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Abstract: This paper reports an experimental study on the compatibility of human bronchial epithelial
(HBE) cells in a collagen–alginate bioink. The compatibility was assessed using the culture well
method with three bioink compositions prepared from a 10% alginate solution and neutralized
TeloCol-10 mg/mL collagen stock solution. Cell viability, quantified by (live cell count—dead
cell count)/live cell count within the HBE cell-laden hydrogel, was evaluated using the live/dead
assay method from Day 0 to Day 6. Experimental results demonstrated that the collagen–alginate
4:1 bioink composition exhibited the highest cell viability on Day 6 (85%), outperforming the collagen–
alginate 1:4 bioink composition and the alginate bioink composition, which showed cell viability of
75% and 45%, respectively. Additionally, the live cell count was highest for the collagen–alginate
4:1 bioink composition on Day 0, a trend that persisted through Days 1 to 6, underscoring its superior
performance in maintaining cell viability and promoting cell proliferation. These findings show
that the compatibility of HBE cells with the collagen–alginate 4:1 bioink composition was higher
compared with the other two bioink compositions.

Keywords: collagen–alginate bioink; compatibility; cell viability; culture well method; human
bronchial epithelial cells

1. Introduction

Three-dimensional bioprinting involves the precise layer-by-layer deposition of bio-
compatible materials and cells to fabricate functional biological constructs in a predesigned
manner for tissue engineering or other biological studies [1]. In respiratory research, 3D
bioprinting has shown immense potential, particularly in developing lung tissue models
for in vitro drug testing and therapeutic interventions for respiratory diseases. For instance,
da Rosa et al. demonstrated the fabrication of a bioprinted 3D construct with lung epithelial
cells (alveolar type I and II, ciliated, and secretory cells) for in vitro drug testing against
COVID-19 and other respiratory diseases [2]. Wang et al. bioprinted a 3D construct with
lung cancer cells A549 and 95-D for lung cancer research [3]. These studies underscore the
potential of 3D bioprinting in creating functional lung models, enhancing the study and
treatment of respiratory diseases [4].

Bioinks used in bioprinting provide the necessary environment for cell growth and
tissue formation [5]. Ensuring the compatibility of bioinks is crucial to avoid adverse cellular
responses and to promote optimal cell viability, proliferation, and differentiation [6]. Cell
viability is defined as the ability of cells to survive and maintain metabolic activity under
given conditions [7]. Cell proliferation is defined as the increase in cell number resulting
from cell growth and division [8]. The study of bioink compatibility is vital in identifying
materials that can effectively support the specific requirements of various cell types.
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Table 1 shows the bioinks used in reported studies on bioprinting with lung cells, with
alginate being one of the main bioinks used. Alginate (also known as sodium alginate), a
naturally occurring polysaccharide derived from brown seaweed, is commonly used in
bioink formulations due to its ability to form hydrogels in the presence of divalent cations,
such as calcium ions [5]. Moreover, its biocompatibility, non-toxic nature, and low cost
make it an attractive material for bioprinting applications [9]. However, alginate hydrogels
are inherently bioinert, lacking the cell adhesion sites necessary for cellular attachment and
proliferation [5,9,10]. To address this limitation, alginate is often combined with collagen,
the primary structural protein in the extracellular matrix (ECM). Collagen provides the
necessary biochemical cues to promote cell adhesion, proliferation, and differentiation [11,
12]. Among the 29 types of collagen available, types I–III constitute 80–90% of total body
collagen [13]. Biomaterials in tissue engineering studies mostly use type I collagen, which
is the main component in the connective tissues of mammals [11,14–16].

Table 1. Bioinks used in reported studies on bioprinting with lung cells.

