform: The iDScore project for early detection of melanoma. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 640–647. [Google Scholar] [CrossRef]
- Winkler, J.K.; Sies, K.; Fink, C.; Toberer, F.; Enk, A.; Abassi, M.S.; Fuchs, T.; Blum, A.; Stolz, W.; Coras-Stepanek, B.; et al. Collective human intelligence outperforms artificial intelligence in a skin lesion classification task. J. Dtsch. Dermatol. Ges. 2021, 19, 1178–1184. [Google Scholar] [CrossRef]
Definite search | Wos |
ti = (“Deep Learning” OR convolutional OR dcnn OR cnn OR cnns OR dcnns OR rcnn) AND ti = (“skin lesion*” OR “skin defect*” OR nevus OR nevi OR melanocytic OR “skin cancer” OR melanoma OR “skin tumor*” OR “skin tumour*” OR “skin neoplasm*” OR “cutaneous cancer” OR “cutaneous tumor*” OR “cutaneous tumour*” OR “cutaneous neoplasm*” OR dermoscopy OR dermoscopic OR dermatoscopy OR dermatoscopic). | |
Pubmed | |
(“Nevi and Melanomas”[Mesh]) AND (“Deep Learning”[Mesh]) OR (“Deep Learning”[ti]) OR convolutional[ti] OR dcnn[ti] OR cnn[ti] OR cnns[ti] OR dcnns[ti] OR rcnn[ti] AND (“skin lesion*”[ti] OR “skin defect*”[ti] OR nevus[ti] OR nevi[ti] OR melanocytic[ti] OR “skin cancer”[ti] OR melanoma[ti] OR “skin tumor*”[ti] OR “skin tumour*”[ti] OR “skin neoplasm*”[ti] OR “cutaneous cancer”[ti] OR “cutaneous tumor*”[ti] OR “cutaneous tumour*”[ti] OR “cutaneous neoplasm*”[ti] OR dermoscopy[ti] OR dermoscopic[ti] OR dermatoscopy[ti] OR dermatoscopic[ti]). | |
ArXiv, MedRxiv | |
“deep convolutional/convolutional neural network and melanoma/skin cancer/skin lesions/melanocytic lesions”, “deep learning and dermatology/dermoscopy”, “automated classification/detection and dermatology/dermoscopy”, “image classification and melanoma/melanocytic lesions/dermoscopy”. | |
Scopus | |
TITLE (“Deep Learning” OR convolutional OR dcnn OR cnn OR cnns OR dcnns OR rcnn) AND TITLE (“skin lesion*” OR “skin defect” OR “squamous cell” OR nevus OR nevi OR melanocytic OR “skin cancer” OR melanoma OR “basal cell carcinoma*” OR “skin tumor*” OR “skin tumour*” OR “skin neoplasm*” OR “cutaneous cancer” OR “cutaneous tumor*” OR “cutaneous tumour*” OR “cutaneous neoplasm*” OR dermoscopy OR dermoscopic OR dermatoscopy OR dermatoscopic) | |
Preliminary search | Google Scholar |
(“Deep Learning” [Mesh] OR “deep-learning” OR “deep-learning” OR “deep neural networks” OR ““deep neural network” or ((deep OR machine* OR convolute*) AND (learn* OR neural*)) OR “convolutional neural network” OR CNN* or “Artificial Intelligence* [Mesh] OR “artificial intelligence” OR “artificial-intelligence” OR AI [Title/Abstract] OR “Machine Learning”[Mesh] OR “Neural Networks, Computer” [Mesh] OR melanoma* OR melanoma diagnosis* OR (melanoma*) AND (deep learning*)) OR (convolutional neural network*) AND (melanoma*) AND (nevus*)) |
Year | Authors | Ref | Dataset Used | Clinical Data + Dermoscopic Images | Diagnostic Testing by Participants | Management Study of the cnn/dcnn | Management Study of Participants | Comparison with Another DL Architecture |
---|---|---|---|---|---|---|---|---|
