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Abstract: Artifacts induced during patient monitoring are a main limitation for near-infrared spec-
troscopy (NIRS) as a non-invasive method of cerebral hemodynamic monitoring. There currently does
not exist a robust “gold-standard” method for artifact management for these signals. The objective of
this review is to comprehensively examine the literature on existing artifact management methods
for cerebral NIRS signals recorded in animals and humans. A search of five databases was conducted
based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The
search yielded 806 unique results. There were 19 articles from these results that were included in this
review based on the inclusion/exclusion criteria. There were an additional 36 articles identified in
the references of select articles that were also included. The methods outlined in these articles were
grouped under two major categories: (1) motion and other disconnection artifact removal methods;
(2) data quality improvement and physiological/other noise artifact filtering methods. These were
sub-categorized by method type. It proved difficult to quantitatively compare the methods due to the
heterogeneity of the effectiveness metrics and definitions of artifacts. The limitations evident in the
existing literature justify the need for more comprehensive comparisons of artifact management. This
review provides insights into the available methods for artifact management in cerebral NIRS and
justification for a homogenous method to quantify the effectiveness of artifact management methods.
This builds upon the work of two existing reviews that have been conducted on this topic; however,
the scope is extended to all artifact types and all NIRS recording types. Future work by our lab in
cerebral NIRS artifact management will lie in a layered artifact management method that will employ
different techniques covered in this review (including dynamic thresholding, autoregressive-based
methods, and wavelet-based methods) amongst others to remove varying artifact types.

Keywords: artifact management; cerebral near-infrared spectroscopy; cerebral hemodynamic
monitoring; bio signal analysis
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1. Introduction

Near-infrared spectroscopy (NIRS) is a method of measuring underlying hemodynam-
ics within the brain. It can be used to measure cerebral autoregulation (CA) in a clinical
setting non-invasively, having far-reaching impacts. However, the widespread clinical
potential of this technology has been hindered by artifacts contaminating the signal, as
there are no robust artifact management methods available.

NIRS applied as a method of measuring regional cerebral tissue oxygenation (rSO2)
was proposed initially by Frans F. Jöbsis in 1977 [1]. The calculation of rSO2 leverages the
Modified Beer–Lambert Law, which describes the absorption of light as it passes through
different media [2]. Specific wavelengths within the near-infrared range correspond to the
absorption peaks of deoxyhemoglobin and oxyhemoglobin, respectively. As such, NIRS can
be used to measure their respective changes in concentration by measuring the absorption
of certain emitted wavelengths [3,4].

The use of rSO2 and other related metrics (optical density, concentrations of oxy-
hemoglobin (HbO), and concentrations of deoxyhemoglobin (HHb)) in a clinical setting
has grown in popularity, as it is a non-invasive surrogate method for measuring cerebral
blood flow (CBF) [5]. CBF is critical in the evaluation of patient cerebral autoregula-
tion (CA), which is the ability of the brain to maintain a constant CBF despite changes
in cerebral perfusion pressure (CPP) [6]. Impaired CA can result from traumatic brain
injury [7–10], stroke [11], meningitis [12], and cardiac arrest [13] and can put the patient at
risk of secondary injuries from cerebral tissue hypoxia and edema [7].

Artifact-free data facilitate improvements to clinical treatment in instances of impaired
CA, as more timely identification, intervention, and prevention of secondary injuries be-
comes possible with accurate data. To research into the understanding of high temporal
relationships within cerebral physiology, current research is focused on multivariate rela-
tionships within cerebral physiology to derive new multi-modal time-series metrics. The
main concern for the widespread clinical implementation of NIRS-based metrics is that
monitoring conducted at the bedside is often riddled with artifacts from device disruption,
patient motion, and loss of signal quality [14–17]. Signals can also be contaminated by
physiological or outside noise. The intricate and varied morphological features of artifacts
observed in NIRS signals undermine the efficacy of simple filtering methods, such as
thresholding and gross mean value assessment, in this application. Consequently, manual
signal clearing must be conducted. Manual signal clearing requires trained personnel, is
costly, has the potential for human error, and is time consuming, all of which impede the
timely use of these data for clinical applications [18]. As such, there is an on-going search
for a broadly accepted semi or fully autonomous method of artifact clearing cerebral NIRS
signals in real time [16,18]. A systematically conducted scoping review of current semi and
fully autonomous methods of artifact management will help elucidate the types of methods
that have been developed and their respective efficacies. The information presented in this
review will help build towards a “gold-standard” artifact management method for cerebral
NIRS signals.

The objectives of this systematically conducted scoping review include providing
an overview of artifact management methods that have been developed specifically for
cerebral NIRS signals, identifying if a leading method has already been developed, and
investigating how this could be accomplished. The breadth of artifact removal techniques,
including accelerometer-based methods, wavelet-based methods, machine learning-based
methods, filter-based methods, component analysis-based methods, and hybrid methods,
amongst others that did not fit into the previous categories, were explored. Additionally,
methods to remove signal drift and signal noise were also examined. The main goal of this
work is to categorize and evaluate existing methods of artifact management for cerebral
NIRS to determine whether a leading method has already been identified. Additionally,
it sought to examine which artifact management techniques could be used as the basis
for future research. The analysis conducted encapsulates the current state of knowledge
regarding artifact management techniques for cerebral NIRS signals, respective success
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rates in artifact removal, the limitations prevalent in the literature, and implications for
future research.

Future work by this lab will involve the construction of a sequential layered artifact
management pipeline. This model will aim to characterize artifacts in cerebral pressure-
flow physiologic signals, including cerebral NIRS, using a combination of signal analysis
methods. As such, the motivation for conducting this review is to understand current
methodologies to use as a basis for the development of this future algorithm.

Section 2 details the Methodology that was followed in conducting this systematic
review, including the search question that was posed, the development of search criteria,
and how data collection was conducted. Section 3 describes the results of the systematic
review as the methods extracted from the databases were organized into sub-categories and
their respective efficacies were compared. Also in this section was an overview of some of
the more robust comparisons that have been conducted on the efficacy of different artifact
management methods. Section 4 discusses the findings of this review as well as provides
limitations to the literature, limitations to the review itself, and future directions for work
in this domain. Finally, Section 5 provides a conclusion to the manuscript. Appendix A
includes the PRISMA-ScR checklist, Appendix B displays the search string that was entered
into the databases, and Supplementary Materials provide the data that were extracted from
each article included in this review.

2. Materials and Methods

This systematically conducted scoping review followed the methodology outlined in
the Cochrane Handbook for Systematic Reviews [19]. The reporting of the results conforms
to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines with the PRISMA Extension for Scoping Review [20,21]. The review objectives
for the search strategy were developed collaboratively by TB and FAZ, with help in the
article filtering process by NV (PhD Student) and LF. The completed PRISMA checklist can
be found in Appendix A (Table A1)

2.1. Ethical Considerations

All articles examined in this review were from previously published journals and
are expected to have been vetted by these journals. Thus, specific ethics approval for this
systematically conducted scoping review was not required.

2.2. Search Question and Inclusion/Exclusion Criteria

The question examined within this review was “what methods have been used to man-
age artifacts in continuous cerebral NIRS signal sources?” Additional questions included
the signal types for which artifact management methods were developed as well as the
efficacies of the methods in removing artifacts, particularly compared to other methods.

Continuous cerebral near-infrared spectroscopy (NIRS) signals were defined as includ-
ing oxygen saturation (SpO2), rSO2, concentration of oxyhemoglobin (HbO), concentration
of deoxyhemoglobin (HHb), optical density, and related measures that were recorded at
a minimum of 1 Hz. All articles that included experimental animal or human data on
artifact management of raw or processed continuous NIRS signals were included. Articles
were required to be full-length and published in English. The following articles were
excluded from the analysis: those published in languages other than English, abstracts
only, theoretical or simulation studies, non-time series data, and artifact management for
non-cerebral NIRS signals.

