Investigation of Biomechanical Differences in Level Walking between Patients with Bilateral and Unilateral Total Knee Replacements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Experimental Procedures
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TKR | Total knee replacement |
ROM | Range of motion |
IT | Initial-stance |
PO | Push-off |
GRF | Ground reaction force |
3D | Three-dimensional |
ANOVA | Analysis of variance |
ηp2 | Partial eta squared |
References
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, C.; Charron, K.D.; Macdonald, S.J.; McCalden, R.W.; Bourne, R.B. The fate of the remaining knee(s) or hip(s) in osteoarthritic patients undergoing a primary TKA or THA. J. Arthroplast. 2013, 28, 1842–1845. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Block, J.A. The risk of contralateral total knee arthroplasty after knee replacement for osteoarthritis. J. Rheumatol. 2003, 30, 1822–1824. [Google Scholar] [PubMed]
- Sanders, T.L.; Maradit Kremers, H.; Schleck, C.D.; Larson, D.R.; Berry, D.J. Subsequent Total Joint Arthroplasty After Primary Total Knee or Hip Arthroplasty: A 40-Year Population-Based Study. J. Bone Jt. Surg. 2017, 99, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Renaud, A.; Fuentes, A.; Hagemeister, N.; Lavigne, M.; Vendittoli, P.A. Clinical and Biomechanical Evaluations of Staged Bilateral Total Knee Arthroplasty Patients with Two Different Implant Designs. Open Orthop. J. 2016, 10, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Ro, D.H.; Han, H.-S.; Lee, D.Y.; Kim, S.H.; Kwak, Y.-H.; Lee, M.C. Slow gait speed after bilateral total knee arthroplasty is associated with suboptimal improvement of knee biomechanics. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Bolanos, A.A.; Colizza, W.A.; McCann, P.D.; Gotlin, R.S.; Wootten, M.E.; Kahn, B.A.; Insall, J.N. A comparison of isokinetic strength testing and gait analysis in patients with posterior cruciate-retaining and substituting knee arthroplasties. J. Arthroplast. 1998, 13, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Borden, L.S.; Perry, J.E.; Davis, B.L.; Owings, T.M.; Grabiner, M.D. A biomechanical evaluation of one-stage vs two-stage bilateral knee arthroplasty patients. Gait Posture 1999, 9, 24–30. [Google Scholar] [CrossRef]
- Levinger, P.; Menz, H.B.; Morrow, A.D.; Feller, J.A.; Bartlett, J.R.; Bergman, N.R. Lower limb biomechanics in individuals with knee osteoarthritis before and after total knee arthroplasty surgery. J. Arthroplast. 2013, 28, 994–999. [Google Scholar] [CrossRef]
- Biggs, P.R.; Whatling, G.M.; Wilson, C.; Metcalfe, A.J.; Holt, C.A. Which osteoarthritic gait features recover following total knee replacement surgery? PLoS ONE 2019, 14, e0203417. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Iqbal, Z.A.; Anwer, S.; Anwar, D. Comparison of simultaneous bilateral versus unilateral total knee replacement on pain levels and functional recovery. BMC Musculoskelet Disord 2020, 21, 246. [Google Scholar] [CrossRef] [PubMed]
- Bagsby, D.; Pierson, J.L. Functional outcomes of simultaneous bilateral versus unilateral total knee arthroplasty. Orthopedics 2015, 38, e43–e47. [Google Scholar] [CrossRef] [PubMed]
- Standifird, T.W.; Saxton, A.M.; Coe, D.P.; Cates, H.E.; Reinbolt, J.A.; Zhang, S. Influence of Total Knee Arthroplasty on Gait Mechanics of the Replaced and Non-Replaced Limb During Stair Negotiation. J. Arthroplast. 2017, 31, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.; Floren, M.; Skwara, A.; Tibesku, C.O. Quantitative gait analysis in unconstrained total knee arthroplasty patients. Int. J. Rehabil. Res. 2002, 25, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Lloyd, D.G.; Wood, D.J. Pre-surgery knee joint loading patterns during walking predict the presence and severity of anterior knee pain after total knee arthroplasty. J. Orthop. Res. 2004, 22, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Cates, H.E.; Zhang, S. Is knee biomechanics different in uphill walking on different slopes for older adults with total knee replacement? J. Biomech. 2019, 89, 40–47. [Google Scholar] [CrossRef]
