Dual and Multi-Target Cone-Beam X-ray Luminescence Computed Tomography Based on the DeepCB-XLCT Network
Abstract
:1. Introduction
2. Methods
2.1. Conventional Forward Model and Inverse Problem of CB-XLCT
2.2. Deep Neural Network for CB-XLCT
2.3. Generation and Preparation of Training Data
2.4. Optimization Training Procedure of DeepCB-XLCT
3. Experimental Design
3.1. Numerical Simulations Setup
3.2. Phantom Experiments Setup
3.3. Quantitative Evaluation
4. Results
4.1. Numerical Simulations
4.1.1. Resolution Experiment
4.1.2. Robustness Experiment in Different Noise Levels and the Ablation Experiment
4.1.3. Multi-Target Experiment
4.2. Phantom Experiments
4.3. In Vivo Experiments and Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carpenter, C.; Sun, C.; Pratx, G.; Rao, R.; Xing, L. Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions. Med. Phys. 2010, 37, 4011–4018. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ruan, J.; Rong, J.; Hao, W.; Li, W.; Li, R.; Zhan, Y.; Lu, H. Cone-beam X-ray luminescence computed tomography based on MLEM with adaptive FISTA initial image. Comput. Methods Programs Biomed. 2022, 229, 107265. [Google Scholar] [CrossRef]
- Zhang, H.; Hai, L.; Kou, J.; Hou, Y.; He, X.; Zhou, M.; Geng, G. OPK_SNCA: Optimized prior knowledge via sparse non-convex approach for cone-beam X-ray luminescence computed tomography imaging. Comput. Methods Programs Biomed. 2022, 215, 106645. [Google Scholar] [CrossRef]
- Lun, M.C.; Arifuzzaman, M.; Ranasinghe, M.; Bhattacharya, S.; Anker, J.N.; Wang, G.; Li, C. Focused x-ray luminescence imaging system for small animals based on a rotary gantry. J. Biomed. Opt. 2021, 26, 036004. [Google Scholar] [CrossRef]
- Liu, T.; Rong, J.; Gao, P.; Pu, H.; Zhang, W.; Zhang, X.; Liang, Z.; Lu, H. Regularized reconstruction based on joint L 1 and total variation for sparse-view cone-beam X-ray luminescence computed tomography. Biomed. Opt. Express 2019, 10, 1–17. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, X.; Zhou, M.; Geng, G.; He, X. Adaptive shrinking reconstruction framework for cone-beam X-ray luminescence computed tomography. Biomed. Opt. Express 2020, 11, 3717–3732. [Google Scholar] [CrossRef]
- Pei, P.; Chen, Y.; Sun, C.; Fan, Y.; Yang, Y.; Liu, X.; Lu, L.; Zhao, M.; Zhang, H.; Zhao, D.; et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 2021, 16, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Chen, Z.; Chen, Q.; Yang, H. Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics. Acc. Chem. Res. 2022, 56, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhu, S.; Yi, H.; Zhang, X.; Chen, D.; Liang, J.; Tian, J. Cone beam x-ray luminescence computed tomography: A feasibility study. Med. Phys. 2013, 40, 031111. [Google Scholar] [CrossRef]
- Liu, X.; Liao, Q.; Wang, H. In vivo x-ray luminescence tomographic imaging with single-view data. Opt. Lett. 2013, 38, 4530–4533. [Google Scholar] [CrossRef]
- Chen, D.; Meng, F.; Zhao, F.; Xu, C. Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals. Bio. Med. Res. Int. 2016, 2016, 6450124. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Rong, J.; Gao, P.; Zhang, W.; Liu, W.; Zhang, Y.; Lu, H. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage. J. Biomed. Opt. 2018, 23, 026006. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, H.; Yu, J.; He, X.; He, X.; Song, X. X-ray Luminescence Computed Tomography Using a Hybrid Proton Propagation Model and Lasso-LSQR Algorithm. J. Biophotonics 2021, 14, e202100089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, F.; Liu, J.; Luo, J.; Xie, Y.; Bai, J.; Xing, L. Cone beam x-ray luminescence computed tomography based on Bayesian method. IEEE Trans. Med. Imaging 2017, 36, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, H.; Xu, M.; Nie, S.; Lu, H. A wavelet-based single-view reconstruction approach for cone beam x-ray luminescence tomography imaging. Biomed. Opt. Express 2014, 5, 3848–3858. [Google Scholar] [CrossRef]