2.3. Search Strategy

Searches were conducted across multiple databases including BIOSIS, SCOPUS, EM-
BASE, PubMed, and Cochrane Library, covering the entire period from the conception
of each database up to 26 January 2024. As such, it represents the state of literature on
this topic up to this date. Dedicated search strings were constructed for each, consisting
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of terms/synonyms for NIRS and artifact methods. The detailed search strategy for each
database is provided in Appendix B. The results of the search from each database were
compiled and deduplication was conducted.

2.4. Study Selections

A manual review of all remaining articles after deduplication from the initial search
was conducted using a two-stage two-reviewer approach. During the first stage, two
reviewers (TB and NV) independently screened the title and abstract of each article for
inclusion/exclusion criteria. The included studies were then screened a second time by
both reviewers, this time evaluating the entire content of each article for inclusion and
exclusion criteria. Any disagreements between the two reviewers were resolved by a
third-party (LF and FAZ).

2.5. Data Collection

Characteristics of each study were recorded for analysis including the main purpose
of the study and specific patient/subject and data information. Patient/subject information
included the sample size, sex, history of neurological injury, and methodology signal
recording. Data information included the sampling rate of the NIRS signals, type of
recording system used, the anatomical location and number of NIRS optodes, and any data
simultaneously being recorded. Information regarding the details of methods described
in each article for the removal artifacts from the cerebral NIRS signal were also extracted.
Analysis of each method involved the evaluation of the effectiveness and main study
results. Limitations in the effectiveness or ease of implementation for each method were
also extracted, including those identified by the authors and those prevalent during the
critical analysis of each article.

The data collected are summarized in Supplementary Materials (Tables S1–S10). Note
that this was a review of all available manuscripts. Please refer to the original publications
for more details about data availability.

3. Results

The results of the search strategy that was conducted across all databases and the
reference sections of each article are depicted in a PRISMA flow diagram in Figure 1.
There were 1440 articles identified based on the search strings utilized across all databases
searched. A total of 634 were removed as they were duplicates of other references, and the
remaining 806 entered the first of the two-stage reviewing process.

Through the application of inclusion and exclusion criteria to the title and abstract, 763
were removed, leaving 43 articles to enter the second stage. The portable document format
(PDFs) of each article was obtained. Applying the inclusion and exclusion criteria to the
full-length PDFs resulted in 24 articles being excluded and 19 being included. An additional
36 articles were included from the reference section of the pertinent articles, and there were
several of these due to the different ways these articles were indexed in various databases. All
55 included studies were human-based studies, and there were no animal-based studies that
fit all the inclusion criteria. There were several different NIRS and fNIRS systems that were
used to record cerebral NIRS signals. Some of these systems were commercially available.
The most commonly used of these included the Hitachi ETG-4000 [22–27] and the NIRSOptix
TechEn CW6 [28–35]. Other systems included those that were custom-made [36–46] or
presented in another academic work [47,48]. Each system derived their respective cerebral
NIRS-based metric using a different proprietary algorithm; however, each of these methods
fundamentally assess the percent saturation or concentration of hemoglobin in cerebral blood
flow. Therefore, despite the potential differences in the methodology used to derive these
measures, the fundamental pathophysiology being described is similar. Thus, the artifact
management methods included in this review were assumed to be sufficiently functional
across these measures to warrant the common consideration.
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There were two main categories of artifact removal methods yielded from the database
search: (1) motion and other disconnection artifact removal methods; (2) signal quality
improvement and physiological/other noise removal methods. These differ in that motion
and other disconnection artifacts are morphological errors—for example, large spikes
in magnitude or signals being lost. In contrast, physiological and other noise artifacts
contaminate signals with noise such that they are not useable as it becomes difficult to
discern physiological signals for the quantification of CBF from other noise in the signal.

3.1. Motion and Other Disconnection Artifact Removal Methods

There were 40 articles that outlined motion and other disconnection artifact manage-
ment methods. The artifact management methods outlined were all developed for NIRS
or fNIRS signals measured with a sampling rate of 1 Hz to 1000 Hz, apart from a source
which developed artifact management for near-infrared imaging (NIRI) signals. There
were 26 of 40 articles that outlined methods developed for HbO and HHb signals, five
methods for HbO only, one method for rSO2, four methods for optical density signals, and
four methods for an unstated NIRS signal. Based on the main method used for artifact
removal, the motion and other disconnection methods were grouped into six categories:
accelerometer-based methods, wavelet-based methods, machine learning-based methods,
filter based-methods, component analysis-based methods, hybrid methods, and other
methods. Each method is summarized below and details regarding the populations on
which they were tested, the efficacy, results and limitations of each method are provided
in Supplementary Materials (Tables S1–S7) with a summary of Supplementary Materials
provided in Table 1.
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Table 1. Summary of motion and other disconnection artifact removal methods.

Artifact Removal
Methods

Number of
Studies

Included

Number of
Subjects

Signal Types
(If Specified) Effectiveness

Accelerometer-
based 9 94 HHb and

HbO

• The t-test for significant and non-significant
channels [49] indicated that there were no differences for
non-significant channels in the performance of NoMC,
UpMC, and HighMC methods for HbO and HHb
signals and had no differences for HbO signals.
However, the t-test for statistical significance indicated
that there was a difference in the performance in
HighMC compared to UpMC and NoMC in HHb
significant signals [49].

• In the analysis conducted by Metz et al., the sensitivity
in identifying artifacts ranged from 86% to 96% in
human scorers, was 92.2% using ABAMAR, 77.1% using
MARA, and 94.2% using AMARA. However, AMARA
did struggle with non-movement artifacts [50].

• Siddequee et al.’s model that used a 3-axis
accelerometer, gyroscope, and magnetometer to identify
artifacts using inertial measurement unit (IMU) data
and estimated artifacts using an autoregressive model
with exogenous input (ARX) had the highest SNR
(average of 15.38 dB) compared to when the ARX had
input from just the accelerometer and gyroscope or just
the accelerometer [36].

• Sweeney et al. developed an adaptive filtering method
that used the correlations between NIRS-based signals
and accelerometer data to increase the SNR from
−14.37 dB to 8.44 dB [31]

• Sweeney et al. also developed a method of artifact
removal based on accelerometer data. There was no
effectiveness metric provided; however it was stated
that signal quality was improved using this method [51].

• The agreement between the ABAMAR method and
human observers on artifactual points was 79% with a
21% false positive rate [47].

• Blasi et al. used accelerometer data to detect motion and
adjust thresholds of an adaptive filter to remove
artifacts. It achieved a ∆SNR of 0.535 dB [42].

• Kim et al. presented an algorithm to detect artifacts
using accelerometer data and remove artifacts using an
adaptive filter; however, no comparison or quantitative
data was provided regarding effectiveness [43]

• The BLISSA2RD algorithm decomposed fNIRS signals
using ICA-ERBM [52] to temporally embed
accelerometer data and used shared components to
detect artifacts with CCA [53]. The ICA-ERBM
algorithm was outperformed the fastICA algorithm [54].
Artifacts were estimated using ERBM source space [53].
This algorithm improved the SNR of continuous
hemodynamic signals up to 10 dB and reduced motion
artifacts by an order of two, outperforming several
conventional methods in extracting the HRF [53]. This
method outperformed an ICA-based, wavelet-based,
and spline interpolation-based method in the metrics of
RMSE and correlation in HbO signals; however, it did
not outperform these methods in HHb signals [53].
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Table 1. Cont.

Artifact Removal
Methods

Number of
Studies

Included

Number of
Subjects

Signal Types
(If Specified) Effectiveness

Wavelet-based 8 307

rSO2, HHb
and HbO,

optical
density

• The Morlet wavelet based method developed by
Bergmann et al. achieved a removal rate for simple
artifacts of 100%, 99.8%, and 99.7% in HC, SP, and TBI
datasets, respectively [55].

• The kbWF-based method developed by Chiarelli et al.
showed largest improvements in MSE (−24%) and
∆SNR (55%) compared to several other wavelet and
PCA-based methods [56]

• In a comparison of several wavelet methods, the best
performance was by WPDfk4 with the highest reduction
in artifacts (−26.40%) and greatest ∆SNR (16.11 dB) of
all single stage motion artifact correction techniques.
The best performance in the two-stage for SNR was
WPDdb1-CCA with a ∆SNR of 16.55 dB, and the best for
avg. motion artifact removal was WPDfk8-CCA with
41.40% [57].

