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Abstract: The most prevalent form of bladder cancer is urothelial carcinoma, characterized by a high
recurrence rate and substantial lifetime treatment costs for patients. Grading is a prime factor for
patient risk stratification, although it suffers from inconsistencies and variations among pathologists.
Moreover, absence of annotations in medical imaging renders it difficult to train deep learning
models. To address these challenges, we introduce a pipeline designed for bladder cancer grading
using histological slides. First, it extracts urothelium tissue tiles at different magnification levels,
employing a convolutional neural network for processing for feature extraction. Then, it engages
in the slide-level prediction process. It employs a nested multiple-instance learning approach with
attention to predict the grade. To distinguish different levels of malignancy within specific regions of
the slide, we include the origins of the tiles in our analysis. The attention scores at region level are
shown to correlate with verified high-grade regions, giving some explainability to the model. Clinical
evaluations demonstrate that our model consistently outperforms previous state-of-the-art methods,
achieving an F1 score of 0.85.

Keywords: computational pathology; deep learning; grading; multiscale; urothelial carcinoma;
weakly supervised learning

1. Introduction

Bladder cancer, a prevalent urological malignancy, poses significant clinical challenges,
in terms of both diagnosis and prognosis [1]. Non-muscle-invasive bladder cancer (NMIBC)
accounts for approximately 75% of the newly diagnosed cases of urothelial carcinoma.
NMIBC is particularly known for its variable outcomes, necessitating accurate and con-
sistent grading for optimal patient management [2]. The 2022 edition of the European
Association of Urology guidelines on NMIBC recommends a stratification of patients into
risk groups based on the risk of progression to muscle-invasive disease [3]. Grade, stage,
and various other factors contribute to the risk. Precise risk assessment is vital in the
management of NMIBC, since treatment strategies do not only rely on the presence of
muscle invasion.

Grading is based on assessment of the cellular morphology abnormalities of urothelial
tissue. In 2004, the WHO introduced a grading classification system (WHO04) for NMIBC,
based on histological features. WHO04 encompasses three categories: papillary urothe-
lial neoplasm of low malignant potential (PUNLMP); non-invasive papillary carcinoma
low-grade (LG); and non-invasive papillary carcinoma high-grade (HG), ranging from
lower to higher malignancy, respectively [4]. HG is related to lower differentiation, loss of
polarity, and pleomorphic nuclei, among others. The intricate evaluation of heterogeneous
scenarios contributes to significant inter- and intra-observer variability. Disparities poten-
tially lead to misclassification and, consequently, to inappropriate treatment decisions [5].

Bioengineering 2024, 11, 909. https://doi.org/10.3390/bioengineering11090909 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering11090909
https://doi.org/10.3390/bioengineering11090909
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0009-0002-0285-6489
https://orcid.org/0000-0002-6721-4877
https://orcid.org/0000-0003-4487-7018
https://orcid.org/0000-0002-7760-5396
https://orcid.org/0000-0002-8970-0067
https://doi.org/10.3390/bioengineering11090909
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering11090909?type=check_update&version=1


Bioengineering 2024, 11, 909 2 of 15

The WHO04 grading system was subsequently retained in the updated 2016/2022 WHO
classifications [6]. However, according to several multi-institutional analyses of individ-
ual patient data, the proportion of tumors classified as PUNLMP (WHO 2004/2016) has
markedly decreased to very low levels in the last decade. This trend has resulted in the
suggestion to reassess PUNLMP tumors as LG [7,8]. Therefore, the upcoming grading
system will reasonably undergo a modification, shifting towards the inclusion of only LG
and HG categories. In recent years, the integration of deep learning techniques within the
field of computational pathology (CPATH) has offered promising avenues for enhancing
the precision of computer-aided diagnosis (CAD) systems and elucidating discrepancies
among pathologists [9,10]. Consequently, the synergy between histological expertise and
CAD technologies is vital for accurate grading assessments.

