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Abstract: Oral cancer, also known as oral squamous cell carcinoma (OSCC), is one of the most
prevalent types of cancer and caused 177,757 deaths worldwide in 2020, as reported by the World
Health Organization. Early detection and identification of OSCC are highly correlated with survival
rates. Therefore, this study presents an automatic image-processing-based machine learning approach
for OSCC detection. Histopathological images were used to compute deep features using various
pretrained models. Based on the classification performance, the best features (ResNet-101 and
EfficientNet-b0) were merged using the canonical correlation feature fusion approach, resulting in an
enhanced classification performance. Additionally, the binary-improved Haris Hawks optimization
(b-IHHO) algorithm was used to eliminate redundant features and further enhance the classification
performance, leading to a high classification rate of 97.78% for OSCC. The b-IHHO trained the
k-nearest neighbors model with an average feature vector size of only 899. A comparison with other
wrapper-based feature selection approaches showed that the b-IHHO results were statistically more
stable, reliable, and significant (p < 0.01). Moreover, comparisons with those other state-of-the-art
(SOTA) approaches indicated that the b-IHHO model offered better results, suggesting that the
proposed framework may be applicable in clinical settings to aid doctors in OSCC detection.

Keywords: oral squamous cell carcinoma; machine learning; oral cancer; mouth cancer

1. Introduction

Mouth cancer, including oral squamous cell carcinoma (OSCC), is one of the most
prevalent and fatal diseases and has long been a significant public health concern world-
wide [1]. OSCC is a well-known malignant tumor with a high incidence rate, with an
estimated 1,401,931 cases reported globally in 2019 [2,3]. As of 2018, OSCC accounted for
approximately 25% of upper aerodigestive tract cancer cases in France [4], ranking sixth
in terms of cancer frequency. Although betel quid chewing, tobacco use, and excessive
alcohol consumption are the primary risk factors for OSCC [5], individuals that do not par-
ticipate in these activities, especially those aged <45 years, can still develop this malignancy.
According to a previous study [6], young women with tongue cancer are at a high risk of
developing OSCC.

In 2020, OSCC had a high annual mortality rate of 170,000, primarily because of
late-stage detection [4]. According to a 2008 study [7], OSCC is primarily diagnosed in men
and women with median ages of 61.5 and 66.4 years, respectively. Another study published
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in 2022 reported that the average age of patients with OSCC is 62 years [8]. The cancer
stage at diagnosis is highly correlated with survival rates. Early screening and detection
are essential for improving patient prognosis, and blood tests and visual examinations are
conventionally employed for detecting OSCC.

However, clinical diagnoses are more successful for detecting cancer in the oral cavity,
primarily through X-rays [9], computed tomography (CT) scans [10], positron emission
tomography (PET) scans [11], magnetic resonance imaging (MRI) [12], and endoscopies [13].
The biopsy procedure involves removing tiny tissue samples from the oral region, including
malignant tumors. X-rays are frequently used to track changes in the teeth and jawbone
anatomies, which aids in detecting any malignant growths that metastasize to the jawbone
tissue. CT scans combine several X-rays obtained from various angles to produce intricate
3D images of the mouth and throat, allowing medical professionals to spot anomalies
or indications of malignant growths. Additionally, PET scans involve injecting a small
quantity of radioactive material into the body and using a specialized camera to detect the
material, whereas MRI scans offer a precise visualization of the oral cavity and adjacent
structures. This is beneficial for identifying malignancies located deep within tissues.
Furthermore, endoscopy is particularly useful for inspecting the throat and larynx and
identifying cancers in difficult-to-reach locations. Fluorescence endoscopy can be used to
visualize oral malignancies on the outer surfaces that are difficult to detect using white
light. However, physical examinations can be expensive, time consuming, and require
specialized knowledge for accurate result interpretations.