• Molavi and Dumont presented a TIWT-based method
The mean artifact power attenuation between the two
subjects was −17.26 dB, and the average NMSE was
−13.99 dB [22]. In the Debauchies wavelet based
method presented by the same authors, an average
NMSE of −15.39 dB was achieved between three
subjects [23].

• Perpetuini et al. indicated that the presented Morse
CWT-based method had the highest SNR (close to 5.5),
lowest MSE (below 1), highest beta values (close to 0.9),
and highest t-stat (close to 22) compared to the other
wavelet-based, PCA-based, spine-based, and
correlation-based methods to which it was
compared [58].

• The proposed DWT-based method presented by Wei
et al. had a SNR value above 0 dB and an R2 value
above 0.4. The wavelet filtering method to which it was
compared had an SNR value below −10 dB and R2

value close to 0 [59].
• Robertson et al. presented a discrete wavelet-based

method that was able to achieve an average increase in
SNR for NIRS signals when λ = 760 nm and λ = 830 nm
of 5.96 dB and 4.93 dB, respectively. However, this
method struggled compared to regression-based and
ICA-based methods when the temporal location of the
motion artifacts was not known [17].

Machine
learning-based 3 50 HHb and

HbO

• There was a single method that leveraged machine
learning techniques for artifact identification and
removal. Feature engineering was used to try to identify
artifacts based on the power density fraction, sample
entropy, autocorrelation, and area under the curve for
the signal based on artifact-free signals. The data was
then fed into a Random Forest algorithm. However,
there was limited success in artifact identification based
on the engineering feature selection [37]
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Table 1. Cont.

Artifact Removal
Methods

Number of
Studies

Included

Number of
Subjects

Signal Types
(If Specified) Effectiveness

Machine
learning-based 3 50 HHb and

HbO

• Kim et al. presented a deep learning architecture
capable of extracting features from fNIRS data and
removing artifacts. This method performed better than
an autoregressive model [60] and wavelet-MDL
method [61] in limiting MSE and maximizing
AUC-ROC in performance activation detection [62].

• Lee et al. presented a BPNN with an AdaM
optimizer [63] that used inputs from a 10-band wavelet
transformation of fNIRS signals to achieve a CNR in
corrected channels and in the channels in a region of
interest activated by the subject walking of 0.63 and 0.73,
respectively [64]. This method outperformed an HRF
smoothing method [65], a wavelet denoising method
and the wavelet-MDL method [61].

Filter-based 6 63 HHb and
HbO

• The comparison of adaptive, Wiener, and Kalman filters
for slow, medium, and fast head movements yielded
average ∆SNRs for each filter as 3.4396, 6.6980, and
7.6548, respectively [38,39].

• An extension of Izzetoglu et al.’s Kalman filtering
method [39] used an ARMA model to translate fNIRS
signals into the state space and was able to increase the
∆SNR from 8.7 dB to 10.4 dB [44].

• Dong and Jeong proposed an extended Kalman filter
method that reduced RMSE and PRD by more than 40%
in HbO and HHb signals compared to a linear Kalman
filter, improved RMSE, PRD, and correlation coefficients
between the recovered and true HRF had 34% increase
in HbO and 62% in HHb compared to the linear Kalman
filter [45].

• Huang et al. presented a dual-stage median filter that
was able to achieve the best average in SDR and NMSE
with averages of 1.185 and 0.63, respectively [66],
compared to the spline interpolation [41] and
wavelet-based method [23].

• Robertson et al. presented a recursive least
squares-based adaptive filter that performed poorly in
artifact removal compared to the SNRs achieved by
wavelet-based, ICA-based, and regression-based
methods [17].

Component
analysis-based 4 40 HHb and

HbO

• The ICA-based method presented by Shi et al. resulted
in an SNR increase of 2.336 and 2.139 in HHb and HbO
signals, respectively, compared to an increase of 1.191
and 1.118, respectively, using a wavelet based
method [67].

• The tPCA-based method presented did not perform
significantly better than the spline-based and
wavelet-based methods by MSE and R2 when compared
to true HRF; however, a significant increase was noted
compared to when no correction was conducted [28].
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Table 1. Cont.

Artifact Removal
Methods

Number of
Studies

Included

Number of
Subjects

Signal Types
(If Specified) Effectiveness

Component
analysis-based 4 40 HHb and

HbO

• The BLISSA2RD algorithm decomposed fNIRS signals
using ICA-ERBM [52] to temporally embed
accelerometer data and used shared components to
detect artifacts with CCA [53]. The ICA-ERBM
algorithm was outperformed the fastICA algorithm [54],
as such, artifacts were estimated using ERBM source
space [53]. This algorithm improved the SNR of
continuous hemodynamic signals up to 10 dB and
reduced motion artifacts by an order of two,
outperforming several conventional methods in
extracting the HRF [53]. This method outperformed an
ICA-based, wavelet-based, and spline
interpolation-based method in the metrics of RMSE and
correlation in HbO signals; however, it did not
outperform these methods in HHb signals [53].

• Robertson et al. presented an ICA-based method that
was able to achieve an average increase in SNR for NIRS
signals when λ = 760 nm and λ = 830 nm of 5.62 dB and
2.76 dB, respectively. This method also achieved the best
performance in SNR (3.20 dB, 3.67 dB) when the motion
was unknown (compared to a wavelet-based, 30-channel
regression-based and adaptive filter-based method) [17].

Hybrid 5 72 HHb and
HbO, tHb

• In the hybrid method proposed by Gao et al., the R
value between the process and clean signal was close to
0.8 (none of the other methods are above 0.6) and the
SNR between these two signals was above 0 (none of the
other methods were above 0) [40].

• Two datasets were used to analyze the hybrid method
proposed by Jahani et al. There were conflicting results
between the two datasets. The hybrid method was
compared to four others (CBSI, tPCA, Spline-Rloess,
wavelet filtering) and based on the metrics used (MSE,
Ep, R2, and AUC-ROC) [32]. More detail is shown in
Supplementary Materials (Table S6).

• The hybrid method developed by Scholkmann et al. was
not compared to anything. This method was evaluated by
calculating PRD, RMSE, and R between the clean data
and the data with induced motion artifacts with and
without applying MARA. Employing the proposed
MARA on three datasets of an undisclosed size and
demographic resulted in an average change of −89.7% in
PRD, −89.8% in RSME, and an increase of 61.6% in R [41].

• Zhou et al. presented a method that used two moving
standard deviation filters for artifact detection and
spline interpolation as well as SG filtering to remove
artifacts, achieving an SNR of 2.41 dB. It was compared
to using spline interpolation and SG filtering only,
which resulted in SNRs of −19.96 dB and −23.79 dB,
respectively [46].
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Table 1. Cont.

Artifact Removal
Methods

Number of
Studies

Included

Number of
Subjects

Signal Types
(If Specified) Effectiveness

Hybrid 5 72 HHb and
HbO, tHb

• Gu et al. proposed a hybrid method that used
thresholding for artifact detection, EMD for artifact
removal, and spline interpolation to maintain signal
continuity. It had an SNR increase of 53%, MSE
reduction of 47%, and had an R2 value of 0.79 [27].

Other 9 147
HHb and

HbO, optical
density

• The AR(P)-IRLS method proposed by Barker et al. was
compared to three other OLS-based methods. The
AUC-ROC values for the AR(P)-IRLS were consistently
higher than all other compared metrics [60]. An
extension of this method that involved the application of
a Kalman estimator for online applications had similar
performances to the AR-IRLS in specificity, sensitivity,
and FPR in simulation results [34].

• Cui et al. presented a correlation-based signal
improvement algorithm that increased the CNR to 2.59
from 1.31 and 1.28 in HHb and HbO signals,
respectively [24].

• Fishburn et al. provided the most robust comparison of
methods. They compared the proposed TDDR method
to CSBI, MARA, tPCA, kurtosis wavelet, and Spline
Savitzky–Golay filtering [33]. The TDDR method
depicted better results than other methods based on
AUC-ROC based on simulated data, the maximum
activation t-statistic, and the greatest number of mesh
vertices with positive significant (p < 0.05) values on real
data. More detailed information is included in
Supplementary Materials (Table S7).