Bioink Cell Type Reference

Alginate–collagen Human pulmonary lung fibroblasts (HPFs) [12]
Alginate–gelatin Alveolar types I and II, ciliated, and secretory cells [2]

Polyvinylpyrrolidone Human lung epithelial cells(A549), endothelial cells (EA.hy926), and
fibroblasts (MRC5) [17]

Carbopol Lung cancer epithelial (A549) and lung fibroblast (MRC-5) cells [18]

Alginate, gelatin, and collagen
Normal human primary lung fibroblasts ((NHLFbs), human monocytic

leukemia cells (THP-1), and human epithelial lung carcinoma cells
(A549 cells)

[19]

Collagen Type I and II alveolar cells (NCI-H1703 and NCI-H441), lung fibroblasts
(MRC5), and lung microvascular endothelial cells (HULEC-5a) [20]

Alginate–gelatin Non-small cell lung cancer PDX cells and lung CAFs [21]
Alginate–gelatin Human lung cancer cells A549 and 95-D [3]

Alginate, gelatin and matrigel Human alveolar A549 cells [22]

Collagen–alginate hydrogel was selected for this study because it has some different
features in comparison with polyethylene glycol (PEG) diacrylate, agarose, gelatin, and
hyaluronic acid. Collagen, as a natural extracellular matrix component, enhances cell
attachment and growth, while alginate contributes to improved printability and structural
integrity through rapid gelation with an ionic crosslinking solution. In contrast, the PEG
diacrylate bioink requires photo crosslinking to form a hydrogel [23]. Photo crosslinking
involves photoinitiator reagents and UV light that might damage the cells, potentially
reducing cell viability [24]. Although agarose offers biocompatibility and strong mechan-
ical properties, it is bioinert and lacks cell-adhesive properties [25,26]. Gelatin, despite
supporting cell adhesion, requires precise temperature control due to its thermo-gelling
properties [23,27,28]. Moreover, it forms hydrogel at low temperatures (e.g., 10–30 ◦C),
which may damage the cells [26]. Hyaluronic acid, although biocompatible and hydrophilic,
lacks mechanical strength, leading to poor structural integrity [29].

Reported studies have demonstrated the efficacy of the collagen–alginate bioink
in enhancing the mechanical and biological properties required for tissue engineering
applications. For instance, Zimmerling et al. synthesized the bioink from alginate and
collagen for bioprinting respiratory tissue models using human pulmonary lung fibroblast
(HPF) cells [12]. Perez et al. fabricated a dual-layered fibrous structure as a cell delivery
system for bone tissue engineering, composed of collagen and alginate as the core and shell,
respectively, using bone marrow mesenchymal stem cells [30]. These investigations show
the combined benefits of alginate’s mechanical stability and collagen’s bioactivity, making
the alginate–collagen bioink a promising choice for various tissue engineering endeavors.
Despite these advancements, there remains a notable gap concerning the compatibility of
this bioink with specific cell types, particularly human bronchial epithelial (HBE) cells.

Human bronchial epithelial (HBE) cells are critical in forming the lining of the respi-
ratory tract. They are involved in various physiological functions, including mucociliary
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clearance and barrier formation. These functions are vital for maintaining respiratory
health by removing mucus and pathogens from the respiratory tract and protecting un-
derlying tissues from harmful substances [31]. However, to date, there has been a lack
of comprehensive studies evaluating the compatibility of HBE cells in collagen–alginate
bioink. This study aims to fill this gap by investigating the compatibility of HBE cells in
collagen–alginate bioink.