CPATH is the field of pathology that leverages the potential of CAD systems to thor-
oughly analyze high-resolution digital images known as whole slide images (WSIs) for
diverse diagnostic and prognostic purposes [11]. WSIs are produced by slide scanners and
pre-stored at different magnification levels, emulating the functionality of physical micro-
scopes. Lower magnification is suitable for tissue-level morphology examination, while
higher magnification is suitable for cell-level scrutiny [12]. WSIs are characterized by their
substantial size, which can introduce adversarial noise. Bladder cancer WSIs present unique
challenges, due to their disorganized nature and the presence of diagnostically non-relevant
tissue. These slides often include artifacts, such as cauterized or stretched tissue [13]. More-
over, tissue such as blood, muscle, and stroma are less informative for grading a tumor.
Therefore, the absence of annotations presents a significant challenge for identifying regions
of interest (ROIs) [9]. It is crucial to distinguish between region-based labels (e.g., tissue
type, grade) and WSI-based labels, including follow-up information and overall patient
grade. Grade exemplifies a label that encompasses both perspectives [14,15]. While clinical
reports assign the worst grade observed to a patient, a WSI may exhibit diverse urothelium
regions with normal, LG, and HG. This dual nature underscores the complexity of label
interpretation when considering both the medical, WSI-focused perspective and the more
technical perspective involving regional data analysis and processing.

CPATH is in a transformative era, aiming to reshape the landscape of digital pathology
as we know it [16]. Among the diverse practices in the field, imaging methodologies rooted
in convolutional neural networks (CNNs) have emerged as the foundation of feature ex-
traction from histological images [11]. These deep learning networks possess a remarkable
capacity to automatically discern morphological and cellular patterns within WSIs [17–22].
Ultimately, CNNs contribute to more precise and timely clinical decisions. However, train-
ing deep learning models in CPATH presents challenges when only WSI-level labels are
available, lacking region-based annotations [9,23–26]. To address these, weakly supervised
learning techniques, like attention-based methods and multiple-instance learning (MIL),
are employed. However, MIL methods can be susceptible to individual instances domi-
nating the weighted aggregation of the WSI representation [27–29]. In the context of WSIs,
the tissue is distributed across the slide, for which reason the regions typically present
similar features and pathologists are able to pinpoint ROIs with crucial information [30].
Specifically, while grading, situations may arise where multiple instances in close proximity
exhibit HG characteristics, while other regions may concurrently display LG attributes.
As a result, constraining instances to specific regions enhances our understanding of the
diverse features within WSIs. Consequently, a conventional MIL architecture approach
may not be appropriate, because there is a susceptibility to information leakage between
regions. A model accommodating the nested structure of WSIs—wherein tissues are part
of a region, and regions, in turn, belong to a WSI—may more effectively capture the clinical
WSI-level grading label [31–33].

In this study, we introduce a novel pipeline for grading NMIBC using histological
slides, referred to as nested multiple grading (NMGrad). The proposed solution starts by
tissue segmentation of the WSI, separating urothelium from other tissue types. The next
step categorizes extracted tiles of urothelium areas into location-dependent regions for
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predicting the patient’s WHO04 grade. We implemented a weakly supervised learning
framework, using attention mechanisms and a nested aggregation architecture for ROI
differentiation. Our method offers an innovative approach for generating diagnostic
suggestions, with generated heatmaps for highlighting tiles and ROIs independently.

2. Related Work

Numerous studies in the domain of computational pathology for bladder cancer diag-
nostics have emerged in recent years [34]. In Wetteland et al. [35], a pipeline for grading
NMIBC was introduced. This pipeline identifies relevant areas in the WSIs and predicts
the cancer grade by considering individual tile predictions and applying a decision thresh-
old to determine the overall patient prediction. Their results demonstrated promising
performance, with potential benefits for patient care. In Zheng et al. [36], the authors
focused on the development of deep learning-based models for bladder cancer diagnosis
and predicting overall survival in muscle-invasive bladder cancer patients. They intro-
duced two deep learning models for diagnosis and prognosis, respectively. They showed
that their presented algorithm outperformed junior pathologists. In Jansen et al. [37],
the authors proposed a fully automated detection-and-grading network based on deep
learning, to enhance NMIBC grading reproducibility. The study employed a U-Net-based
segmentation network to automatically detect urothelium, followed by a VGG16 CNN
network for classification. Their findings demonstrated that the automated classification
achieved moderate agreement with consensus and individual grading from a group of
three senior uropathologists. Spyridonos et al. [38] investigated the effectiveness of support
vector machines and probabilistic neural networks for urinary bladder tumor grading.
The results indicated that both SVM and PNN models achieve a relatively high overall
accuracy, with nuclear size and chromatin cluster patterns playing key roles in optimizing
classification performance.