The rapidly evolving field of artificial intelligence comprises novel diagnostic tech-
niques that can potentially facilitate early OSCC detection and classification [14], which
are essential for providing timely and optimal treatment [15]. Several machine and deep
learning models have been developed for this purpose [16]. Amin et al. [17] employed three
pretrained models, namely InceptionV3, VGG16, and ResNet50, to extract features from
histopathology images and merged them to form a new feature vector, achieving a high
accuracy of 96.55% compared to individual models. Subsequently, Das et al. [18] developed
a deep learning model that obtained better results (97.5% accuracy) than pretrained models.
In 2023, Das et al. [19] designed the simplest 10-layer deep convolutional neural network
(CNN) architecture to detect OSCC from histopathological images and obtained promising
results. In another study [20], a framework comprising the MobileNet-V2 and Darknet-19
models was used to extract deep features, and traditional machine learning classifiers
were used for classification, resulting in an accuracy of 92%. It employed a serial-based
feature fusion approach for feature concatenation, and chaotic crow search optimization
for optimal feature selection, resulting in a high computational complexity.

In conclusion, the aforementioned studies focused on developing deep learning and
pretrained models for OSCC detection. However, they did not modify the layer structure
or employ hyperparameter optimization, model selection, information fusion, and optimal
feature selection to lower the computational time and increase accuracy.

Therefore, this study presents an automatic machine learning-based approach for
OSCC detection using histopathological images, wherein pretrained models were used to
obtain the deep features from the acquired images. Based on the classification performance,
deep features were merged using the canonical correlation feature fusion approach. Subse-
quently, various wrapper-based approaches were tested to remove redundant features and
enhance the classification accuracy. Finally, based on the results, the binary-improved Haris
Hawks optimization (b-IHHO) was used to further enhance the classification performance
and reduce the feature vector size. The k-nearest neighbors (KNN) algorithm was used
to evaluate the classification performance of the proposed framework. Its results were
compared with those of other wrapper-based feature selection approaches, and a t-test
was conducted to determine their statistical significance. Additionally, the results were
compared with those obtained using other SOTA approaches.
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2. Materials and Methods
2.1. Proposed OSCC Detection Framework

Histopathological imaging is a reliable method for detecting and diagnosing OSCC.
Typically, histopathological images are obtained from tissue samples and examined under
a microscope to detect the presence of abnormal cells, providing additional information to
guide subsequent investigations and treatments to achieve better outcomes.

This study presents an automatic detection and identification machine learning frame-
work for OSCC. After acquiring the OSCC images, deep features were extracted using
various pretrained deep learning models. Next, the deep features extracted from models
with classification accuracies greater than 91% were fused using a canonical correlation
approach. Subsequently, wrapper-based optimal feature selection approaches were em-
ployed to further enhance the classification performance. A flowchart of the proposed
OSCC detection approach is shown in Figure 1.
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13 July 2024). Medical experts collected, prepared, and categorized the slides compris-
ing H&E-stained tissues of 230 patients using a Leica ICC50 HD microscope(Leica Mi-
crosystems, Wetzlar, Germany). The details and examples of images in these datasets are
presented in Table 1.

Table 1. Details and sample images in the OSCC biopsy datasets employed in this study.

Normal Sick (OSCC)

Histopathological
images
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where 𝐵  and 𝜔  are space and objective functions, respectively. Additionally, let 𝑑௦௠ 
and 𝑡௦௥  denote the source domain and the task, respectively, and 𝑑௧௠  and 𝑡௧௥  denote 
the target domains and tasks, respectively. In transfer learning, the source information is 
used to learn the conditional probabilities of the target domain. Several pretrained models 
have been developed for various medical imaging applications [25,26]. Figure 2 shows the 
basic transfer learning concept employed by AlexNet for deep feature extraction from his-
topathological images in ImageNet. 
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2.3. Feature Extraction from Histopathological Images
2.3.1. CNNs

CNNs, also known as ConvNETs, are a subclass of artificial neural networks that
handle data in a grid-like layout. They can be used to identify various features in an image,
such as corners and edges, and effectively eliminate the need for handcrafted feature
extraction approaches by including them in their architecture. They comprise various
layers, such as input convolution, rectified linear unit (ReLU), and pooling, for extracting
image features and information. Finally, a fully connected layer retrieves features for image
classification [21,22]. The other fundamental elements of CNNs are the weights, neurons,
bias factors, and activation functions.