2. Materials and Methods
2.1. Cell Culture

16HBE14o-human bronchial epithelial cells (Cat. No. SCC150), isolated from a 1-year-
old male heart–lung patient, were purchased from Millipore Sigma (Sigma Cat. No. M2279,
Saint Louis, MO, USA). Cryopreserved cells were cultured according to the supplier’s
instructions. The cell culturing process is illustrated in Figure 1. At first, the vial containing
frozen 16HBE14o cells was removed from liquid nitrogen storage and put in a water bath at
37 ◦C. As soon as the cells were completely thawed, the outside of the vial was disinfected
with 70% ethanol, and the vial was placed in a biosafety cabinet (SterilGARD II Advance,
Baker, Sanford, ME, USA). The cells were transferred using a 1 mL pipette to a sterile 15 mL
conical tube. Using a 10 mL pipette, 9 mL of α-MEM medium (cell growth medium) was
slowly added dropwise into the conical tube with the cells. The cell suspension with the
medium in the conical tube was mixed gently using a pipette to draw the cell suspension
with the medium into the pipette and then expel it back into the conical tube, repeating this
process twice to ensure thorough mixing without damaging the cells. The conical tube was
then centrifuged at 900 rpm for 2–3 min to pellet the cells and separate the supernatant.
Then, the supernatant was gently decanted as much as possible from the conical tube.
These steps were necessary to remove residual cryopreservatives. Then, 10 mL of α-MEM
medium was resuspended slowly into the conical tube with the cells. The cell mixture was
transferred to an ECM-coated T75 tissue culture flask. Then, the flask with the cells was
placed in a humidified incubator at 37 ◦C with 5% CO2. The next day, the medium in the
flask was removed from the flask, and 10 mL of fresh α-MEM medium was added in. Every
other day, the medium in the flask was replaced with fresh medium until the flask reached
90% cell confluency by visual estimation using a microscope. Cell confluency refers to the
degree to which a culture of adherent cells in a flask fills a given area, typically measured
as a percentage of the surface area of the flask covered by the cells.

When the cells reach 90% confluency, they are ready for cell passaging. Cell passaging,
also known as subculturing, refers to the process of transferring a fraction of cells from an
existing cell culture to one or more culture vessels with fresh growth medium to prevent
over-confluence, maintain optimal growth conditions, and prolong the culture’s viability
and health for extended periods of time [32]. At first, the T75 flask containing cells with
the medium was rinsed twice with 10 mL of 1X PBS w/o Ca2+, Mg2+ solution (Cat. No.
BSS-1006-B). The solution was aspirated after each rinse. In the next step, 10 mL of Trypsin-
EDTA solution (Sigma T3924) was added to the T75 flask. The flask was swirled to ensure
that the Trypsin-EDTA completely covered the surface of the flask. The flask was incubated
at 37 ◦C in a humidified incubator with 5% CO2 for 7–8 min. Afterwards, the flask was
taken out, and for the next 3 min, the sides of the flask were tapped firmly by fingers to
dislodge the cells from the surface of the flask. In total, 15 mL of α-MEM medium was
added to the flask to inactivate Trypsin and collect the residual cells. The dissociated cells
were transferred to a 50 mL conical tube that was then centrifuged at 800–1000 rpm for
3–5 min. After centrifugation, the supernatant was decanted, and 4 mL of α-MEM medium
was slowly resuspended into the cell pellet. After resuspension, the cell concentration in
the α-MEM medium was measured using the Auto T4 cell counter (Nexcelom Bioscience,
Lawrence, MA, USA) according to the instructions from the cell counter manufacturer. The
HBE cell concentration was approximately 4.65 × 105 cells per milliliter of the medium.
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Figure 1. Culturing process for 16HBE14o-human bronchial epithelial cells.

2.2. Preparation of Bioink
2.2.1. Preparation of Sodium Alginate Solution

The 10% (w/v) sodium alginate solution was prepared following the procedure de-
scribed in an early paper [24]. In brief, a 500 mL beaker with 100 mL of deionized water
was placed on a hot plate magnetic stirrer (Thermo Fisher, Waltham, MA, USA) that was
set to rotate at 800 rpm. Then, 10 g of alginic acid sodium salt powder (Product number:
A1112, Sigma-Aldrich, Saint Louis, MO, USA) was slowly added to the beaker for over
2 min, and the solution was stirred for five minutes manually by hand with a stir rod to
avoid clumping. Then, the beaker was stirred on a hot plate magnetic stirrer at 60 ◦C for
2 h. After resting overnight, the solution was stirred again manually by hand for 5 min
with a stir rod. The sodium alginate solution in the beaker was sterilized via autoclave at
121 ◦C for 20 min and was then stored at 4 ◦C.