Zhang et al. [39] addressed a common limitation of interpretability in CAD methods.
To tackle this, they introduced MDNet, a novel approach that established a direct multi-
modal mapping between medical images and diagnostic reports. This framework consists
of an image model and a language model. Through experiments on pathology bladder can-
cer images and diagnostic reports, MDNet demonstrated superior performance compared
to comparative baselines. Zhang et al. [40] proposed a method that leverages deep learning
to automate the diagnostic reasoning process through interpretable predictions. Using a
dataset of NMIBC WSIs, the study demonstrated that their method achieves diagnostic
performance comparable to that of 17 uropathologists.

Two critical challenges we have identified include summarizing information from local
image features into a WSI representation and the scarcity of annotated datasets. Effectively
translating detailed local information to the WSI level is complex, particularly in tasks like
grading NMIBC. Moreover, the limited availability of well-annotated datasets hinders the
development and evaluation of robust models. To tackle these issues, weakly supervised
methods have emerged as a standout tool in CPATH [9]. While weakly supervised methods
are widespread, some studies still rely on annotations and supervised learning. However,
there is a growing consensus for the future of CPATH to predominantly embrace weakly
supervised approaches. This shift is being driven by the impracticality of obtaining detailed
annotations for large datasets covering various cancers and tasks. Among the various
weakly supervised methods, attention-based MIL (AbMIL), a popular instance-aggregation
method, exploits attention mechanisms, in order to mitigate the uncertainty from indi-
vidual instances and enhance interpretability [41,42]. AbMIL bridges the gap between
limited supervision and the spatial details necessary for accurate analysis and explainability.
An evolution of MIL model architectures relies on the arrangement of the data within bags,
where instances are further subdivided into finer groups. This concept is referred to as
nesting [31,32]. Nested architectures preserve a sense of localization or categorization by
selectively processing data instances within individual subgroups. Subsequently, they
aggregate summarized information from the subgroups into a final bag representation.
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In our work, we aimed to bridge the gap between non-annotated datasets, weakly
supervised methods, and the intrinsic categorization of WSI data. Therefore, we lever-
aged the nested MIL with the attention mechanisms (NMIA) model architecture that we
proposed in Fuster et al. [33], for accurate and interpretable NMIBC grading. Finally,
in order to overcome the lack of annotations for defining the tissue of interest, a tissue
segmentation algorithm TRI-25× -100× -400× was proposed by our research group in [43].
More recent works from our research group on tissue segmentation have found adoption
within the scientific literature [44,45]. The utilization of this segmentation algorithm offers
the opportunity to extract tiles specifically from the urothelium, contributing to a refined
and targeted extraction process.

3. Data Material

The dataset comprised a total of 300 digital whole-slide images (WSIs) derived from
300 patients diagnosed with NMIBC, from the Department of Pathology, Stavanger Uni-
versity Hospital (SUH) [14,46]. The glass slides were digitized using a Leica SCN400 slide
scanner and saved in the vendor-specific SCN file format. Collected over the period span-
ning 2002 to 2011, this dataset encompassed all risk group cases of non-muscle-invasive
bladder cancers. The biopsies were processed through formalin fixation and paraffin
embedding, and, subsequently, 4 µm thick sections were prepared and stained using hema-
toxylin, eosin, and saffron (HES). Furthermore, all WSIs underwent meticulous manual
quality checks, ensuring the inclusion of only high-quality slides with minimal or no blur.
Due to the cauterization process used in the removal of NMIBC, some slides exhibited
areas with burned and damaged tissues. All WSIs originated from the same laboratory,
resulting in relatively consistent staining color across the dataset.

All WSIs were graded by an expert uropathologist, in accordance with the WHO04
classification system, as either LG or HG, thus providing slide-level diagnostic information.
However, the dataset lacked region-based annotations pinpointing the precise areas of
LG or HG regions within the WSI. Consequently, the dataset was considered weakly
labeled. For WSIs labeled as LG, at least one LG region was expected, with the possibility
of presenting non-cancerous tissue in other regions. As for HG slides, at least one region
should display HG tissue, while other regions may exhibit an LG appearance or non-
cancerous tissue. Given the absence of alternative gold standards, we were compelled
to continue utilizing a grading assessment that might have limitations for training and
evaluating our algorithms. The dataset employed in this study was divided into three
subsets: 220 WSI/patients for training, 30 for validation, and 50 for testing. The split
employed ensured that each subset maintained the same proportional representation of
diagnostic outcomes. This stratification encompassed factors such as WHO04 grading,
cancer stage, recurrence, and disease progression, to best mirror the diversity of the original
data material. The distribution of LG and HG WSIs within each dataset is detailed in
Table 1, for reference.