• Wang and Seghouane presented a method that used
discrete cosine transformation coefficients to estimate
the signal and remove artifacts. The MSE between true
resting state signal and restructured signal were
0.020876 for TARA, 0.015514 for TARA (non-convex)
and 0.0037094 for the proposed method, indicating
significant improvement [68].

• Raggam et al. presented three methods as a part of a
larger toolbox to reduce artifacts from fNIRS signals;
however, there was no quantification provided for
effectiveness [69].

• Sutoko et al. used three signal characteristics (sudden
increases in magnitude, shifting baseline magnitude,
and intertrial correlation) to achieve a 71.8% rejection
accuracy of artifact ridden signals compared to
visual-based [70].

• Robertson et al. presented a 30-channel regression
model that was able to improve the SNR to 3.01 dB
(λ = 760 nm) and 2.54 dB (λ = 830 nm) when the
incidence of motion was unknown and 5.67 (λ = 760 nm)
dB and 4.56 dB (λ = 830 nm) when it was known [17].



Bioengineering 2024, 11, 933 11 of 30

Table 1. Cont.

Artifact Removal
Methods

Number of
Studies

Included

Number of
Subjects

Signal Types
(If Specified) Effectiveness

Other 9 147
HHb and

HbO, optical
density

• Sweeney et al. presented an EEMD-CCA method that
was able to reduce motion artifacts from fNIRS signals,
achieving an ∆SNR of 3.5 dB, 49.4% artifact reduction,
and 0.68 correlation with the ground truth signal. This
method outperformed an EEMD-ICA [71] and a
wavelet-based method [35].

Where ABAMAR = Accelerometer-Based Automatic Motion Artifact Removal, AR-IRLS = Iterative Autoregressive
Least Squares, ARMA = Autoregressive Moving Average, AUC-ROC = Area Under the Receiver Operating Char-
acteristic Curve, AMARA = Automated Motion Artifact Removal Algorithm, ARX = Autoregressive Model with
Exogenous Input, BLISSA2RD = Blind Source Separation and Accelerometer based, BPNN = Back Propagation Neu-
ral Network, Artifact Rejection and Detection, CCA = Canonical Correlation Analysis, CBSI = Correlation-Based
Signal Improvement, CNR = Contrast-to-Noise Ratio, DWT = Discrete Wavelet Transform, EEMD-CCA = En-
semble Empirical Mode Decomposition with Canonical Correlation Analysis, EEMD-ICA = Ensemble Empirical
Mode Decomposition with Independent Component Analysis, ERBM = Entropy Rate Bound Minimization,
fk4 = Fejer–Korovkin (wavelet type) with 4 coefficients, fNIRS = Functional Near-Infrared Spectroscopy, FPR
= False Positive Rate, HbO = Concentration of Oxyhemoglobin, HHb = Concentration of Deoxyhemoglobin,
HC = Healthy Controls, ICA = Independent Component Analysis, IMU = Inertial Measurement Unit, kbWF
= Kurtosis-Based Discrete Wavelet Filtering, MDL = Minimum Description Length, MARA = Motion Artifact
Reduction Algorithm, MSE = Mean Squared Error, NMSE = Normalized Mean Squared Error, NoMC = No Motion
Correction, PRD = Percent Root Difference, RMSE = Root Mean Squared Error, R2 = Coefficient of Determination,
SDR = Signal Distortion Ratio, SNR = Signal-to-Noise Ratio, Spline-Rloess = Spline with Robust Locally Estimated
Scatterplot Smoothing, tPCA = Temporal Principal Component Analysis, TARA = Targeted Artifact Removal Algo-
rithm, TARA (Non-Convex) = Non-Convex Targeted Artifact Removal Algorithm, TDDR = Temporal Derivative
Distribution Repair, TIWT = Translation Invariant Wavelet Transform, UpMC = Up Sampled Motion Correction,
WPD = Wavelet Packet Decomposition.

3.1.1. Accelerometer-Based Methods

There were nine motion and other disconnection artifact removal methods that
leveraged accelerometer data that was simultaneously recorded with NIRS or fNIRS sig-
nals [31,36,42,43,47,49–51,53]. These methods use thresholds in the accelerometer data to
detect when the patient or the NIRS probe was moved during recording. When movement
is recorded, the algorithms identify the segment as artifactual. Many of the studies com-
pared a proposed method to only one or two other methods, with little consistency between
studies with respect to methodological approaches such as sampling rate, demographics of
patient population, protocols during signal recording, and types of artifacts being removed.
The availability of an accelerometer for simultaneous measurement with cerebral NIRS will
affect whether these artifact management methods can be extended to all recording setups
in clinics.

3.1.2. Wavelet-Based Methods

Wavelet analysis involves transforming time-series NIRS signals into the time-frequency
domain. Wavelet coefficients are based off the frequency of the oscillations of the NIRS
signal at a particular time. Wavelet-based thresholding was used to disseminate between
physiological and erroneous signals. Continuous and discrete wavelet-based methods are
used in eight of the identified artifact removal methods [17,22,23,55–59]. It was difficult
to compare the effectiveness of each method due to the considerable heterogeneity in the
effectiveness metrics (signal-to-noise ratio (SNR), percent artifact reduction, mean squared
error (MSE), normalized MSE, beta values, t-statistic, coefficient of determination (R2)) data
sampling rates, different patient populations used (newborn, healthy adult, traumatic brain
injury, elective spinal), and different variations in artifacts (simple signal loss, magnitude
spikes, or more complex morphological artifacts).
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3.1.3. Machine Learning-Based Methods

There were three methods that leveraged machine learning techniques for artifact
identification and removal [37,62,64]. Russell-Buckland et al. proposed a method that
used feature engineering to identify artifacts based on power density fraction, sample
entropy, autocorrelation, and area under the curve for the signal based on artifact-free
signals. The data was then fed into a Random Forest algorithm. However, there was
limited success in artifact identification based on the engineering feature selection. Kim
et al. developed a deep convolutional neural network that extracted features from fNIRS
signals and used weighted filtering to reconstruct the hemodynamic response function
without motion artifacts [62]. This method was able to extract the synthetic hemodynamic
response function better than a wavelet-based method [61] and an autoregressive-based [60]
method using metrics of MSE and performance activation detection measured using AUC-
ROC [62]. Lee et al. proposed a method that used a 10-band wavelet transformation that is
fed into a back propagation neural network (BPNN) to remove motion artifacts from fNIRS
signals [64]. The resulting CNR indicated that this method was able to perform denoising
and global detrending as it outperformed two wavelet-based methods and another HRF
smoothing method [64].

3.1.4. Filter-Based Methods

There were six artifact removal methods that were filter-based. Two of these methods
were developed by Izzetoglu et al. These methods use Wiener filtering and Kalman filtering,
respectively [38,39]. These two methods were compared and showed similar success in
artifact removal based on SNR. They both had better SNR results than an adaptive filter for
HHb and HbO signals recorded from 11 healthy volunteers [39] The average improvement
of the SNR (∆SNR) for the adaptive, Wiener, and Kalman filters were 3.4396, 6.6980, and
7.6548, respectively, when the filters were employed to remove artifacts originating from
head movements [39]. There was another method that extended the Kalman filtering
method proposed by Izzetoglu et al. [39] using an autoregressive moving average (ARMA)
model to translate the signal into the state space prior to applying the Kalman filter [44].
This extension increased the fNIRS ∆SNR from 8.7 dB (using the Kalman filter [39]) to
10.4 dB [44]. Dong and Jeong also proposed the use of an extended Kalman filter-based
method [45]. It outperformed the linear Kalman filtering and adaptive filtering techniques
presented by Zhang et al. [72] when tested on a dataset previously published by this
author [73]. A synthetic HRF was able to be more accurately extracted in the presence of
experimentally measured artifacts by metrics of root mean squared error (RMSE), percent
root difference (PRD), and correlation coefficients [45]. Huang et al. described a dual-
stage median filter capable of removing step-like and spike artifacts from fNIRS signals,
outperforming wavelet-based [23] and spline interpolation-based [41] methods by metrics
of signal distortion ratio (SDR) and normalized mean squared error (NMSE) [66]. Robertson
et al. also developed a method that utilized recursive least squares for an adaptive filter;
however, this method had limited success compared to ICA-based, wavelet-based, and
regression-based methods determined using SNR [17].