2.2.2. Collagen Neutralization

The collagen stock solution (TeloCol-10, type 1 bovine collagen, Advanced Biomatrix,
Carlsbad, CA, USA) had a concentration of 10 mg/mL. To prepare 5 mL of neutralized
collagen solution at pH 7.4, 4 mL of the collagen stock solution (eight-tenths of the final
volume of the resultant collagen solution) was added to a conical tube. Then, 0.5 mL of
10X PBS (one-tenth of the final volume of the resultant collagen solution) was added to the
conical tube. After adding 50 µL of 0.5 M NaOH, the pH level of the resultant collagen
solution was checked using a pH strip. The volume of 0.5 M NaOH is a variable that
depends on the volume of collagen. An additional 37 µL of 0.5 M NaOH was added until
the desired pH of 7.4 was achieved. Finally, the total volume of the resultant collagen
solution was adjusted by adding 413 µL of deionized water.

2.2.3. Bioink Preparation

Bioink was prepared with the 10% alginate solution (prepared by following the pro-
cedure described in Section 2.2.1) and the neutralized collagen solution (prepared by
following the procedure described in Section 2.2.2). These two solutions were combined
at different ratios to prepare three bioink compositions. Bioink was prepared in batches
(2 mL each) for each bioink composition. The first bioink composition was a pure 10%
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alginate solution. To prepare the second bioink composition, 20% collagen and 80% alginate
(or collagen–alginate 1:4 bioink), 0.4 mL of the neutralized collagen solution was added
to 1.6 mL of the 10% alginate solution. Finally, to prepare the third bioink composition,
80% collagen and 20% alginate (or collagen–alginate 4:1 bioink) in 1.6 mL of neutralized
collagen solution was added to 0.4 mL of the 10% alginate solution.

2.3. Preparation of Cell-Laden Hydrogel

Figure 2 illustrates the preparation steps of the cell-laden hydrogel. Three individual
12-well plates were used for three bioink compositions. For each 12-well plate, 3 wells
were used for each day’s cell viability assessment for a specific bioink composition. Bioink
in an Eppendorf tube was stored in an ice bath prior to the addition of cells to prevent
premature thermal gelation. To prepare the cell-laden bioink, 1 mL of the HBE cells with
a medium (prepared by following the procedure described in Section 2.1) was added to
the bioink to create a final volume of 3 mL, with an effective cell density of approximately
1.55 × 105 cells per milliliter of bioink. Then, using a micropipette (an instrument used to
deposit precise volumes of liquid), 250 µL of cell-laden bioink for each composition was
added into individual wells of the 12-well plate. Afterwards, the same amount of 300 mM
calcium chloride solution was added into the wells with the cell-laden bioink for the ionic
crosslinking of bioink, as alginate forms hydrogel in the presence of divalent cations. The
addition was performed in a biosafety cabinet. Then, the well plate was incubated at 37 ◦C
in a humidified incubator with 5% CO2 for 30 min for the thermal gelation of the bioink,
as collagen forms hydrogel at 37 ◦C. After completing the gelation process, the calcium
chloride solution was washed away from the wells, and 1 mL of α-MEM medium was
added into the wells with the cell-laden hydrogel. Finally, the well plate was incubated
from Day 0 to Day 6 for cell proliferation.
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2.4. Cell Viability Assessment

In reported studies on the biocompatibility of bioinks for 3D bioprinting [33,34], the
live/dead assay method is commonly used to evaluate cell viability [35]. This method
involves staining cells with a mixture of fluorophores, where one fluorophore marks live
cells and the other marks dead cells, allowing for the visualization and calculation of the
percentage of live cells [36].