Within a subset of the test set, denoted as TestANNO ∈ Test, 14 WSIs contained ei-
ther one or two annotated regions of confirmed LG or HG tissue, verified by an expert
uropathologist. It is noteworthy that not all regions were annotated. The labels of these
regions corresponded to the associated weak label of the WSI.

Table 1. Overview of the distribution of WSIs within each set, in terms of the WHO04 grading system 1.

Subset Low-Grade High-Grade

Train 124 (0) 96 (0)
Validation 17 (0) 13 (0)

Test 28 (7) 22 (7)
1 The number between parenthesis corresponds to slides containing some annotations giving region-based labels.
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4. Methods

We propose NMGrad, a pipeline that begins with a tissue segmentation algorithm
for extracting urothelium tissue. Subsequently, the urothelium is divided into localized
regions. Thereafter, we employ a weakly supervised learning method to predict tumor
grade from the segmented urothelium regions. We exploit the sense of region locations by
adopting a nested architecture with attention, NMIA [33]. The rationale behind employing
this structured data arrangement analysis is to identify relevant instances and regions within the
WSI. The attention mechanism and the nested bags/regions also contribute to a more precise
and insightful analysis of the data. An overview of NMGrad is visualized in Figure 1:
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Figure 1. NMGrad pipeline. Initially, we apply a tissue segmentation algorithm for ROI extraction.
Then, we pinpoint diagnostically significant urothelium areas within WSIs. Subsequently, we split the
urothelium mask into regions, based on proximity and size, and extract tile triplets. In a hierarchical
fashion, we further transform these triplets within their corresponding regions into region feature
embeddings, using an attention-based aggregation method. All the region representations are then
consolidated into a comprehensive WSI-level representation through a weight-independent attention
module. Finally, this WSI feature embedding is input into the WHO04 grading classifier, in order to
produce accurate WSI grade predictions.
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4.1. Automatic Tissue Segmentation and Region Definition

We utilize the tissue segmentation algorithm introduced by Wetteland et al. [43] to
automatically generate tissue type masks, facilitating the subsequent extraction of tiles.
We define triplets T of tissue, which consist of a set of three tiles at various magnification
levels, namely 25×, 100×, and 400×. An example is shown in Figure 2. We use a tile
size of 128 × 128 for all magnification levels. Triplets are formed to maintain consistency,
ensuring that the center pixel in every tile accurately represents the same physical point.
The tissue segmentation algorithm works at tile level and classifies all triplets T in the
WSI as y ∈ Y = {urothelium, lamina propria, muscle, blood, damage, background}. As grading
relies on urothelium alone, we utilize the urothelium mask for defining valid areas for tile
extraction, as described in [47]. In this work, various magnifications are explored for
defining the model’s input, either using mono-scale MONO (400×), di-scale DI (400×,
100×) or tri-scale TRI (400×, 100×, 25×). We employ 400× magnification to establish a
tight grid of tiles for data extraction purposes. These sets of tiles are later fed to the grading
models, where each magnification tile is processed by its respective weight-independent
CNN. To preserve the sense of location within the image, we define regions. This results
in the following stratified division of data: all urothelium in the WSI, scattered regions of
urothelium, and finally, individual tiles of urothelium.

Triplets 𝓣

25x

Low Grade

High Grade

100x 400x

Figure 2. We obtain sets comprised of three tiles at different magnification levels, named triplets
T , enabling detailed examination. Tile triplets demonstrate regions associated with low- and high-
grade features.