3.1.5. Component Analysis-Based Methods

There were four artifact management methods that leveraged component analysis.
Yanhua Shi et al. developed an independent component analysis (ICA)-based method
that demonstrated a mean ∆SNR for the HHb and HbO signals of 2.336 and 2.139, respec-
tively, for the raw datasets recorded from four healthy adults (mean age of 23) [67]. The
∆SNR using the ICA method was two times greater than the ∆SNR noted in the compared
wavelet-based method, which had mean ∆SNRs of 1.191 and 1.118 in HHb and HbO,
respectively [67]. There was also a targeted principal component analysis (tPCA) method
developed. It was compared to a spline-based method and a wavelet-based method [28].
tPCA had a better performance than both methods (spline-based and wavelet-based) in
correlation between the cleaned signal and the true HRF. However, tPCA performed worse
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in mean squared error than the spline-based method when tested on datasets recorded
from five healthy adults (ages ranging from 23 to 52) [28]. There was an accelerometer-
based method presented by von Lühmann et al. [53]. This method used an independent
component analysis by an entropy rate bound minimization (ICA-ERBM) algorithm to
decompose fNIRS signals before temporally embedding accelerometer data. It then iden-
tified artifacts using shared components detected using canonical component analysis
(CCA) and estimated the artifact length in the ERBM space. This algorithm improved the
SNR of continuous hemodynamic signals up to 10 dB and reduced motion artifacts by
an order of two, outperforming several conventional methods in extracting the HRF [53].
However, future work is needed. Robertson et al. presented an ICA-based method that was
able to achieve an average increase in SNR for NIRS signals of 5.62 dB and 2.76 dB when
λ = 760 nm and λ = 830 nm, respectively on a dataset of three subjects where the temporal
location of the artifacts was known. This method also achieved the best performance in
SNR (3.20 dB, 3.67 dB) when the temporal location of the artifacts was unknown (compared
to a wavelet-based, multi-channel regression-based and adaptive filter-based method) [17].

3.1.6. Hybrid Methods

Five hybrid artifact removal methods were identified. The first was an approach that
uses dynamic thresholding and circumstantially employs different methods based on the
type of artifact. Large oscillations are corrected using cubic spline interpolation, baseline
shifts are corrected using spline interpolation, and slight oscillations are corrected using
a two thresholds in a wavelet-based method [40]. Jahani et al. presented another hybrid
artifact clearance method that utilizes a low-pass and Sobel filter to identify motion artifacts
based on signal gradient values deviating from typical physiological variations, amplitude
thresholding to identify baseline shifts, spline interpolation to model the motion artifact
epoch, and Savitzky–Golay filtering for the remaining high-frequency artifact removal [32].
An in-depth analysis of this method is included in Section 3.1.8. The final hybrid method
presented is a movement artifact reduction algorithm (MARA) that includes six steps
using moving standard deviation (to detect motion artifacts) and spline interpolation (to
correct artifacts) [41]. PRD, RMSE, and Pearson’s correlation coefficient (R) were calculated
between the clean signal and the signal with induced motion artifacts (MA) as well as
between the clean signal and the signal with induced MA that was cleaned using MARA.
Employing proposed MARA on three datasets of an undisclosed size and demographic
resulted in an average change of −89.7% in PRD, −89.8% in RSME, and an increase of 61.6%
in R when induced motion artifacts were removed [41]. Gu et al. proposed a hybrid method
that used thresholding for artifact detection, empirical mode decomposition for artifact
removal, and spline interpolation to maintain continuity [27]. The use of this method
resulted in an average increase in SNR of 53%, reduction in average MSE of 47%, and an R2

between the processed and true signal of 0.79. This method generally outperformed the
spline interpolation-based method [41], wavelet-based method [23], and kurtosis wavelet-
based method [56]. Zhou et al. presented a hybrid method that first used a moving
standard deviation (MSD) filter to detect the onset of artifacts in a contaminated fNIRS
dataset, then used cubic spline interpolation to remove them, then used a smaller MSD
filter to detect more subtle artifacts, and used Savtitzky–Golay (SG) filtering to denoise
these signals [46]. The proposed method was able to achieve a SNR of 2.41 dB whereas the
use of only spline interpolation or SG filtering resulted in SNR values of −19.96 dB and
−23.79 dB, respectively.

3.1.7. Other Methods

There were nine methods that did not fall under the previous categories. Barker et al.
developed a method using an adjusted autoregressive model with a pre-whitening filter
and iteratively reweighted least squares (AR(P)-IRLS) [60]. This method outperformed
an ordinary least squares regression method, a wavelet-based method with ordinary least
squares regression, and a spline-based method with ordinary least squares regression using
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receiver operating characteristic (ROC) analysis for a synthetic dataset and a dataset of
22 children [60]. The ROC is a plot developed based on sensitivity and specificity to evaluate
the successfulness of the noise removal algorithm. The AR(P)-IRLS method was extended
using a dual-stage Kalman filter that can be applied in real time (online application) and
performs similarly [34]. A correlation-based signal improvement method was developed
by Cui et al. which was able to improve the contrast-to-noise ratio (CNR) from 1.31
and 1.28 to 2.59 and 2.59 for HHb and HbO signals, respectively, tested on a dataset of
10 healthy adults [24]. The Temporal Derivative Distribution Repair (TDDR) method was
developed by Fishburn et al. [33]. This method involves taking the temporal derivative of
the cerebral NIRS signal, initializing a vector of observation weights, iteratively estimating
the robust observation weights, applying the resulting robust weights to the centered
temporal derivative to produce the corrected derivative, and integrating the corrected
temporal derivative to yield the corrected signal [33]. An in-depth evaluation of this method
is included in Section 3.1.8. Wang and Seghouane developed a method using discrete
cosine transformation coefficients to estimate the signal in the presence of artifacts [68].
This was tested on HbO signals with artifacts introduced measured from an undisclosed
number of children. The ability of this method to remove artifacts was compared to two
targeted artifact removal algorithms (TARA (convex) and TARA (non-convex)). TARA
algorithms assume a model of the HbO signal, a low-pass signal, two types of artifacts (step-
discontinuities and signal magnitude spikes) and a Gaussian stochastic process. Convexity
refers to the number of minima used for optimization [74]. These algorithms estimate
the components of each portion of the signal model using optimization to remove the
identified artifacts and reconstruct the hemodynamic signal [74]. The proposed algorithm
presented by Wang and Seghouane directly estimates the signal parameters, while the
TARA algorithms do so indirectly. The mean squared error (MSE) between true resting state
signal and restructured signal were 0.020876 for TARA (convex), 0.015514 for TARA (non-
convex), and 0.0037094 for the proposed method [68]. Another method was the functions
that were included in the NICA toolbox for NIRS calculations and analyses. These included
a common average reference method, transfer function models as well as the low pass
Butterworth filter and Grand Average and Region of Interest Analysis [69]. Sutoko et al.
presented a method that used sudden detected increases in fNIRS signal amplitude, a
shift in baseline amplitude, and intertrial discrepancy of correlation as indicators of the
presence of artifactual segments [70]. This simple algorithm was able to achieve a rejection
accuracy of 71.8% when compared to visual inspection. Robertson et al. developed a multi-
channel regression method that used linear regression between 30 channels of NIRS data to
improve its SNR. This method performed similarly to the compared ICA-based method
and outperformed a recursive least squares-based adaptive filter and a wavelet-based
method [17]. Sweeney et al. presented an EEMD-CCA method that was able to reduce
motion artifacts from fNIRS signals, achieving a ∆SNR of 3.5 dB, a 49.4% artifact reduction,
and a correlation with the ground truth signal of 0.68 [35]. This method outperformed an
EEMD-ICA [71] as well as the wavelet-based method presented by Robertson et al. [17,35]

3.1.8. Comparison of Methods

It proved difficult to compare different artifact removal methods due to the heterogene-
ity of the datasets based on factors like demographics, different variations of artifacts, and
different metrics of measuring effectiveness, as was alluded to in Section 3.1.2. However,
there were four studies that included more in-depth comparisons to other artifact removal
methods in NIRS signals.