In this study, an Echo revolution fluorescence microscope (model: RON-K, BICO
company) was used to conduct the z-stacking of cell-laden 3D samples to assess cell viability
in the samples of three different bioink compositions. Z-stacking, a digital image-processing
method, combines multiple images taken at different focal distances to provide a composite
image with a greater depth of field [37,38]. The cells were stained with the ReadyProbes™
Cell Viability imaging kit (NucBlue®, NucGreen®) (Invitrogen™, R37609, ThermoFisher
Scientific, Waltham, MA, USA) for fluorescence microscopy. The NucBlue® live reagent
stains the nuclei of all live cells and turns the nuclei of the cells highly fluorescent blue in
color, which can be detected with a standard DAPI filter of the microscope. The NucGreen®

dead reagent stains only the nuclei of dead cells with compromised plasma membranes
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and turns the nuclei of the dead cells into highly fluorescent green in color, which can be
detected with the standard FITC filter of the microscope. The assessment process of cell
viability is described below and illustrated in Figure 3.
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The well plate was taken out from the incubator and placed in a biosafety cabinet.
At room temperature, in the biosafety cabinet, 2 drops of the NucBlue® live reagent and
2 drops of the NucGreen® dead reagent were added to the cell-laden hydrogel in 3 wells of
the well plate for a specific bioink composition. The well plate was placed back into the
incubator at 37 ◦C for 15 min for staining to take place. Then, the well plate was taken out
from the incubator and placed under a microscope to capture images. For each type of
bioink composition, one z-stack was captured using the microscope at randomly chosen
positions in the cell-laden hydrogel of each well. The z-stack image files were stored in a
computer as ome.tif format. Afterwards, the well plate was kept in the biosafety cabinet,
and the live/dead reagents were washed away from the wells. Then, 1 mL of fresh α-MEM
medium was added to the wells. Then, the well plate was placed back into the incubator
at 37 ◦C for further proliferation. These steps were repeated over a 6-day period for cell
viability assessment on Day 0, Day 1, Day 3, and Day 6.

The ome.tif files of the z-stack images were analyzed using ImageJ Fiji software
(version 1.54f). From each z-stack image, 3 planes of focus were randomly selected. The
number of live cells (lp) and the number of dead cells (dp) in each of the three planes
(p = 1 to 3) of a particular z-stack image (z) were counted. nz represents the average live cell
count of the three planes for each z-stack and was calculated using Equation (1). Nd is the
average live cell count of these three z-stacks (z = 1 to 3) for a specific bioink composition
on a particular day and was calculated using Equation (2).

nz =
∑3

p=1 lp

3
(1)

Nd =
∑3

z=1 nz

3
(2)

vz is the average cell viability (%) of the three planes for each z-stack and was calculated
using Equation (3). Vd is the average cell viability of the three z-stacks for a specific bioink
composition on a particular day and was calculated using Equation (4).

vz =

∑3
p=1

(
lp(

lp+dp

) × 100

)
3

(3)

Vd =
∑3

z=1 vz

3
(4)

The average live cell counts of the three z-stacks, Nd, and the average cell viability (%)
of the three z-stacks, Vd, were used to assess the compatibility of HEB cells with a specific
bioink composition on a particular day.
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2.5. Statistical Analysis

Statistical analysis was conducted using OriginPro software (version 2024b). Initially,
Shapiro–Wilk’s test was used to assess the normality of the data distribution. For the live
cell count and cell viability data that passed that normality test, a one-way ANOVA was
performed. For the live cell count and cell viability data that failed the normality test, a
nonparametric Kruskal–Wallis ANOVA test was performed. Furthermore, Tukey’s post hoc
comparison test was used to analyze the differences in experimental data between three
types of bioink compositions on Day 0, Day 1, Day 3, and Day 6.

3. Results and Discussion

Experimental data are presented in Tables 2 and 3. To evaluate the statistical signif-
icance of the effects of bioink composition for the live cell count on Day 0, Day 1, and
Day 6, and cell viability through Day 0 to Day 6, a one-way ANOVA was performed on the
experimental data, as these data passed the normality test. The nonparametric Kruskal–
Wallis ANOVA test was utilized to determine the statistical significance of the effects of the
bioink composition on the live cell count on Day 3, as these data failed the normality test.
Table 4 presents the p-values for the effects of bioink composition on live cell count and cell
viability. Tables 5 and 6 present the p-values from Tukey’s post hoc comparison test for the
effects of bioink composition on live cell count and cell viability, respectively.