Details | training/testing/validation | yes/no | yes/no | yes/no | yes/no | yes/no | ||
2018 | Haenssle HA, et al. | [54] | training, testing, validation | no | yes | no | yes | no |
2018 | Yu C, et al. | [55] | training, testing | no | yes | no | no | no |
2019 | Chandra TG, et al. | [56] | training, testing, validation | no | yes | no | no | yes |
2019 | Binker T, et al. | [57] | training, testing, validation | no | yes | no | no | no |
2019 | Brinker, T. et al. | [34] | training, testing, validation | no | no | no | no | no |
2019 | Abbas Q, et al. | [58] | training, testing | no | no | no | no | yes |
2019 | Phillips M, et al. | [59] | training, testing | no | no | yes | yes | no |
2019 | Gonzalez-DIaz, et al. | [60] | training, testing, validation | yes | yes | no | no | yes |
2020 | Tognetti L, et al. | [61] | training, testing, validation | yes | yes | yes | yes | yes |
2020 | Lee S, et al. | [32] | training, testing | no | yes | no | no | yes |
2020 | Winkler JK, et al. | [62] | training, testing | no | no | no | no | no |
2020 | Fink C, et al. | [29] | training, testing | no | yes | no | yes | no |
2020 | Han, et al. | [63] | training, testing | no | yes | no | no | no |
2020 | Adegun A., et al. | [64] | training, testing | no | no | no | no | yes |
2020 | Grove R, et al. | [65] | training, testing | no | no | no | no | yes |
2021 | Nasiri S, et al. | [66] | training, testing, validation | no | no | no | no | yes |
2020 | Ningrum DN, et al. | [67] | training, testing, validation | yes | no | no | no | yes |
2021 | Pham, et al. | [68] | training, testing | no | yes | no | no | no |
2022 | Winkler JK, et al. | [69] | training, testing | no | yes | no | no | no |
2023 | Winkler JK, et al. | [70] | training, testing | no | yes | yes | no | no |
Ref | Architecture | DL Model | Dermoscopic IMAGE Dataset Pre-Training | Training Dataset | Testing Dataset | Validation Dataset | Model Output | Body Site of Application |
---|---|---|---|---|---|---|---|---|
original/available format | CNN, DCNN, RNN | Public/institutional/own | Public/institutional/own | Binary/continuous | Details | |||
[54] | Google’s Inception v4 | CNN, pretrained on 1000 images | ISIC archive | 300 images (34 MM + 266 N) | 100 images | 100 images (80 MM + 20 nevi) | continuous 0–1 | unspecified |
[55] | MatConvNet, modified, VGG model with 16 layers | 53 | MatConvNet, modified, VGG model with 16 layers | / | binary otuput (N/MM) | palms and soles | ||
[56] | original scheme, 14 layers | DCNN | ISIC archive | 1643 images (773 N + 870 MM) | 400 images (200 N + 200 MM) | 156 N + 44 MM | binary otuput (N/MM) | unspecified |
[57] | ResNet50 | CNN | ISIC archive + HAM10000 dataset; | 4204 images (1888 MM + 2316 AN | 1200 images (800 N + 200 MM) ratio MM/N = 1:4 | 1359 images (230 MM + 1129 AN); ratio MM/N = 1:14 | continuous 0–1 | unspecified |
[34] | ResNet50 | CNN | ISIC archive + HAM10,000: 20735: images | 12,378 images | 100 images | 1,259 images (MED-NODE database + clinical images) | binary otuput (AN/MM) | unspecified |