The first of these studies was the evaluation of a hybrid motion artifact detection and
removal method [40]. The SNR and R values between the processed and clean signal was
used to demonstrate the effectiveness of the proposed method for NIRS data at 10 Hz
(40 patients, mean age 32 years) in comparison to a wavelet-based method, accelerometer-
based method, median filtering, spline interpolation with Savitzky–Golay filtering (Spline-
SG), spline interpolation with robust locally weighted scatterplot smoothing (Spline-Rloess),
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and solely cubic spline interpolation combined with wavelet filtering. The proposed method
was the only method in the performance comparison between methods with an SNR that
exceeded 0 dB and a value of R above 0.6 between the clean and processed signals [40].

There was a second study comparing several methods to a developed hybrid artifact
clearance method [32]. This method was validated against other techniques presented in
articles included in this review including wavelet filtering [41], tPCA [28], and correlation-
based signal improvement (CBSI) [24] as well as combinations of more broad signal techniques
like Rloess for artifact spike removal and spline interpolation for baseline shifts. These
methods, and combinations of these methods, were applied to the same datasets as the
proposed methods. The evaluation of the methods was based on the ability of each method
to recover the synthetic hemodynamic response function that was applied to two raw NIRS
datasets (seven and five patients, respectively) recorded at 50 Hz (one set performing actions
and the second at rest) with added baseline shift and artifacts [32]. The signal processed
by each signal was compared to the true HRF by metrics of MSE, peak-to-peak error (Ep),
coefficient of determination (R2), and area under the receiver operator characteristic (AUC-
ROC). For the first dataset, a combined method of Rloess and spline interpolation (Rloess-
Spline) had the best performance in metrics MSE (0.60 ± 0.16 × 104), Ep (3.90 ± 1.13 × 104),
and R2 (0.80 ± 0.02), and CSBI had the best performance in AUC-ROC (0.91 ± 0.03). For
the second dataset, the proposed Spline-SG method had the best performance in metrics
MSE (0.44 ± 0.06 × 104) and Ep (2.52 ± 0.41 × 104), CSBI had the best performance in R2

(0.84 ± 0.01), and the spline only method, the proposed Spline-SG, and Rloess-Spline method
had identical AUC-ROC results (0.89 ± 0.05).

A third study compared the TDDR method [33] to several other methods including
CBSI [24], movement artifact reduction algorithm (MARA) [41], tPCA [28,75], kurtosis
wavelet filtering (kWavelet) [23,56], and the previously mentioned Spline-SG method [32].
These methods were evaluated using simulated NIRS data as well as experimental NIRS
data (23 patients, ages 7 to 15, conducting working memory tasks) recorded at 50 Hz
and resampled at 5 Hz after pre-processing using the NIRS Brain AnalyzIR toolbox [76].
The success of the artifact removal methods for the simulated data was evaluated using
AUC-ROC compared to the motion-free data. The rankings of the magnitude of AUC-ROC
values compared to the motion-free data (0.869) were as follows: TDDR (0.775), CSBI (0.733),
Spline-SG (0.652), tPCA (0.591), MARA (0.563), uncorrected data (0.516), and kWavelet
(0.513). The success of the artifact removal for the experimental data was evaluated using
the maximum activation t-statistic and greatest number of mesh vertices with positive
significant (p < 0.05) values. The rankings of the magnitude for the t-statistic were as
follows: TDDR (4.88), kWavelet (3.96), tPCA (3.79), Spline-SG (3.68), uncorrected (3.67),
CSBI (3.02), and MARA (2.96). The rankings of the magnitude for mesh vertices with
positive significant values were as follows: TDDR (2399), uncorrected (1560), Spline-SG
(1153), kWavelet (935), MARA (924), CBSI (903), and tPCA (891). The TDDR method
outperforms all other methods in simulated and experimental data; however, limitations to
the method are prevalent. High-frequency oscillations increase the variance of the temporal
derivative, which results in the TDDR method not performing well for high-frequency
artifacts [33]. The Spline-SG method indicated strong results in the previous two articles
outlined; however, it performs poorly in achieving peak activation [45,46,49]. Activation
is a metric to analyze the abilities of each model to detect changes in the HbO signals in
response to tasks in the brain. It is evaluated using a general linear model (GLM) [77].
Poor performance in peak activation implies that the algorithm was not able to detect
these working load changes. CSBI performed well in the simulated data, but performed
poorly in the experimental data due to its reliance on the assumption that there is a strong
anti-correlation between HHb and HbO [48,49].

A final study that discussed the performance of five different methods in motion
artifact removal was presented by Robertson et al. [17]. The methods compared included
two multiple channel regression-based methods (a 2-channel and a 30-channel), a discrete
wavelet-based method, a recursive least squares-based adaptive filter, and an ICA-based
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method. These methods were tested on two datasets, the first when motion was induced
when the subject was instructed to move their head (three subjects) and another when
the subject was told to tap their finger (one subject). When time of motion was known
(set of three subjects) the average across the three subjects for SNR (dB) when λ = 760 nm
was wavelet (5.95), 30-channel regression (5.67) and ICA (5.62) and when λ = 830 nm,
the ranking was the same: wavelet (4.93), 30-channel regression, and (4.56) ICA (2.75).
However, using the subject dataset when the motion was not known, the ranking changed.
When λ = 760 nm, ICA (3.20 dB), 30-channel regression (3.01 dB), and wavelet (0.89 dB) and
when λ = 830 nm, ICA (3.67 dB), 30-channel regression (3.01 dB), and wavelet (0.58 dB) [17].
This change in ranking indicates that the wavelet-based method may not perform when the
location of motion is not known. However, due to the small dataset, more work is needed.
It was able to conclude based on their performance that the RLS method and 2-channel
regression method had substantially worse performances than the rest [17].

3.2. Data Quality Improvement and Physiological/Other Noise Artifact Filtering Methods

There were 15 articles presenting methods that were devised for data quality im-
provement and physiological/other noise artifacts. The methods were developed for NIRS
signals with sampling rates ranging from 1.81 Hz to 100 Hz. There were 9 of 13 methods
developed for HHb and HbO signals, 1 method with HbO, and 1 method for an undis-
closed NIRS signal. These methods were organized into three categories: signal drift
removal methods, physiological/other noise artifact removal methods using NIRS only,
and physiological/other noise artifact removal methods using auxiliary signals only. More
detailed information on the studies that evaluated or incorporated these methods (patient
information, data information, methodology, effectiveness, results, and limitations) are
provided in Supplementary Materials (Tables S8–S10) with a summary of Supplementary
Materials provided in Table 2.

Table 2. Summary of signal quality improvement and physiological/other noise removal methods.

Artifact Removal
Methods

Number of
Studies

Included

Number of
Subjects

Signal Types
(if Specified) Effectiveness

Signal drift
removal 2 12 HHb and

HbO

• Shah and Seghouane presented a drift estimating
method using wavelet thresholding that was able to
achieve a CNR above 6 for HbO channels and above 5
for HHb channels [25].

• Seghouane and Ferrari [78] conducted a study using the
previous method that was able to outperform two
established methods from a NIRS statistical parametric
mapping toolbox [78,79] 9/18/2024 10:38:00 AM

Physiological and
other noise

artifact
removal—NIRS

only

8 71 HHb and
HbO

• The RLSE method presented by Nguyen et al. resulted
in noise reduced in HbO and HHb by 77 and 99%,
respectively, in CNR [80].

• Zhang et al. proposed an adaptive filtering method that
was able to reduce the effects of global interference in
HbO signals but did not drastically improve HHb signals,
both of which were measured in CNR [72]. Further
analysis was conducted by this author on an adaptive
filtering method, which indicated that 71% of HbO
measurements exhibited an improvement in CNR [81].