Table 2. Experimental data of live cell count for three bioink compositions.

Alginate Collagen–Alginate 1:4 Collagen–Alginate 4:1

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

Day 0 5.1 0.96 9.46 3.72 13.17 4.81
Day 1 2.5 0.43 4.83 0.73 7.5 1.80
Day 3 6.67 0.58 6.17 2.26 19.87 6.29
Day 6 2.89 2.22 8 2.40 20.92 7.18

Table 3. Experimental data of cell viability (%) for three bioink compositions.

Alginate Collagen–Alginate 1:4 Collagen–Alginate 4:1

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

Day 0 71.39 4.49 81.23 3.38 95.76 5.23
Day 1 49.13 3.19 70.43 5.45 85.77 6.20
Day 3 68.39 5.90 71.48 12.13 84.83 8.75
Day 6 44.97 13.65 74.96 11.18 85.10 10.01

Table 4. p-values for the effects of bioink composition on live cell count and cell viability.

Live Cell Count Cell Viability

Day 0 0.0902 0.0017
Day 1 0.0053 0.0004
Day 3 0.0614 0.1492
Day 6 0.0073 0.0137

Table 5. p-values from Tukey’s post hoc comparison test for the effects of bioink composition on live
cell count.

Day 0 Day 1 Day 3 Day 6

Collagen–alginate 1:4, alginate 0.2731 0.1040 0.9863 0.4100
Collagen–alginate 4:1, alginate 0.0811 0.0043 0.0138 0.0068

Collagen–alginate 4:1; collagen–alginate 1:4 0.6259 0.0663 0.0117 0.0306
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Table 6. p-values from Tukey’s post hoc comparison test for the effects of bioink composition on cell
viability.

Day 0 Day 1 Day 3 Day 6

Collagen–alginate 1:4, alginate 0.1066 0.0053 0.9138 0.0460
Collagen–alginate 4:1, alginate 0.0014 0.0003 0.1558 0.0135

Collagen–alginate 4:1; collagen–alginate 1:4 0.0148 0.0241 0.2510 0.5695

The effects of bioink composition on live cell count and cell viability are shown
in Figures 4 and 5, respectively. The error bars in these figures represent the standard
deviation among the three samples for each bioink composition. Figure 4 shows that,
on Day 0, Day 1, and Day 6, live cell count was the highest for the collagen–alginate 4:1
bioink composition and the lowest for the alginate bioink composition. Figure 5 shows that
the collagen–alginate 4:1 bioink composition provides higher cell viability from Day 0 to
Day 6 than the collagen–alginate 1:4 bioink composition and alginate bioink composition.
For the alginate bioink composition, cell viability was 71.4% on Day 0 but reduced to
45.0% on Day 6. According to ISO 10993, a reduction in cell viability by more than 30% is
considered a cytotoxic effect [34]. For the collagen–alginate 1:4 bioink composition, cell
viability was 81.2% on Day 0 and 75.0% on Day 6. The trends observed from this study
are consistent with reported trends in the literature. For example, it was reported that a
higher alginate proportion in alginate–collagen bioink caused a decrease in cell viability; a
higher collagen proportion in alginate–collagen bioink tended to increase the cell viability
of human pulmonary lung fibroblasts cells in printed samples [12].
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Figure 6 shows that the number of live cells within the cell-laden hydrogel of the
collagen–alginate 4:1 bioink composition was noticeably higher than the other two bioink
compositions. Clusters of cells could be observed in the images on Day 1, and the clusters
gradually became larger from Day 1 to Day 6. In other words, cells proliferated better
within the cell-laden hydrogel of the collagen–alginate 4:1 bioink composition than the
collagen–alginate 1:4 bioink composition and alginate bioink composition. From the FITC
images (with dead cells detected) in Figure 6c, it can be observed that the number of dead
cells was higher within the cell-laden hydrogel of the alginate bioink composition compared
with the other two bioink compositions. This result indicates that the pure alginate bioink
composition is less compatible than collagen–alginate bioink compositions. This means
that human HBE cells are more compatible with bioink compositions that have a higher
collagen proportion. This is likely because collagen–alginate bioink compositions with a
higher collagen proportion contain a greater number of cell-binding ligands, facilitating
better cell attachment and interaction [12,39,40]. The higher collagen content may also
better mimic the ECM of human bronchial epithelial (HBE) cells, improving the porosity
and permeability of the hydrogel and allowing the better diffusion of nutrients and oxygen
to the HBE cells.
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This study used 16HBE14o-human bronchial epithelial (HBE) cells due to their rele-
vance in respiratory research. HBE cells retain characteristic features of normal differen-
tiated bronchial epithelial cells and serve as a model cell line for airway physiology and
diseases like asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis.
They are crucial for studying mucociliary clearance and barrier integrity. Additionally,
HBE cells allow for the investigation of environmental impacts, such as pollutants and
pathogens, on the respiratory system. Despite significant advancements in understanding
lung function and tissue complexity, how different lung cells respond to extreme environ-
ments remains unclear. This understanding is particularly important given the impact
of extreme environments, such as those experienced by aircrews, on respiratory health.
Aircrews frequently face extreme environments in the cockpit, including pressure changes,
vibration, temperature fluctuations, and oxygen deprivation. An aircrew’s responses and
performance in extreme environments are evaluated through advanced training, testing,
simulations, and real-time monitoring using devices [41,42]. Studies often rely on animal
models or monolayer cell cultures, limiting direct applicability to human responses [43,44].
Bioprinting can overcome these issues by embedding cells in a 3D hydrogel, mimicking
human tissues more accurately. Additionally, bioprinting improves reproducibility and
reduces the need for extensive animal testing approvals.