[58] | fusion of multiple feature CAD system + DCNN + RNN | DCNN, “DermoDeep”, original | ISIC archive (1600) + (500) + Skin-EDRA dataset + Ph2-dataset (100) + DermNet (600) | 2800 images (1400 N + 1440 MM) | 2800 images (1400 N + 1440 MM) | / | binary otuput (N/MM) | unspecified |
[59] | original scheme | DCNN | 1550 images: 551 biopsied (125 MM + 148 AN + 278 other) + 999 controls not biopsied (Public: not specified) | 858 images (36 MM, 253 not MM) (istitutional dataset) | 731 images (51 MM) | / | continuous 0–1 | unspecified |
[60] | ResNet50 | CNN, “DermaKNet”, original | 2017 ISBI Challenge + EDRA dataset + ISIC | 2000 images (374 MM, 1372 N, 254 SK) ± age/sex | 150 images ± age/sex data | 600 images ± age/sex metadata | binary output (MM vs. N; MM vs. SK) | unspecified |
[61] | ResNet50 | “iDCNN_aMSL” | ISIC archive: 20735 images (18566 N + 2169 MM) | 630 images (429 AN + 201 EM) ± age/sex/diameter/anatomy site clinical data (iDScore_body dataset) | 214 images (140 AN + 74 EM) ± age/sex/diameter/anatomy site clinical data (iDScore_body dataset) | 135 images (93 AN + 42 EM) ± age/sex/diameter/anatomy site clinical data (iDScore_body dataset) | continuous 0–1 | Body (no face, palms, soles) |
[32] | ResNet 50 | CNN “ALM-net” | own: 1072 images of MM and N | 872 images N + MM ± clinical data (unspecified) | 200 images ± clinical data (unspecified) | / | binary otuput (N/MM) | palms and soles |
[62] | Google’s Inception v4 | “Moleanalyzer-Pro® CNN” | istitutional (50000 images) | NA | 180 MM, 600 nevi (363 biopsied, 210 followed-up, 27 consensus) | 6 subsets, each including 100 N + 30 MM) | NA | SSM, LMM, mucosal MM, NM, nailMM, AMM, |
[29] | Google’s Inception v4 | “Moleanalyzer-Pro® CNN” | istitutional: 129,487 images + labels | 115,099 images N + MM | 72 images (36 MM + 36 CN) | / | binary otuput (combined N vs. MM) | unspecified |
[63] | Microsoft ResNet 152 | CNN | 224,181 images (public + istitutional) | 220, 680, 174 disease classes | / | / | binary otuput (CN/MM) | |
[64] | original scheme | DCNN (“Deep Convolutional EncoderDecoder Network”) | ISIC 2017, PH2 datasets | / | / | binary otuput (N/MM) | unspecified | |
[65] | ResNet 50 | ISIC archive + “UDA1, UDA2, MSK-2, MSK-3, MSK-4" databases | 3222 images (2361 N + 591 MM) (ImageNet) | 77 images (27 MM + 50 N) (“Dermnet NZ”) | binary otuput (N/MM) | unspecified | ||
[66] | original | CNN (“DePicT Melanoma Deep-CLASS”) | ISIC archive, 400 images | 1346 images N + MM (ISIC archive) | 1796 images N + MM (ISIC archive) | 450 images N + MM (ISIC archive) | binary otuput (N/MM) | unspecified |
[67] | CNN + ANN | “ISIC, HAM 10000, MSK-1, MSK-2,MSK-3,MSK-4” | 900 (281 MM + 619 N) + clinical data (age, sex, anatomic site) | 300 images (93 MM + 207 N) + clinical data (age, sex, site) | 180 images + clinical data (age, sex, anatomic site) | binary otuput (N/MM) | body + head/neck | |
[68] | wInceptionV314, ResNet5015, Dense- Net16916 | DCNN | ISIC 2019: 17302 images (4503 MM + 12,799 N) | 1730 images (450 MM + 1280 N) (MClass-D dataset) | NA | 59 high-risk patients | binary otuput (N/MM) | unspecified |