Region Definition

For defining regions out of the extracted urothelium tiles, we define blobs of tiles
UROBLOB ⊆ URO. UROBLOB is formed when tiles are 8-connected, and this joint set of tiles
is the representation of a region UROBLOB = {T1, T2 . . .}. A region is eligible for inclusion
if the number of tiles NB is higher than the threshold number TLOWER. Any blob with
NB < TLOWER tiles is discarded, along with the tiles within. As NMIBC WSI can contain
large tissue bundles, resulting in sizable blobs, we also define an upper-limit threshold
TUPPER. For blobs where NB ≥ TUPPER, we split the region into several sub-regions for
more detailed analysis. We apply KMeans clustering over the coordinates of the tiles x, y
within the blob for location sense, defining the number of clusters as NC = ⌈NB/TUPPER⌉.
This results in joint regions within a bundle of tissue of consistent size, as observed in
regions 5–8 in Figure 3.
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Figure 3. Region definition. Urothelial tissue within a WSI is eligible for tile extraction. Blobs of tiles
are formed, and blobs smaller than a threshold TLOWER are discarded. From the remaining blobs,
any smaller than TUPPER are kept and defined as a region. For blobs bigger than TUPPER, the blob
is subdivided into smaller pieces, using the location of the individual tiles within and KMeans
clustering. The obtained clusters are designated as regions.

4.2. Multiple-Instance Learning in a WSI Context

Multiple instance learning (MIL) is a weakly supervised learning method where
unlabeled instances are grouped into bags with known labels [27,28]. A dataset X ,Y ={
(Xi, yi), ∀i = 1, . . . , N

}
is formed of pairs of sample sets X and their corresponding labels

y, where i denotes a bag index. In the context of WSI, the bag can be one patient or one
WSI or one region. In a conventional MIL data arrangement, we consider the bag X to be
one WSI consisting of instances xl :

X = {xl , ∀l = 1, . . . , L} (1)

where L is the number of instances in the bag. In our study, x refers to individual tiles in
a set of extracted tiles from a patient slide X. A feature extractor Gθ : X → H transforms
image tiles, xl , into low-dimensional feature embeddings, hl . At this point, the bag structure
previously formed remains intact, as instances have been simply transformed. Given a
label y for a WSI, the training objective of the model is to predict the grade observed in
the WSI. However, to deduce the specific region(s) within a WSI that leads to the patient’s
diagnosis of either LG or HG is of the utmost importance. This entails the model’s ability
to discern and highlight the critical areas within the WSI that play a pivotal role in the
diagnosis. In order to accomplish this goal, we adopted attention-based multiple-instance
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learning (AbMIL) as our MIL framework, using attention-based aggregation, as shown in
Figure 1. An attention score ai for a feature embedding hi can be calculated as

ai =
exp{w⊤(tanh(Vh⊤

i )⊙ sigm(Uh⊤
i ))}

∑L
l=1 exp{w⊤(tanh(Vh⊤

l )⊙ sigm(Uh⊤
l ))}

(2)

where w ∈ RL×1, V ∈ RL×M, and U ∈ RL×M are trainable parameters and ⊙ is an element-
wise multiplication. Furthermore, the hyperbolic tangent tanh(·) and sigmoid sigm(·)
are included, to introduce non-linearity for learning complex applications. The benefit of
attention modules extends beyond interpretability for understanding the model’s decision-
making process, as it also grants enhanced predictive capabilities by prioritizing salient
features. This is because attention scores directly influence the forward propagation of the
model, allowing it to focus on the most relevant and informative regions within the data.
Once the attention scores A are obtained, we obtain the patient prediction ŷ, using a patient
classifier Ψρ, as

ŷ = Ψρ(Ha) = Ψρ(A · H) = Ψρ(A · Gθ(X)) (3)

Nested Multiple-Instance Architecture

An evolution of the conventional AbMIL architecture defines levels of bags within
bags where only the innermost bags contain instances. This is referred to as nested multiple
instance with attention (NMIA) [33]. A bag-of-bags for a WSI HWSI contains a set of inner
bags, or regions, HREG,k:

HWSI =
{

HREG,k, ∀k = 1, . . . , K
}

(4)

where the number of inner bags K varies between different WSI. Ultimately, HREG,k contains
instance-level representations hTILE,l of tiles located within the physical region. This serves
to further stratify into clusters or regions and to accurately represent the arrangement of
the scattered data, where tiles belong to particular tissue areas, and the areas themselves
belong to the WSI:

hREG = ATILE · HTILE = ATILE · Gθ(X) (5)

Finally, the ultimate WSI representation hWSI is fed into the classifier for obtaining
the grade prediction, leveraging the region representations HREG and the attention scores
AREG obtained from those same representations:

ŷ = Ψρ(hWSI) = Ψρ(AREG · HREG) (6)

5. Experiments

Within the scope of our experimental investigation, we systematically assessed and
compared the impact of diverse magnification levels and their combinations, namely
MONO, DI, and TRI-scale models. We further investigated the impact of several weakly
supervised aggregation techniques in the performance of our deep learning model. These
aggregation techniques vary in their ability to distill valuable diagnostic insights from the
data, namely, mean, max, and attention-based. We put special emphasis on the comparison
between a standard AbMIL architecture and the nested model proposed in NMGrad.
Finally, we compared our solution to current state-of-the-art methods. The code is available
at https://github.com/Biomedical-Data-Analysis-Laboratory/GradeMIL (accessed on
3 September 2024).

We list the details of the design choice of the models during training. VGG16 was
used as the CNN backbone, with ImageNet pre-trained weights [48]. In our preliminary
experiments, we explored various architectures and found that VGG16 exhibited favorable
performance across multiple tasks on NMIBC WSIs. Stochastic gradient descent (SGD) was
set as the optimizer, with a learning rate of 1 × 10−4, a batch size of 128, and a total of
200 epochs, with 30 epochs for early stopping, based on the AUC score on the validation set.

https://github.com/Biomedical-Data-Analysis-Laboratory/GradeMIL


Bioengineering 2024, 11, 909 9 of 15

A total number of 5000 tiles per WSIs were pre-emptively randomly sampled, to be further
sub-sampled during training. Focal Tversky loss (FTL) was employed [49]. The Tversky
index (TI) leverages false predictions, emphasizing on recall, in case of large class imbalance,
tuning parameters α and β. TI is defined as

TIc(ŷ, y) =
1 + ∑N

i=1 ŷi,cyi,c + ϵ

1 + ∑N
i=1 ŷi,cyi,c + α ∑N

i=1 ŷi,ĉyi,c + β ∑N
i=1 ŷi,cyi,ĉ + ϵ

(7)

where ŷi,ĉ = 1 − ŷi,c and yi,ĉ = 1 − yi,c are the probability that sample i is not of class c ∈ C;
ϵ is used for numerical stability, preventing zero division operations. FTL employs another
parameter γ for leveraging training examples hardship:

FTLc(ŷ, y) = ∑(1 − TIc(ŷ, y))1/γ (8)

6. Results and Discussion

The utilization of our proposed pipeline NMGrad using TRI-scale input emerged
as a standout performer, as shown in Table 2. TRI-scale models showcased the ability
to capture relevant patterns across different magnifications, substantially enhancing the
overall grading accuracy. Comparing the effects of scales on the model performance
shows a larger gap in performance between MONO and TRI models than structuring the
processing of data using NMGrad or a standard AbMIL architecture. Furthermore, our
exploration of aggregation techniques extended to mean and max aggregation methods,
which did not include in-built attention mechanisms and yielded less promising outcomes.
The absence of attention mechanisms rendered these techniques less effective in capturing
nuanced features, underscoring the significance of attention mechanisms.

Table 2. Test performance for various aggregation techniques in weakly supervised learning. We
provide the average of five runs, with the standard deviation shown in parentheses. The table
presents the different approaches employed in the field, including aggregation techniques that involve
considering spatial separation of the instances. We also explore the use of multiple magnification
levels, considering 400× as the foundation for all magnification analysis. We also show the results
from other bladder cancer grading works, although in other datasets.

Model Accuracy Precision Recall F1 Score κ AUC

AbMILMONO 0.68 (0.07) 0.71 (0.07) 0.68 (0.06) 0.67 (0.07) 0.36 (0.12) 0.81 (0.07)
AbMILDI 0.79 (0.09) 0.80 (0.10) 0.78 (0.09) 0.78 (0.09) 0.57 (0.18) 0.85 (0.13)
AbMILTRI 0.82 (0.07) 0.82 (0.07) 0.82 (0.07) 0.82 (0.07) 0.64 (0.14) 0.91 (0.04)
MEANTRI 0.81 (0.03) 0.83 (0.03) 0.80 (0.03) 0.80 (0.03) 0.61 (0.05) 0.92 (0.03)
MAXTRI 0.80 (0.06) 0.80 (0.06) 0.78 (0.06) 0.79 (0.07) 0.58 (0.13) 0.85 (0.06)