2.3.2. Deep Feature Extraction Using CNNs

The performance of a CNN can be improved by using a larger training dataset. Transfer
learning is a process that allows transferring knowledge from one domain to another. It
involves transferring knowledge from a model trained for solving a particular problem
and reusing it to solve another related problem. In this study, we assumed a domain with
two components [23,24]:

dm = A + prob(a), (1)

where A and prob(a) denote the feature space and marginal probability, respectively. We
assume that a task has the following elements:

tr = B + ω, (2)

where B and ω are space and objective functions, respectively. Additionally, let ds
m and

ts
r denote the source domain and the task, respectively, and dt

m and tt
r denote the target

domains and tasks, respectively. In transfer learning, the source information is used to
learn the conditional probabilities of the target domain. Several pretrained models have
been developed for various medical imaging applications [25,26]. Figure 2 shows the
basic transfer learning concept employed by AlexNet for deep feature extraction from
histopathological images in ImageNet.

In this study, various pretrained deep learning models, such as Xception, SqueezeNet,
ShuffleNet, ResNet-18, ResNet-50, ResNet-101, NASNet-Mobile, MobileNet-v2, Inception-
v3, Inception-ResNet-v2, GoogLeNet, GoogLeNet365, EfficientNet-b0, DenseNet-201,
DarkNet-53, and DarkNet-19, were used for deep feature extraction from histopathological
images for OSCC detection.
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2.3.3. Feature Fusion Using Canonical Correlation Analysis

This study employed a canonical correlation analysis approach to fuse the deep
features acquired from histopathological images. The basic principle of the canonical corre-
lation analysis approach is to maximize the correlation between two features. Assuming
that there are two feature sets ( fx ∈ Ra1×b and fy ∈ Ra2×b) with n features, where a1 and a2
denote feature dimensions, they can be defined as

fx =
[

f 1
x , f 1

x , ..., f n
x
]

fy =
[

f 1
y , f 1

y , ..., f n
y

]}. (3)

A linear transfer function for the above equation can be defined as

σ = max
(
Wx, Wy

) WT
x CxyWy

(WT
x CxxWx)

(
WT

y CyyWy

)
. (4)

Additionally, within-covariance matrices can be defined as Cxx ∈ Ra1×a1 or Cxy ∈
Ra1×a2 , where Cxx ∈ Ra1×a1 denotes the feature set covariance matrix. Hence, the canonical
correlation analysis approach can be defined as

Cxx
−1CxyCyy

−1CyxWx = σWx
Cyy

−1CyxCxx
−1CxyWy = σWy

}
. (5)

The following equation can be used to compute the final transformed fused vector:

∼
Z = Wx

Tσx,i + Wy
Tσy,i = Wx

TWy
T
[

σx,i
σy,i

]
. (6)

2.3.4. HHO

HHO is a computationally intelligent approach that replicates predator–prey inter-
action patterns of Harris hawks [27]. It comprises three primary stages: exploration,
transformation, and exploitation. HHO has obtained promising results in mining applica-
tions owing to its efficient global search capability and minimal parameter adjustments. It
employs the following methods to locate prey in diverse locations:

M(t + 1) =
{

Mr(t)− ra|Mr(t)− 2rb M(t)|, q ≥ 0.5∣∣Mrab(t)− Mavg(t)
∣∣− rc[L + rd(u − l)], q < 0.5

, (7)
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where M(t), Mrab(t), Mr(t), and Mavg(t) denote the current, rabbit, random, and average
positions of the hawks at t, respectively, whereas r is a random value between 0 and 1.
Additionally, u and l represent the lower and upper boundaries, respectively. Mavg(t) is
calculated as follows:

Mavg(t) = ∑N
n=1

Mn(t)
N

, (8)

where N and Mn(t) denote the population size and the position of the nth individual,
respectively. Depending on the prey’s energy (Eenergy) (defined in Equation (9)), HHO
switches between searching and various developmental actions.