[69] | GoogleNet Inception v4 | “Moleanalyzer-Pro® CNN” | M10000 dataset + institutional dataset | 150000 images | 236 images | continuous 0–1 | unspecified | |
[70] | GoogleNet Inception v4 | “Moleanalyzer-Pro® CNN” | 228 images (190 N + 38 MM) | continuous 0–1 | unspecified | |||
Ref | Model Performance | Model Management | Participants | Participants’ Skill Level | Participants’ Performance | Participants’ Management | Comparison with Performances of the Other Models/Checklists Tested on the Same Dataset | |
AUC %; SE%; SP%: ACC (%), PPV, NPV, DOR | n, Profession | Years/Experience in Dermoscopy | AUC %; SE%; SP%: ACC (%), PPV, NPV, DOR, PRECISION | |||||
[54] | AUC = 0.95; SE = 63.8%; SP = 86% | NA | 58 dermatologists | 17 with <2 years, 11 with 2–5 years, 30 with ≥5 years | only dermoscopy: ACC = 79%; SE = 86.6%, SP = 71.3%. clinic + dermoscopy: ACC = 82%, SE = 88.9%, SP = 75.7% | only dermoscopy: ACC 0.82%; SE 98.8%, SP64.6%. clinic + dermosc: ACC = 0.83%,SE = 9844%6%, SP 66.7% | / | |
[55] | AUC = 0.835; SE = 92.57%, SP = 75.39% | NA | 2 general practicioners, 2 dermatologists | 2 beginners, 2 experts | Experts: ACC = 81.08%; Beginners: ACC = 67.84% | / | / | |
[56] | AUC = 0.817; SE = 75%; SP = 88% | NA | dermatology residents | 2nd and 3rd year of residency | ACC = 87%; SE 85.2%; SP 60.9% | NA | Automatic Multi-Layer Perceptron (MLP): ACC = 76%, SE 70.5%, SP = 87.5%; ABCD rule: AUC = 56.10%, SE = 78.1%, SP = 45.7% | |
[57] | NA | NA | 145 (142 dermatologist, 3 residents) | 100 with >10 years, 15 with 5–10 years, 85 with <5 years | Avg ACC = 76.9%; SE = 67.2%, SP = 62.2% | NA | / | |
[34] | SE = 82.3%, SP = 77.9% | NA | 157 (52 dermatologists, 92 residents | NA | SE = 74.1%, SP = 60% | NA | / | |
[58] | AUC = 0.96; SE = 93%; SP = 95%; ACC = 95% | NA | / | / | / | / | DCNN: “Jeremy_deep”: 82%, 78%, 80%, 79%; “Premaladha_deep”: 84%, 80%, 83%, 82% | |
[59] | average AUC = 0.918; SE = 100%/SP = 78.1% | NNB = 6.83 on average | / | / | ACC = 77.8; SE = 95%, SP = 69.9% (over 1582 images) | NNB 4.92, PPV 20.3%, NPV100% | NA | |
[60] | AUC 0.873; MM vs. N); 95.2% MM vs. SK | NA | / | / | / | / | “DermaNet” (without clinical data): AUC 85.6%, MM vs. N); 95.6% MM vs. SK | |
[61] | AUC = 0.903; SE = 86.5; SP = 73.6% | SE = 89, SP = 73.5% | 111 (65 dermatologists,46 residents), (63 F, 48 M) residents. | 45 with >8 years, 20 with 5–8 years, 37 with 1–4 years, 9 with <1 years, | ACC = 69.2%, SE = 77%, SP = 61.4% | SE = 78%, SP = 21% | DCNN_aMSL (no clinical data): diagnosis:AUC 86.6%, SE 89.2%, SP 65.7%. Management: SE = 86%, SP = 65.7% | |
[32] | AUC = 0.976; SE = 90%; SP = 95%; ACC = 92.5% | NA | 60 (20 dermato-logists, 20 residents, 20 general pract) | NA | ACC = 74.7%; SE = 79.9%; SP = 69.5%; | / | model with no clinical data: SE = 88.7%, SP = 85%, ACC = 86.9% | |
[62] | SSM/NM: AUC0.98; LMM: AUC 0.926; AMM: AUC 0.928; mucosal MM: AUC 0.75; nail MM: AUC = 0.621 | NA | / | / | / | / | / | |