- Valenzuela, K.A.; Zhang, S.; Schroeder, L.E.; Weinhandl, J.T.; Cates, H.E. Increased knee loading in stair ambulation in patients dissatisfied with their total knee replacement. Clin. Biomech. 2019, 67, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Weinhandl, J.T.; O’Connor, K.M. Assessment of a greater trochanter-based method of locating the hip joint center. J. Biomech. 2010, 43, 2633–2636. [Google Scholar] [CrossRef] [PubMed]
- McConnell, S.; Kolopack, P.; Davis, A.M. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): A review of its utility and measurement properties. Arthritis Rheum. 2001, 45, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Chen, S.Y.; Feng, Z.; Yi, X. A general introduction to adjustment for multiple comparisons. J. Thorac. Dis. 2017, 9, 1725–1729. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Shepherd, E.F.; Jackson, W.O.; Pratt, J.A.; McClung, C.D.; Schmalzried, T.P. Knee strength after total knee arthroplasty. J. Arthroplast. 2003, 18, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Cheng, C.K.; Lee, Y.T.; Lee, K.S. Muscle strength after successful total knee replacement: A 6- to 13-year followup. Clin. Orthop. Relat. Res. 1996, 328, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Lelas, J.L.; Merriman, G.J.; Riley, P.O.; Kerrigan, D.C. Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture 2003, 17, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Mandeville, D.; Osternig, L.R.; Chou, L.S. The effect of total knee replacement on dynamic support of the body during walking and stair ascent. Clin. Biomech. 2007, 22, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Vahtrik, D.; Gapeyeva, H.; Ereline, J.; Paasuke, M. Relationship between leg extensor muscle strength and knee joint loading during gait before and after total knee arthroplasty. Knee 2014, 21, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Aljehani, M.; Madara, K.; Snyder-Mackler, L.; Christiansen, C.; Zeni, J.A., Jr. The contralateral knee may not be a valid control for biomechanical outcomes after unilateral total knee arthroplasty. Gait Posture 2019, 70, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Milner, C.E.; O’Bryan, M.E. Bilateral frontal plane mechanics after unilateral total knee arthroplasty. Arch. Phys. Med. Rehabil. 2008, 89, 1965–1969. [Google Scholar] [CrossRef] [PubMed]
- Debbi, E.M.; Bernfeld, B.; Herman, A.; Laufer, Y.; Greental, A.; Sigal, A.; Zaulan, Y.; Salai, M.; Haim, A.; Wolf, A. Frontal plane biomechanics of the operated and non-operated knees before and after unilateral total knee arthroplasty. Clin. Biomech. 2015, 30, 889–894. [Google Scholar] [CrossRef]
- Alnahdi, A.H.; Zeni, J.A.; Snyder-Mackler, L. Gait after unilateral total knee arthroplasty: Frontal plane analysis. J. Orthop. Res. 2011, 29, 647–652. [Google Scholar] [CrossRef]
- Benedetti, M.G.; Catani, F.; Bilotta, T.W.; Marcacci, M.; Mariani, E.; Giannini, S. Muscle activation pattern and gait biomechanics after total knee replacement. Clin. Biomech. 2003, 18, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, A.J.; Stewart, C.J.; Postans, N.J.; Biggs, P.R.; Whatling, G.M.; Holt, C.A.; Roberts, A.P. Abnormal loading and functional deficits are present in both limbs before and after unilateral knee arthroplasty. Gait Posture 2017, 55, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Holden, J.P.; Orsini, J.A.; Siegel, K.L.; Kepple, T.M.; Gerber, L.H.; Stanhope, S.J. Surface movement errors in shank kinematics and knee kinetics during gait. Gait Posture 1997, 5, 217–227. [Google Scholar] [CrossRef]
- Peters, A.; Galna, B.; Sangeux, M.; Morris, M.; Baker, R. Quantification of soft tissue artifact in lower limb human motion analysis: A systematic review. Gait Posture 2010, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Milcovich, G.; Antunes, F.E.; Farra, R.; Grassi, G.; Grassi, M.; Asaro, F. Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages. Int. J. Biol. Macromol. 2017, 102, 796–804. [Google Scholar] [CrossRef] [PubMed]