Eenergy = 2 × Eenergy,o

(
1 − t

s

)
, (9)

where Eenergy,o is a random value between −1 and 1, s is the maximum number of iterations,
and t is the current iteration. If

∣∣Eenergy
∣∣ > 1, it enters the development phase; otherwise, it

remains in the search space. Soft and hard besieges occur depending on the conditions for
updating the position, which are obtained as follows:

M(t + 1) =
{
(Mrab(t)− M(t))− Eenergy|2(1 − re)Mrab(t)− M(t)|, 0.5 ≤

∣∣Eenergy
∣∣ < 1 and re ≥ 0.5

Mrab(t)− Eenergy|Mrab(t)− M(t)|,
∣∣Eenergy

∣∣ < 0.5 and re ≥ 0.5
, (10)

where re and M(t) denote a random number and the current prey position, respectively.
When 0.5 ≤

∣∣Eenergy
∣∣ < 1 and re < 0.5, the algorithm uses the following equations to

update the position (soft besiege progressive rapid dives approach):

M(t + 1) =
{

A, f (A) < f (M(t))
B, f (B) < f (M(t))

, (11)

A = Mrab(t)− Eenergy|2(1 − re)Mrab(t)− M(t)|, (12)

B = A + rand(dim)× levy(dim), (13)

where f (∗), rand, and levy denote the fitness function, random vector size of the problem
dimension (dim), and Levi’s flight, respectively. When

∣∣Eenergy
∣∣ < 0.5 and re < 0.5, the

algorithm uses the following equations to update the position (hard besiege progressive
rapid dives approach):

M(t + 1) =
{

A, f (A) < f (M(t))
B, f (B) < f (M(t))

, (14)

A = Mrab(t)− Eenergy
∣∣2(1 − re)Mrab(t)− Mavg(t)

∣∣, (15)

B = A + rand(dim)× levy(dim). (16)

2.3.5. IHHO

In 2023, Peng et al. [28] presented an improved version of the HHO to enhance the
individual linkages between the populations of the HHO such that individuals with better
fitness values take the lead and influence the remaining population to adjust their positions.
Herein, the individuals are ranked according to their fitness values and denoted as α, β, and
γ, respectively. Individual α is the first step, and its position-update formula is obtained as
follows: When the ratio of the remaining running times of the algorithm to the total running
times with the Cauchy random number is compared, the current position has a certain
probability of moving closer to the optimal position, whereas the later-stage replacement
probability is more negligible, which effectively ensures that the algorithm does not fall
into local optimization.
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Mi(t + 1) =

{
Mi

rab(t),
(
tan(π(rand − 0.5)) <

(
1 − t

s
))

Mi
rab(t) +

(
4 − t ×

(
4
s

))
× rand

(
Mi

m(t)− Mi
n(t)

)
, other

(17)

where Mi
m(t) and Mi

n(t) are randomly selected individuals from the population that do
not belong to α and i represents the dimensions. The following equations present the
position-update formulas for individuals β and γ, respectively. Both Me and M f were
randomly selected.

Mi(t + 1) =

{
Mi(t), rand > 0.5

Mi
α(t)+Mi

β(t)
2 , other

, (18)

Mi(t + 1) =


Mi

e(t)+Xi
f (t)

2 , rand > 0.5(
Mi

α(t)+Mi
β(t)+Mi

γ(t)
)

3 , other
. (19)

Three excellent individuals (α, β, and γ) are involved in local development, whereas
the others contribute to the original HHO updates. Individuals’ optimal locations were
awarded in decreasing order, which encourages localized growth within the field being
investigated. Individuals β and γ are connected to α, which improves the communication
between outstanding individuals. Compared to the original HHO, the updating technique
for these three individuals is relatively simple. This method, known as IHHO, enables
quicker execution and higher accuracy for feature selection tasks, while reducing temporal
complexity [28]. Additionally, IHHO is converted into a discrete optimization problem,
known as b-IHHO, for feature selection. Further details regarding b-IHHO can be found
in [28], and the b-IHHO flowchart for selecting the optimal features is illustrated in Figure 3.
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Finally, the KNN is used as a classifier to evaluate the selected features using the
following fitness function:

Fitness function (J) = σ

(
1 − Correctly classified images

Total no.of images

)
+ (1 − σ)

(
fSL
fFL

)
, (20)

where σ, fSL, and fFL denote the weight factor, number of features selected, and total
number of features, respectively. The value of σ is 0.99 [29].
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3. Results