[29] | SE = 97.1%, SP = 78.8%; DOR = 34 (95% CI [4.8–239] | NA | 11 dermatologists | Beginner: <2 years (3), Skilled:2–5 years (5) Expert: ≥5 years (3) | SE 90.6%; SP = 71%, DOR = 24 (95% CI [11.6–48.4] | SE 100%, SP 47.6% | / | |
[63] | SNU AUC 0.937 ± 0.004 Edinburgh AUC 0.928 ± 0.002 | NA | 70 (21 dermatologist, 26 residents, 23 nonmedical | Dermatologists SE 77.4% ± 10.7 SP 92.9% ± 2.4 AUC 0.66 ± 0.08 | / | |||
[64] | segmentation: ACC = 95%, SE = 95%, SP = 95.5% | NA | / | / | / | / | “U-Net”: ACC = 93%, SE = 82%, SP = 97%ResNet: ACC 93%, SE 80%, SP: 98% | |
[65] | ACC 86.7% (SE = 81.4%, SP = 92%) | NA | / | / | / | / | DenseNet169:80% ADDI CNN:97.5% | |
[66] | ACC = 75%, SP = 78% | NA | / | / | / | / | “DePic T Melanoma CLASS”: AUC 0.68 | |
[67] | AUC = 0.971; Precision = 94.33%, recall = 87.1%, ACC 97.10% | NA | / | / | / | / | Same CNN model: AUC = 0.82; precision = 81.67%, RECALL = 52.7%, ACC 81.67% | |
[68] | AUC = 0.94, SE = 85%, SP = 95% | NA | 157 dermatologists | 42 with >12 years, 32 with 4–12 years, 37 with 2–4 years, 46 with <2 years | ACC = 67.1%, SE = 74.1%, SP = 60% | NA | / | |
[69] | baseline AUC = 60.69 (SE = 25.4%, SP = 92.7%) Follow-up: AUC = 81.7% (SE = 44.1%, SP = 92.7%) | NA | 26 dermatologists | different skill levels | ACC = 40.7%, SE = 66.1% SP = 55.4% | NA | / | |
[70] | ACC = 87.7%, SE = 81.6%, SP = 88.9% | ACC = 63%, SE 100%, SP = 55.8% | 22 dermatolgogists | 78 lesions examined by dermatologists with <2 years, 96 lesions by derm with 2–5 years, 54 lesions by derm with >5 years | ACC = 74.1%, SE = 84.2%, SP = 72.1% | NA | Dermatologists + CNN: AUC = 86.4%, SE 100%, SP = 83.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tognetti, L.; Miracapillo, C.; Leonardelli, S.; Luschi, A.; Iadanza, E.; Cevenini, G.; Rubegni, P.; Cartocci, A. Deep Learning Techniques for the Dermoscopic Differential Diagnosis of Benign/Malignant Melanocytic Skin Lesions: From the Past to the Present. Bioengineering 2024, 11, 758. https://doi.org/10.3390/bioengineering11080758
Tognetti L, Miracapillo C, Leonardelli S, Luschi A, Iadanza E, Cevenini G, Rubegni P, Cartocci A. Deep Learning Techniques for the Dermoscopic Differential Diagnosis of Benign/Malignant Melanocytic Skin Lesions: From the Past to the Present. Bioengineering. 2024; 11(8):758. https://doi.org/10.3390/bioengineering11080758
Chicago/Turabian StyleTognetti, Linda, Chiara Miracapillo, Simone Leonardelli, Alessio Luschi, Ernesto Iadanza, Gabriele Cevenini, Pietro Rubegni, and Alessandra Cartocci. 2024. "Deep Learning Techniques for the Dermoscopic Differential Diagnosis of Benign/Malignant Melanocytic Skin Lesions: From the Past to the Present" Bioengineering 11, no. 8: 758. https://doi.org/10.3390/bioengineering11080758
APA StyleTognetti, L., Miracapillo, C., Leonardelli, S., Luschi, A., Iadanza, E., Cevenini, G., Rubegni, P., & Cartocci, A. (2024). Deep Learning Techniques for the Dermoscopic Differential Diagnosis of Benign/Malignant Melanocytic Skin Lesions: From the Past to the Present. Bioengineering, 11(8), 758. https://doi.org/10.3390/bioengineering11080758