NMGradMONO 0.68 (0.09) 0.71 (0.08) 0.69 (0.08) 0.68 (0.09) 0.37 (0.16) 0.80 (0.06)
NMGradDI 0.83 (0.03) 0.85 (0.03) 0.82 (0.03) 0.82 (0.03) 0.65 (0.06) 0.91 (0.04)
NMGradTRI 0.86 (0.03) 0.87 (0.02) 0.85 (0.04) 0.85 (0.03) 0.71 (0.06) 0.94 (0.01)

Wetteland [35] 0.90 (-) 0.87 (-) 0.80 (-) 0.83 (-) - -
Jansen [37] 0.74 (-) - 0.71 (-) - 0.48 (0.14) -
Zhang [40] 0.95 (-) - - - - 0.95 (-)

NMIA architecture embedded in NMGrad, which employs attention mechanisms for
both tile and region aggregation, marked a substantial leap in performance in comparison
to mean and max aggregation. This strategy provided the strengths of attention-based
aggregation and ROI localization via a nested architecture. The incorporation of attention
mechanisms allowed the model to pinpoint and emphasize critical visual cues within WSIs
related to urothelial cell differentiation, ultimately resulting in a notable enhancement
in predictive accuracy for bladder cancer grading. Finally, in a direct comparison to the
previous best-performing model proposed by Wetteland [35], we implemented weakly
supervised learning in a naive manner, where all patches were assigned a weak label. Pre-
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dictions were made at the patch level, and the determination of WSI-level prediction relied
somewhat arbitrarily on the summation of patch predictions, neglecting consideration of
localized regions. Using our proposed solution NMGradTRI, the solution aligned more
closely with clinical expectations, such as the presence of one or more regions indicative
of HG if the WSI was classified as HG, rather than scattered patches. Furthermore, the
capacity of NMGradTRI to learn attention scores offered interpretability, as opposed to
relying on ad hoc rules for post-processing patches into a final prediction. Ultimately, we
obtained a slightly better F1 score, with a trade-off in accuracy. We also adhered to the
works of Jansen [37] and Zhang [40] for comparing the performance of state-of-the-art grad-
ing algorithms, although the results corresponding to their in-house cohorts were different
from ours. The development of our deep learning model NMGradTRI for predicting the
grading of bladder cancer represents a significant advancement in the realm of accurate
grading of bladder tumors.

In order to enhance the fidelity of binary decisions, we opted to introduce an uncer-
tainty spectrum, thereby introducing a third class. Given the output predictions of test set
WSIs, we defined the uncertainty spectrum as [µŷ(y=LG) + σŷ(y=LG), µŷ(y=HG) − σŷ(y=HG)].
A plot illustrating the concept and WSI predictions is shown in Figure 4. It was observed
that if we were to exclude predictions falling within the uncertainty spectrum then the over-
all F1 score increased to 0.89. This underscores the potential utility of skepticism regarding
non-confident predictions for robust clinical interpretation, which needs to be considered
when implementing an algorithm at the inference stage.

Figure 4. Plot displaying the WSI predictions of the test set, with green shading representing the LG
confidence interval, red for HG, and gray denoting the uncertainty interval. Additionally, a blue line
depicts the regression line fitting the predictions.

Due to the attention scores generated at the inference stage, we were able to visualize
a heatmap, as shown in Figure 5. NMGradTRI demonstrated effectiveness in correctly
assessing individual tiles and ROIs, despite being trained solely on patient-level weak
labels. We consulted the generated heatmaps with experienced pathologists for qualitative
analysis. The results on the annotated set of regions, TestANNO, exhibited competence
in discerning LG and HG regions, as shown in Table 3. Region attention scores were
considered for direct comparison to region prediction scores utilizing the classifier Ψρ, as
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the values for both scores were restrained between 0 and 1. These two scores were evaluated
individually against the annotated areas. It was corroborated that higher attention scores
were associated with HG areas in high-grade WSIs. However, the same did not apply for
low-grade. For low-grade WSIs, we observed a wide range of possibilities, where high
attention was spread across regions. Ideally, one would anticipate a direct correlation
between HG and elevated attention and, conversely, a correlation between LG and reduced
attention. However, this correlation was primarily observable in the positive class (HG),
aligning with the inherent design of MIL, which is tailored for identifying positive instances.
In contrast to attention, we observed a high degree of correspondence between the label of
annotated ROIs and the output region predictions.