Bilateral | Unilateral | p | |
---|---|---|---|
Age (years) | 70.09 ± 5.41 | 68.67 ± 6.18 | 0.547 |
Height (m) | 1.71 ± 0.08 | 1.73 ± 0.10 | 0.524 |
Weight (kg) | 91.78 ± 13.00 | 87.73 ± 15.70 | 0.493 |
Time since First TKR (months) | 73.36 ± 21.92 | 27.93 ± 12.03 | <0.001 |
Time since Last TKR (months) | 59.00 ± 25.11 | 27.93 ± 12.03 | 0.002 |
Walking speed (m/s) | 1.07 ± 0.13 | 1.18 ± 0.21 | 0.079 |
Variable | Bilateral | Unilateral | Limb p | Group p | Int. p | ||
---|---|---|---|---|---|---|---|
First Replaced | Second Replaced | Replaced | Non-Replaced | ||||
IT Vertical GRF | 1.04 ± 0.13 | 1.05 ± 0.12 | 1.07 ± 0.06 | 1.09 ± 0.04 | 0.280 | 0.299 | 0.676 |
PO Vertical GRF | 1.00 ± 0.06 | 1.00 ± 0.07 | 1.05 ± 0.06 | 1.06 ± 0.05 | 0.207 | 0.026 | 0.456 |
IT Knee Ext. Moment | 0.30 ± 0.26 | 0.18 ± 0.21 a,b | 0.41 ± 0.14 | 0.53 ± 0.26 | 0.925 | 0.008 | 0.034 |
PO Knee Flex. Moment | −0.12 ± 0.09 | −0.14 ± 0.15 | −0.08 ± 0.14 | −0.14 ± 0.13 | 0.183 | 0.620 | 0.494 |
IT Knee Abd. Moment | −0.34 ± 0.07 | −0.38 ± 0.12 | −0.46 ± 0.10 | −0.45 ± 0.18 | 0.613 | 0.037 | 0.404 |
PO Knee Abd. Moment | −0.28 ± 0.12 | −0.30 ± 0.12 | −0.32 ± 0.08 | −0.36 ± 0.16 | 0.358 | 0.260 | 0.723 |
IT DF Moment | 0.16 ± 0.04 | 0.15 ± 0.04 | 0.30 ± 0.11 | 0.27 ± 0.07 | 0.049 | <0.001 | 0.281 |
PO PF Moment | −1.28 ± 0.11 | −1.21 ± 0.27 | −1.30 ± 0.16 | −1.34 ± 0.15 | 0.717 | 0.238 | 0.110 |
IT Hip Ext. Moment | −0.62 ± 0.20 | −0.67 ± 0.19 | −0.59 ± 0.13 | −0.55 ± 0.14 | 0.799 | 0.201 | 0.158 |
PO Hip Flex. Moment | 0.47 ± 0.11 | 0.43 ± 0.13 | 0.61 ± 0.17 | 0.62 ± 0.17 | 0.561 | 0.006 | 0.395 |
IT Hip Abd. Moment | −0.87 ± 0.10 | −0.90 ± 0.15 | −0.91 ± 0.13 | −0.92 ± 0.19 | 0.584 | 0.521 | 0.687 |
PO Hip Abd. Moment | −0.84 ± 0.13 | −0.88 ± 0.18 | −0.85 ± 0.11 | −0.83 ± 0.14 | 0.597 | 0.708 | 0.242 |
Variable | Bilateral | Unilateral | Limb p | Group p | Int. p | ||
---|---|---|---|---|---|---|---|
First Replaced | Second Replaced | Replaced | Non-Replaced | ||||
Knee Extension | −47.42 ± 4.63 | −47.93 ± 5.73 | −46.06 ± 5.80 | −47.15 ± 6.26 | 0.472 | 0.594 | 0.797 |
Knee Abduction | 3.74 ± 2.07 | 3.33 ± 1.71 | 4.11 ± 1.24 | 3.52 ± 0.83 | 0.127 | 0.652 | 0.786 |
Ankle Dorsiflexion | 22.80 ± 3.62 | 23.69 ± 4.84 | 24.70 ± 3.03 | 22.55 ± 3.67 | 0.396 | 0.772 | 0.049 |
Ankle Eversion | −8.06 ± 4.50 | −7.19 ± 3.70 | −5.96 ± 2.24 | −7.23 ± 3.63 | 0.836 | 0.319 | 0.275 |
Hip Extension | −34.00 ± 5.72 | −32.85 ± 5.32 | −34.33 ± 6.08 | −37.18 ± 4.79 | 0.402 | 0.466 | 0.056 |
Hip Adduction | 9.16 ± 2.57 | 7.59 ± 4.15 | 11.56 ± 4.16 | 10.45 ± 4.98 | 0.044 | 0.097 | 0.721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yocum, D.; Ovispo-Martinez, A.; Valenzuela, K.A.; Wen, C.; Cates, H.; Zhang, S. Investigation of Biomechanical Differences in Level Walking between Patients with Bilateral and Unilateral Total Knee Replacements. Bioengineering 2024, 11, 763. https://doi.org/10.3390/bioengineering11080763
Yocum D, Ovispo-Martinez A, Valenzuela KA, Wen C, Cates H, Zhang S. Investigation of Biomechanical Differences in Level Walking between Patients with Bilateral and Unilateral Total Knee Replacements. Bioengineering. 2024; 11(8):763. https://doi.org/10.3390/bioengineering11080763
Chicago/Turabian StyleYocum, Derek, Alejandro Ovispo-Martinez, Kevin A. Valenzuela, Chen Wen, Harold Cates, and Songning Zhang. 2024. "Investigation of Biomechanical Differences in Level Walking between Patients with Bilateral and Unilateral Total Knee Replacements" Bioengineering 11, no. 8: 763. https://doi.org/10.3390/bioengineering11080763
APA StyleYocum, D., Ovispo-Martinez, A., Valenzuela, K. A., Wen, C., Cates, H., & Zhang, S. (2024). Investigation of Biomechanical Differences in Level Walking between Patients with Bilateral and Unilateral Total Knee Replacements. Bioengineering, 11(8), 763. https://doi.org/10.3390/bioengineering11080763