• Ortega-Martinez et al. proposed a multivariate Kalman
filter tuned using tCCA and was able to demonstrate a 60%
reduction in the RMSE compared to the use of a GLM [29].
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Table 2. Cont.

Artifact Removal
Methods

Number of
Studies

Included

Number of
Subjects

Signal Types
(if Specified) Effectiveness

Physiological and
other noise

artifact
removal—NIRS

only

8 71 HHb and
HbO

• Santosa et al. presented an ICA-based method for noise
removal where the SNR of all HbO signals improved
from 0.66 to 4.33. Based on the t-statistic, the ICA-based
method performed better than low-pass filtering [82].

• Chi et al. presented an EMD-based method that was able
to estimate the heart rate within 80 to 90% accuracy [83]

• Santosa et al. conducted a robust analysis of several
signal processing methods. The best performance in
AUC-ROC across datasets was SS regression + ME +
AR-IRLS method. SS regression + AR-IRLS method had
similar success. Pre-processing did not have dramatic
effect on AUC-ROC [84].

• Guerrero-Mosquera et al. proposed the use of running
correlation (global information) to detect noisy channels.
It was compared to using cross-correlation (local
information) [85]. Using local information resulted in an
AUC-ROC increase of 91.23%, and the use of global
correlations had an increase of 60.57% [85].

Physiological and
other noise

artifact removal—
Auxiliary signals

5 51 HHb and
HbO

• Three methods proposed by Baruernfield included TF,
CAR, and ICA methods. TF had the best performance in
both HHb and HbO improvements of CNR for patient
datasets. For TF, CNR improvements for HbO was
within the range of 3.7% to 188.8% and for HHb from
−0.6% to 55.0% [26].

• The method proposed by Bontrager et al. used
simultaneously recorded BP signals to reduce the
correlations between fNIRS signals and BP [86].

• The ICA-based method proposed by Kohno et al. was
successful in removing artifacts resulting from blood
skin flow based on correlation coefficients [87]. The
coefficient of correlation was 0.724 between the
identified component and changes in the skin blood
flow for the first patient, and the coefficient of
correlation was 0.789 for the second patient [87].

• Sato et al. [88] presented a method of extracting scalp
hemodynamics using PCA and removing noise using a
GLM (ShortPCA GLM). It was compared to several
methods and had the best performance based on metrics
of R2 and specificity. The use of the standard GLM had a
better performance in sensitivity. They were compared
to fMRI data.

• Von Lühmann et al. developed a method using GLM
with t CCA, which when compared to GLM with short
separation, outperformed in metrics of HbO correlation,
RMSE, F-score, p-value, and power spectral density [30].

Where AUC-ROC = Area Under the Curve—Receiver Operating Characteristic, AR-IRLS = Iterative Autoregressive
Least Squares, BP = Blood Pressure, CAR = Common Average Reference, CNR = Contrast-to-Noise Ratio,
EMD = Empirical Mode Decomposition, fMRI = Functional Magnetic Resonance Imaging, GLM = General
Linear Model, HbO = Oxyhemoglobin, HHb = Deoxyhemoglobin, ICA = Independent Component Analysis,
ME = Mixed Effect, PCA = Principal Component Analysis, RLSE = Robust Least Squares Estimation, RMSE = Root
Mean Square Error, SNR = Signal-to-Noise Ratio, SS = Short Separation, tCCA = Targeted Canonical Correlation
Analysis, TF = Transfer Function.

3.2.1. Signal Drift Removal Methods

There were two articles that presented a method developed solely to remove signal
drift in cerebral NIRS signals utilizing techniques such as removal of estimated induced
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functional response using wavelet coefficient thresholding [25]. This method increased
the CNR of the HbO and HHb signals from below 1 (in raw data) to above 6 in HbO and
above 5 in HHb signals for the five different channels analyzed. This method outperformed
the wavelet-minimum description length (wavelet-MDL) method [89] to which it was
compared. This method increased the CNR in HbO and HHb signals to below 3 for either
channel [25]. However, this method did nothing to remove any other noise. This method
was extended to estimate HRF in the presence of noise and drift [78]. It outperformed two
established methods using experimental NIRS data.

3.2.2. Physiological and Other Noise Artifact Removal Methods—NIRS Only

There were eight methods developed to remove extraneous physiological and other
noise using a variety of techniques. Nguyen et al. developed a recursive least squares-
based method that yielded a noise reduction in HbO and HHb signals of 77% and 99%,
respectively, based on CNR data [80]. This performance was better than the Kalman filter
method, low-pass filter method, and independent component analysis (ICA)-based method.
Zhang et al. developed a multitiered adaptive filter method to remove drift that improved
the CNR compared to the raw HbO signal from 40.2% to 80.8% [72] for data recorded from
1 healthy volunteer and 64% to 75% [81] for data recorded from 17 healthy volunteers. How-
ever, this method decreased the CNR for HHb before and after filtering [72,81]. Additional
methods for this purpose include a combination of low-pass filter, mean average high-pass
filter, targeted canonical component analysis (tCCA), Kalman filter [29], a three-tiered
approach involving empirical mode decomposition, independent component analysis, and
correntropy spectral density [83], an additional ICA-based method [82], and a comparison
of several methods of pre-processing and regression for physiological noise removal [84].
Santosa et al. indicated that an iterative auto-regressive least squares (AR-IRLS) with
a short separation method performed better than PCA and the ordinary least squares
methods [84]. Only the AR-IRLS algorithm evaluated had an AUC-ROC value above
0.75 [84]. Guerrero-Mosquera presented a study comparing running correlation (global
information) to identify noisy artifact ridden fNIRS channels to using cross-correlation
(local information) [85]. Under different cognitive conditions (2-back and 0-back tasks)
the AUROC in identifying noisy channels was 60.57% using running correlation (global
correlations) and 91.23% using cross correlations (local correlations) [85].

3.2.3. Physiological and Other Noise Artifact Removal Methods—Auxiliary Signals Used

There were five methods developed that use simultaneously recorded auxiliary signals
to identify physiological noise in cerebral NIRS signals. Auxiliary data sources included
blood pressure coupled with photoplethysmography (PPG) and accelerometer data, blood
pressure coupled with electrocardiograms (ECGs), respiration rate data blood pressure
coupled with respiration rate, functional magnetic resonance imaging (fMRI) data, and
skin blood flow measured by laser Doppler [26,30,86–88]. The auxiliary signals are used to
identify segments where artifacts occurred by comparing whether oscillations in cerebral
NIRS signals are of a particular hemodynamic physiological origin or are erroneous. It
was difficult to conduct a quantitative comparison of the effectiveness of these methods
due to the heterogeneity of metrics that were used and differences in what was defined
as “unwanted noise” that required removal. The method developed by Bauernfeind et al.
demonstrated that the common average reference (CAR), transfer function (TF), and ICA
methods resulted in increases of CNR in HbO signals using simultaneously measured BP,
respiration rate, and ECG signals using the TF method. There was an improvement of CNR
between 3.7% to 188.8% in HbO signals across datasets. The improvement of CNR was
between −0.6% to 55.0% in HHb signals across datasets. The TF method demonstrated
the best results of the three methods [26]. The TF was the only method that obtained any
HHb signal improvement. Bontrager et al. indicated that there was greater improvement
at reducing the correlation between fNIRS and BP signals using an mutual information
filter compared to the raw data and RLS method [86]. Another study compared the



Bioengineering 2024, 11, 933 19 of 30

ShortPCA GLM method to the standard GLM, MS-ICA method (proposed by Molgedey and
Schuster [90]), and RestEV method (eigenvector-based spatial filtering method [75]). The
ShortPCA GLM method used simultaneously recorded fMRI signals and was determined
most appropriate for fitting changes in oxyhemoglobin during movements [88]. Finally, the
GLM with short separation (SS) depicted superior results based on the yielded robustness
of HRF estimation compared to GLM with tCCA [30].