LO
W

H
IG
H

-

-

0.96

0.200.24

0.49

Figure 5. Region-level attention score heatmaps. Example regions of annotations of low- and high-
grade ROIs annotated by a uropathologist are compared to the output attention provided by the
proposed model NMGrad, left-to-right, respectively. The choice of annotated ROIs corresponded to
the highest attention scores; red and blue correspond to low and high attention correspondingly. We
have included the WSI-level prediction score for reference.

Table 3. Region-level prediction and attention correspondence on annotated areas, using NMGradTRI.
We individually compared the degree of consensus of annotations with both the highest attributed
attention within the WSI and the output region prediction of the classifier Ψρ.

Output Accuracy Precision Recall F1 Score

Attention 0.76 0.81 0.69 0.75
Prediction 0.89 0.83 0.91 0.87

We further investigated the correlation between region attention scores and the out-
put region predictions, as displayed in Figure 6. We observed a generalized reciprocity
between low-grade having smaller attention scores and prediction outputs, and vice versa.
Moreover, the high-grade range of values was more limited to a lower range compared
to the low-grade. For instance, low-grade areas with predictions rounding zero showed
the broadest range of values. This observation aligns with the earlier statement, wherein
the positive class typically exhibited a more focused distribution of attention scores, pre-
dominantly linked with positive HG instances. In contrast, the negative class dispersed
attention across various regions within the WSI despite all presenting similar LG features.
In regards to misclassified WSIs, we noted that LG WSIs manifested both high attention
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and prediction scores, whereas HG slides displayed a broad range of values. When exam-
ining the regression lines of TP and FP, they exhibited similar trends, as did TN and FN,
respectively. Essentially, wrongly predicted WSIs exhibited characteristics contrary to their
assigned class.

LG

HG

TN

TP

FP

FN

Figure 6. Correlation between region attention scores and output prediction of region embeddings
on the test set of WSIs. Regions from accurately predicted WSIs (TN, TP) are denoted by squares,
while those from incorrectly predicted WSIs (FN, FP) are marked with crosses. A discernible pattern
emerges, where low attention scores align with diminished predictions and, conversely, higher
attention scores correlate with elevated predictions. Additionally, an observable trend indicates that
wrong predictions tend to manifest on the opposite end of the spectrum, with low-grade instances
concentrating high attention and prediction scores, and vice versa. The trend is represented with a
polynomial regression line (RL).

To augment the evaluation process, we integrated correlation calculations with follow-
up information, thereby ensuring a more thorough assessment of our model’s performance.
We employed the Cramér’s V correlation coefficient φc for calculating the intercorrelation
between grading and the event of recurrence and progression for the test set [50]. We
observed a lack of correlation between grading and recurrence for either the manual or
automatic grading, aligning with our expectations. However, for progression, NMGrad
exhibited a higher correlation than the uropathologist (0.32 vs. 0.26, respectively). In ac-
cordance with [51], a strong correlation between grading and progression was observed.
Notably, these correlations suggest that NMGrad’s grade may hold greater predictive value
for assessing the likelihood of progression in the context of NMIBC.

7. Conclusions

Accurate grading of NMIBC is paramount for patient risk stratification, but it has long
suffered from inconsistencies and variations among pathologists. Furthermore, the patho-
logical workload is increasing, as well as its expenses. In response to this challenge, we
have introduced the NMGrad pipeline, a pioneering approach in bladder cancer grading
using WSIs. NMGrad starts by using a tissue segmentation algorithm, finding areas of
urothelium in the slides. Thereafter, it leverages a nested AbMIL model architecture to
precisely identify diagnostically relevant regions within WSIs and collectively predict tu-
mor grade. Moreover, through a multiscale CNN model, NMGrad processes urothelium
tissue tiles at multiple magnification levels. We observed that in high-grade patients, at-
tention scores pinpointed specific ROIs, while in low-grade patients, attention was more
dispersed, deviating from the expected MIL pattern. Our clinical evaluations demonstrated
that NMGrad consistently outperformed previous state-of-the-art methods, achieving a
0.94 AUC score. This achievement represents a significant advancement in the field of
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bladder cancer diagnosis, with the potential to improve patient outcomes, reduce economic
burdens, and enhance the quality of care in the management of this challenging disease.
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