- Gao, P.; Rong, J.; Liu, T.; Zhang, W.; Lu, H. Limited view cone-beam x-ray luminescence tomography based on depth compensation and group sparsity prior. J. Biomed. Opt. 2020, 25, 016004. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, S.; Cao, X.; Zhao, F.; Liang, J. X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method. Biomed. Opt. Express 2015, 6, 2649–2663. [Google Scholar] [CrossRef]
- Li, H.; Yang, X.; Yang, S.; Wang, D.; Jeon, G. Transformer With Double Enhancement for Low-Dose CT Denoising. IEEE J. Biomed. Health Inform. 2022, 27, 4660–4671. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, X.; Liu, W.; Li, L.C.; Ma, J.; Guo, L. Texture-aware dual domain mapping model for low-dose CT reconstruction. Med. Phys. 2022, 49, 3860–3873. [Google Scholar] [CrossRef]
- Wang, G.; Ye, J.C.; Man, B.D. Deep learning for tomographic image reconstruction. Nat. Mach. Intell. 2020, 2, 737–748. [Google Scholar] [CrossRef]
- Shan, H.; Zhang, Y.; Yang, Q.; Kruger, U.; Kalra, M.K.; Sun, L.; Cong, W.; Wang, G. 3D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning from a 2D Trained Network. IEEE Trans. Med. Imaging 2018, 37, 1522. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, K.; An, Y.; Jiang, S.; Meng, H.; Tian, J. Nonmodel-based bioluminescence tomography using a machine-learning reconstruction strategy. Optica 2018, 11, 1451–1454. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, X.; Zhang, P.; Song, F.; Zhang, J.; Zhang, L.; Zhang, G. Self-training Strategy based on Finite Element Method for Adaptive Bioluminescence Tomography Reconstruction. IEEE Trans. Med. Imaging 2022, 41, 2629–2643. [Google Scholar] [CrossRef]
- Zhang, P.; Fan, G.; Xing, T.; Song, F.; Zhang, G. UHR-DeepFMT: Ultra-High Spatial Resolution Reconstruction of Fluorescence Molecular Tomography Based on 3-D Fusion Dual-Sampling Deep Neural Network. IEEE Trans. Med. Imaging 2021, 40, 3217–3228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ma, C.; Song, F.; Zhang, T.; Sun, Y.; Feng, Y.; He, Y.; Liu, F.; Wang, D.; Zhang, G. D2-RecST: Dual-domain Joint Reconstruction Strategy for Fluorescence Molecular Tomography Based on Image Domain and Perception Domain. Comput. Methods Programs Biomed. 2022, 229, 107293. [Google Scholar] [CrossRef]
- Gao, P.; Pu, H.; Rong, J.; Zhang, W.; Liu, T.; Liu, W.; Zhang, Y.; Lu, H. Resolving adjacent nanophosphors of different concentrations by excitation-based cone-beam X-ray luminescence tomography. Biomed. Opt. Express 2017, 8, 3952–3965. [Google Scholar] [CrossRef]
- Carpenter, C.; Pratx, G.; Sun, C.; Xing, L. Limited-angle x-ray luminescence tomography: Methodology and feasibility study. Phys. Med. Biol. 2011, 56, 3487. [Google Scholar] [CrossRef]
- Schweiger, M.; Arridge, S.; Hiraoka, M.; Delpy, D. The finite element method for the propagation of light in scattering media: Boundary and source conditions. Med. Phys. 1995, 22, 1779–1792. [Google Scholar] [CrossRef]
- Lv, Y.; Tian, J.; Cong, W.; Wang, G.; Luo, J.; Yang, W.; Li, H. A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt. Express 2006, 14, 8211–8223. [Google Scholar] [CrossRef]
- Shi, H.; Wang, L.; Zheng, N.; Hua, G.; Tang, W. Loss functions for pose guided person image generation. Pattern Recognit. 2022, 122, 108351. [Google Scholar] [CrossRef]
- Tsui, B.M.W.; Lalush, D.S. A generalized Gibbs prior for maximum a posteriori reconstruction in SPECT. Phys. Med. Biol. 1993, 38, 729–741. [Google Scholar]