In this study, various pretrained deep learning models, such as Xception, SqueezeNet,
ShuffleNet, ResNet-18, ResNet-50, ResNet-101, NASNet-Mobile, MobileNet-v2, Inception-
v3, Inception-ResNet-v2, GoogLeNet, GoogLeNet365, EfficientNet-b0, DenseNet-201,
DarkNet-53, and DarkNet-19, were used for deep feature extraction from histopatho-
logical images for OSCC detection. MATLAB 2023b was used for processing, running on a
PC with the following specifications: 12th Generation Intel(R) Core (TM) i7 CPU, 1 TB SSD,
NVIDIA GeForce RTX 3050 GPU, 32 GB of RAM, and 64-bit Windows 11. Additionally, the
0.2 holdout validation approach is used to train and test the models.

First, all the pretrained models were used to extract the deep features before applying
the softmax layer. The KNN models were trained using the deep features extracted using
each model; the results are presented in Table 2.

Table 2. Classification performances of various pretrained models for OSCC detection.

Model Feature Vector Size Accuracy (%)

Xception 2048 87.77
SqueezeNet 1000 82.91
ShuffleNet 544 84.93
ResNet-18 512 86.05
ResNet-50 2048 89.69
ResNet-101 2048 91.51

NASNet-Mobile 1056 84.73
MobileNet-v2 1280 84.53
Inception-v3 2048 86.86

Inception-ResNet-v2 1536 89.69
GoogLeNet 1024 81.60

GoogLeNet365 1024 85.04
EfficientNet-b0 1280 91.61
DenseNet-201 1920 87.87

DarkNet-53 1024 86.96
DarkNet-19 1000 87.36

A comprehensive analysis of the results revealed that the deep features extracted using
the ResNet-101 and EfficientNet-b0 models, which had feature vector sizes of 2048 and
1280, respectively, yielded the highest accuracies of 91.51% and 91.61%, respectively. The
canonical correlation feature fusion approach was applied to enhance the classification
performance and reduce the feature vector size, as discussed in Section 2.3.3. The results
are presented in Figure 4.

The result in Figure 4 indicates that the canonical correlation feature fusion approach
further enhanced the classification accuracy to 92.62%, with a feature vector size of 2560.
This is because it removes redundant features and fuses them to form a new feature
training vector.

To further enhance the classification performance for OSCC detection, various wrapper-
based optimal feature selection approaches, such as the marine predator algorithm, general-
ized normal distribution optimization, slime mold algorithm, equilibrium optimizer, manta
ray foraging optimization, atom search optimization, Henry gas solubility optimization,
pathfinder algorithm, poor and rich optimization, HHO, and b-IHHO, were employed. The
results are presented in Figure 5 using a box-whisker plot for ten runs.
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Figure 5. Classification performances of various wrapper-based approaches for OSCC detection
with b-IHHO over ten runs (p < 0.01). MPA: marine predator algorithm, GNDO: generalized normal
distribution optimization, SMA: slime mold algorithm, EO: equilibrium optimizer, MRFO: manta ray
foraging optimization, ASO: atom search optimization, HGSO: Henry gas solubility optimization,
PFA: pathfinder algorithm, PRO: poor and rich optimization, HHO: Harris hawks optimization, and
b-IHHO: binary improved HHO.

In wrapper-based approaches, the extracted optimal features tested using a machine
learning classifier (k-NN) guarantee high reliability and better classification accuracy.
Figure 5 shows the classification performance enhancement for all the wrapper-based
optimal feature selection approaches. Each algorithm was run ten times, and the results
are presented as box-whisker plots. A careful analysis of the results revealed that HHO
exhibited the best classification performance. Therefore, the advanced HHO (b-IHHO)
variant was employed to further enhance the classification accuracy to 98.28% (mean =
97.78%), as shown in Figure 5. Specifically, b-IHHO resulted in an average increase of 2.32%
in the classification performance compared to the simple HHO.
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Subsequently, a two-sample t-test was employed to prove the statistical significance
and reliability of the results, which were highly accurate (p < 0.01, 99% confidence interval),
as demonstrated by the t-test. Furthermore, Cohen’s d value of −5.24 was obtained for
the effect sizes of the HHO and b-IHHO results. This value indicates a large effect size,
suggesting a significant difference between the two approaches. Additionally, the negative
sign indicates that the mean HHO accuracy was lower than the mean accuracy of b-IHHO.
The average numbers of features used to train the models are shown in Figure 6.
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The results in Figure 6 indicate that each algorithm removed a considerable number of
redundant features compared to the fused feature vector (2560) and b-IHHO employed fewer
features on average for training the KNN model to obtain a high classification accuracy.