Before conducting bioprinting, it is essential to find a bioink composition compatible
with HBE cells. This study aimed to develop bioinks that are compatible with HBE cells
for bioprinting applications. As a key step to selecting a suitable bioink composition,
this paper utilized the 3D culture well method, which offers significant advantages over
traditional monolayer cultures by more accurately mimicking the in vivo environment.
Traditional monolayer cultures typically have adherent cell types that grow submerged
in media against a very rigid plastic or glass-culturing surface, where cells are exposed
to mostly the same level of nutrients and incubator gas mixture. In contrast, 3D cultures
allow cells to grow in a relatively unrestricted environment, with an unequal distribution of
oxygen and metabolites. This method enhances cell-to-cell and cell-to-extra cellular matrix
(ECM) interactions that are essential for proper cellular function and behavior. Moreover,
3D cultures better replicate signal transduction characteristics and the development of cell
polarity in aggregates [45–47].

The results of this study are crucial for future research to study how HBE cells respond
to extreme environments. By identifying the collagen–alginate bioink composition that is
compatible with HBE cells and promotes cell proliferation, this study provides foundational
knowledge that enhances the understanding of bioink–cell interactions. Furthermore, this
study allows the study of the effects of bioprinting and bioink on cell viability separately.
This study provides baseline cell viability data that can then be used to optimize bioprinting
parameters. This supports improved bioprinting applications, reduces reliance on animal
testing, and paves the way for more accurate and functional 3D-printed constructs, which
are essential for studying cell responses to extreme environments.

4. Conclusions

This study addresses a critical gap in the current literature by evaluating the compati-
bility of human bronchial epithelial (HBE) cells in three collagen–alginate bioink composi-
tions, providing essential insights for respiratory tissue engineering. Experimental results
highlight the effects of bioink composition on the cell viability of human HBE cells. The
collagen–alginate 4:1 bioink composition demonstrated superior performance in maintain-
ing cell viability and promoting cell proliferation compared with the collagen–alginate
1:4 bioink composition and the alginate bioink composition. These results contribute to
the foundational understanding of interactions between the collagen–alginate bioink and
human bronchial epithelial cells and pave the way for future respiratory tissue studies.
Future research should include the characterization of the synthesized material (hydrogel)
and 3D-printed constructs.
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