- Herman, G.T.; De Pierro, A.R.; Gai, N. On methods for maximum a posteriori image reconstruction with a normal prior. J. Vis. Commun. Image Represent. 1992, 3, 316–324. [Google Scholar] [CrossRef]
- Gao, P.; Rong, J.; Pu, H.; Liu, T.; Zhang, W.; Zhang, X.; Lu, H. Sparse view cone beam X-ray luminescence tomography based on truncated singular value decomposition. Opt. Express 2018, 26, 23233–23250. [Google Scholar] [CrossRef]
- Dong, D.; Zhu, S.; Qin, C.; Kumar, V.; Stein, J.V.; Oehler, S.; Savakis, C.; Tian, J.; Ripoll, J. Automated recovery of the center of rotation in optical projection tomography in the presence of scattering. IEEE J. Biomed. Health Inform. 2013, 17, 198–204. [Google Scholar] [CrossRef]
- Zhu, S.; Tian, J.; Yan, G.; Qin, C.; Feng, J. Cone beam micro-CT system for small animal imaging and performance evaluation. J. Biomed. Imaging 2009, 2009, 16. [Google Scholar] [CrossRef] [PubMed]
Methods | 2 mm | 1.5 mm | 1.0 mm | |||
---|---|---|---|---|---|---|
CNR | DICE | CNR | DICE | CNR | DICE | |
ADFISTA | 2.47 | 0.44 | 2.58 | 0.41 | 2.66 | 0.42 |
MAP | 2.83 | 0.38 | 3.01 | 0.37 | 3.16 | 0.38 |
T-FISTA | 1.06 | 0.26 | 2.39 | 0.47 | 2.31 | 0.45 |
ADMLEM | 2.19 | 0.44 | 2.39 | 0.46 | 2.56 | 0.48 |
Proposed method | 4.32 | 0.89 | 4.69 | 0.97 | 4.49 | 0.96 |
Noise Level | 2.0 mm | 1.5 mm | 1.0 mm | |||
---|---|---|---|---|---|---|
CNR | DICE | CNR | DICE | CNR | DICE | |
30 dB | 4.32 | 0.89 | 4.69 | 0.97 | 4.49 | 0.96 |
25 dB | 4.08 | 0.81 | 4.49 | 0.95 | 3.94 | 0.38 |
20 dB | 3.60 | 0.78 | 4.04 | 0.90 | 3.76 | 0.45 |
15 dB | 2.93 | 0.69 | 3.39 | 0.80 | 3.24 | 0.81 |
Methods | 2.0 mm | 1.5 mm | 1.0 mm | |||
---|---|---|---|---|---|---|
CNR | DICE | CNR | DICE | CNR | DICE | |
Without skip connection and ROILoss | 1.99 | 0.47 | 2.19 | 0.58 | 2.20 | 0.57 |
Without skip connection | 4.05 | 0.86 | 4.47 | 0.96 | 4.19 | 0.94 |
Without ROILoss | 3.31 | 0.85 | 3.69 | 0.90 | 3.55 | 0.91 |
Proposed method | 4.32 | 0.89 | 4.69 | 0.97 | 4.49 | 0.96 |
Methods | 2.3 mm | 1.7 mm | 1.0 mm | |||
---|---|---|---|---|---|---|
CNR | DICE | CNR | DICE | CNR | DICE | |
ADFISTA | 3.94 | 0.56 | 4.03 | 0.48 | 4.76 | 0.41 |
MAP | 3.62 | 0.49 | 4.88 | 0.56 | 4.36 | 0.45 |
T-FISTA | 3.41 | 0.57 | 7.64 | 0.73 | 3.86 | 0.53 |
ADMLEM | 7.64 | 0.75 | 7.92 | 0.78 | 4.86 | 0.58 |
Proposed method | 7.57 | 0.56 | 11.09 | 0.79 | 12.06 | 0.71 |
ADFISTA | MAP | T-FISTA | ADMLEM | Proposed Method | |
---|---|---|---|---|---|
CNR | 3.15 | 1.61 | 2.55 | 3.63 | 4.33 |
DICE | 0.32 | 0.16 | 0.24 | 0.35 | 0.60 |
Methods | ADFISTA | MAP | T-FISTA | ADMLEM | Proposed Method |
---|---|---|---|---|---|
Reconstruction time/s | 14.9 | 48.1 | 48.6 | 15.8 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Huang, S.; Li, R.; Gao, P.; Li, W.; Lu, H.; Song, Y.; Rong, J. Dual and Multi-Target Cone-Beam X-ray Luminescence Computed Tomography Based on the DeepCB-XLCT Network. Bioengineering 2024, 11, 874. https://doi.org/10.3390/bioengineering11090874
Liu T, Huang S, Li R, Gao P, Li W, Lu H, Song Y, Rong J. Dual and Multi-Target Cone-Beam X-ray Luminescence Computed Tomography Based on the DeepCB-XLCT Network. Bioengineering. 2024; 11(9):874. https://doi.org/10.3390/bioengineering11090874
Chicago/Turabian StyleLiu, Tianshuai, Shien Huang, Ruijing Li, Peng Gao, Wangyang Li, Hongbing Lu, Yonghong Song, and Junyan Rong. 2024. "Dual and Multi-Target Cone-Beam X-ray Luminescence Computed Tomography Based on the DeepCB-XLCT Network" Bioengineering 11, no. 9: 874. https://doi.org/10.3390/bioengineering11090874
APA StyleLiu, T., Huang, S., Li, R., Gao, P., Li, W., Lu, H., Song, Y., & Rong, J. (2024). Dual and Multi-Target Cone-Beam X-ray Luminescence Computed Tomography Based on the DeepCB-XLCT Network. Bioengineering, 11(9), 874. https://doi.org/10.3390/bioengineering11090874