4. Discussion

Various protocols can help doctors detect and diagnose OSCC. One crucial aspect is
the detailed examination of histopathological biopsy images, which helps us to understand
the disease progression and stage, enabling appropriate and timely treatment. However, a
highly skilled pathologist is required to distinguish between healthy and cancerous cells in
oral biopsy images. However, this process is time consuming, leading to delayed detection
and treatment. Therefore, an automated OSCC detection approach is required for faster
and more accurate OSCC diagnosis.

The automatic OSCC detection approach proposed in this study employs deep learn-
ing models, feature fusion, and optimal feature selection. Pretrained deep learning models,
such as Xception, SqueezeNet, ShuffleNet, ResNet-18, ResNet-50, ResNet-101, NASNet-
Mobile, MobileNet-v2, Inception-v3, Inception-ResNet-v2, GoogLeNet, GoogLeNet365,
EfficientNet-b0, DenseNet-201, DarkNet-53, and DarkNet-19, were used for feature ex-
traction. However, the extracted features exhibited low classification performance for
the binary class problem (Table 2). Therefore, the deep features of the best pretrained
models (ResNet-101 and EfficientNet-b0) were fused using a canonical correlation feature
fusion approach, resulting in significantly better classification performance. The use of
wrapper-based approaches for optimal feature selection guarantees better classification
performance because the features are tested using a machine learning model.

The b-IHHO wrapper-based approach was applied to remove redundant features and
enhance the classification performance. The results demonstrated that the proposed frame-
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work features a high classification accuracy of 97.78 ± 0.33 (average ± standard deviation).
The ability of b-IHHO to select more valuable features for classifying histopathological
images owes to its effective search strategy. The conventional HHO only uses the objec-
tive function to select the features, which leads to a subpar classification performance.
Therefore, the b-IHHO employed in this study uses three advanced search strategies in
conjunction with an objective function, as discussed in Section 2.3.5. This enables quicker
execution and higher accuracy for feature selection tasks, while reducing temporal com-
plexity. Table 3 compares the classification accuracies of the proposed framework and other
SOTA approaches.

Table 3. Classification accuracies of the proposed framework and other SOTA approaches.

Study Accuracy (%)

Sukegawa et al. [30] 86.22
Khan et al. [20] 92

Yu et al. [31] 92.78
Chang et al. [32] 92.81

Panigrahi et al. [33] 96.6
Yang et al. [34] 92.52
Das et al. [19] 97.82

This study 98.28 (mean = 97.78)

Achieving a high OSCC detection accuracy has a tremendous significance and far-
reaching implications, particularly for the early diagnosis of the disease. Timely and highly
accurate OSCC detection using the proposed framework may significantly improve the
prognosis and reduce mortality rates. Moreover, automatic histopathological image analysis
may help practitioners maximize their workflow efficiency and enhance the diagnostic
precision of OSCC detection.

5. Conclusions

This paper presented an automated OSCC detection framework that uses histopatho-
logical images for OSCC classification. First, various pretrained deep learning models were
used to extract the deep features. The ResNet-101 and EfficientNet-b0 models yielded the
highest accuracies of 91.51 and 91.61%, respectively, with 2048 and 1280 feature vector sizes,
respectively. Subsequently, canonical correlation feature fusion analysis was conducted to
concatenate the features, and an accuracy of 92.62% was achieved with a feature vector size
of 2560. Moreover, the wrapper-based approach b-IHHO was used for feature selection and
yielded the highest accuracy of 98.28%, with only 899 features. Additionally, comparisons
with other wrapper-based feature selection approaches showed that the results of b-IHHO
were statistically more stable, reliable, and significant (p < 0.01). Finally, a comparison with
other SOTA methods also demonstrated the superiority and high classification performance
of the proposed automated OSCC detection approach.
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