4. Discussion

The aim of this systematically conducted scoping review of artifact management
for cerebral NIRS signals is to provide a comprehensive overview of existing methods
for artifact removal. This manuscript builds upon the work of Cooper et al. [91] and
Huang et al. [15], which focused on artifacts induced by motion and interfering with NIRS
monitoring. The review conducted by Huang et al. [15] was focused on mitigating fNIRS
motion artifacts, and the review conducted by Cooper et al. [91] was conducted over a
decade ago. As such, the information and level of detail presented in this review still fills a
significant literature gap.

The results of this review indicate a lack of “gold-standard” for cerebral NIRS signal
artifact management. There is vast disagreement regarding which method has superior
functionality. It proved difficult to conduct an analytical comparison using quantified data
due to the heterogeneity of data sources (simulated and experimental data), sampling rates
used, types of artifacts that each method was able to remove, and differences in the signal
characteristic of what an “artifact” was. Further, not having consistent “effectiveness”
metrics and made it difficult to compare methods. Some articles compared the processed
signal to the identified “true hemodynamic response function” and others were compared
to manually cleaned signals. There were no clear differences in the types of artifact removal
methods that were devised for one cerebral NIRS signal type (HbO and HHb, HbO only,
rSO2, optical density), and there were no clearcut advantages or specific applications
supporting the choice of one signal type over another.

There were four studies that presented artifact management methods that included
the most robust comparisons of the effectiveness of their proposed methods to that of
four or more using patient data [17,32,33,40]. Each of the methods were developed for
artifact removal in HHb and HbO signals. However, there were many variables that made
it difficult to compare the results between articles. The evaluation of the effectiveness
of one method over the other did not have consistent metrics. Gao et al. used metrics
of R and SNR [40], Jahani et al. used metrics of MSE, Ep, R2, and AUC-ROC [33], and
Fishburn et al. also used AUC-ROC, maximum activation t-statistic, and the greatest
number of mesh vertices with positive significant values [32]. Despite the consistent use
of AUC-ROC as an evaluation metric, the most successful methods remained difficult to
compare, as AUC-ROC was calculated between the processed signal and the true HRF
by Jahani et al. [32] and AUC-ROC was calculated between the processed signal and the
motion-free signal by Fishburn et al. [33]. Effectiveness was also difficult to quantify due
to the breadth of the types of artifacts and differing definitions of what the correct signal
should look like. An example of this is illustrated by the fact that the Spline-SG method
performs well in two of the comparison articles but has poor performance in another using
peak activation [45,46,49]. The Fishburn et al. TDDR method seemingly performs much
better in metrics of AUC-ROC for simulated data and is successful in experimental data
using the t-statistic; however, the limitations of this method in removing high-frequency
artifacts were noted and could be debilitating in the success of this method [33]. Robertson
et al. also presented a comparison of a recursive least squares adaptive filter, wavelet-based
method, multi-channel linear regression-based method, and an ICA-based method. The
ICA-based and multi-channel linear regression-based methods performed the best when
SNR was calculated; however, this comparison was conducted on only four subjects and
did not include any hybrid methods of more complexity [17]. As such, its conclusions
do not describe the leading cerebral NIRS artifact management methods. Similarly, the
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comparison conducted by Fishburn et al. [33] presents one of the most robust analyses of
several methodologies that have been developed and were included in this review. The
examination used a single dataset and serves as an example of the methodology that must
be followed to elucidate a leading cerebral NIRS artifact management method. However,
this methodology only compared the proposed TDDR method to six others, only one of
which were hybrid methods.

Many methods utilized auxiliary data to detect artifacts either using accelerometer
data for motion detection or comparing other physiological signals to detect the incidence of
artifacts. The use of auxiliary data for cerebral NIRS artifact detection limits the widespread
applicability of the method as it expands the requirements for the experimental setup.

The interconnected nature of brain hemodynamic monitoring makes it useful to lever-
age artifact removal methods that have been developed for other cerebral bio-signals. There
are potential benefits to using ABP or ICP amongst other bio-signals typically recorded si-
multaneously in the ICU to develop a more robust artifact management method. However,
the intricacies in the morphologies seen in artifacts in cerebral NIRS signals necessitates the
validation of methods specifically on this signal type. Artifact management for cerebral
NIRS signals must be able to address the unique artifact types that occur during ICU
recording that may not occur in ICP or other cerebral hemodynamic monitoring techniques.
These include, but are not limited to, artifacts originating from blood pooling beneath the
NIRS optodes in incidences of hematoma, the effect of skin colour on the light emitted, and
shifting of the NIRS optodes on the scalp due to adhesive failure.

The performance of the hybrid methods, particularly in the robust comparisons con-
ducted by Gao et al. [40] and Jahani et al. [32], indicate the advantages of integrating
multiple signal analysis techniques to remove the complex and varied morphological
artifacts in cerebral NIRS data. This validates the claim that it is likely using a hybrid
methodology that the most robust artifact management method will be constructed. The
method presented by Gao et al. indicates that the three components of the hybrid method
were each used to remove specific forms of artifacts [40], as was discussed in Section 3.1.6.
The successes of the existing hybrid methods and the absence of any method developed
that combines the utility of sequentially applied signal analysis techniques with machine
learning indicates that there remains a significant knowledge gap in cerebral NIRS artifact
management.

There were 15 articles that outlined methods that were focused solely on improving
data quality through the reduction of signal baseline drift and physiological noise. How-
ever, only two methods had in-depth comparisons of proposed methods to other methods.
Nguyen et al. and Santosa et al. both provided quantitative evidence that their proposed
methods (RLSE and AR-IRLS, respectively) performed better than the methods to which
they were compared [80,84]. Nguyen et al. used metrics of CNR and t-value compared to
the true heart rate [80]. Santosa et al. quantified effectiveness using the AUC-ROC between
the cleaned and processed signal [84]. The differences between these two studies, specif-
ically using different metrics to quantify effectiveness, made it impossible to determine
which method presented was the most effective. Due to the inability of these methods to
remove more substantial motion artifacts, they will not be able to be applied in isolation to
provide clean cerebral NIRS data streams, providing a further need for a hybrid artifact
management method.

This review provides insights into the available artifact management methods for
cerebral NIRS signals; however, comparisons between methodologies is only possible to
conduct within articles due to the prevalence of limitations in this literature. To properly
elucidate a leading method for cerebral NIRS artifact management, it requires that the
limitations discussed in the proceeding section be adequately addressed.
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4.1. Limitations of Literature

The most glaring limitation to the existing literature is the heterogeneity in the metrics
used to quantify the effectiveness as has been discussed throughout. However, there are
additional limitations to the literature that made the comparison of methodologies difficult.

There were several different signal types (HbO, HHb, tHb, rSO2, and optical density)
and recording hardware types used to measure cerebral NIRS data from study participants.
Each signal type had to be derived using different algorithms based on the measured
absorbance of varying infrared wavelengths. This introduced variance in the signal mor-
phologies on which models were constructed and tested. There were significant differences
between studies in the instructions given to them. For healthy volunteers, some recordings
were conducted while patients were asleep, still, or performing prescribed actions. This
made the comparison of methods between articles ineffective due to the different artifacts
potentially present depending on the activity of the volunteer. Additionally, some of the
participant groups from which data were measured were healthy and others had active or
past impaired neurological function. The variety of signal types, hardware types, actions
performed by participants, and participant neuropathology introduced variance in the
signal morphologies and artifacts observed in the cerebral NIRS signals between studies,
which further introduced difficulty in comparing methods between studies. Despite that,
this review examined time-series methods of identifying artifacts, and the number of vari-
ables to consider during recording emphasizes the need for robust external validation of
methods. This could be accomplished using publicly available synthetic datasets with
a diverse library of artifact types occurring across the datasets as well as corresponding
cleaned signals. Through standardized comparison methods such as MSE, AUC-ROC,
and computational time, a more objective depiction of the efficacy of artifact management
methods could be elucidated. This methodology would accelerate the development of a
“gold-standard” method as the weaknesses of each method could be more easily identified.

There were only three studies that indicated that the data used to construct models
were sampled from patients with active or a history of neurological impairment [55,64,88].
The use of cerebral NIRS data is significant in evaluating impaired cerebral autoregulation,
and as such, there is clearly a lack of research regarding artifact management methodologies
that can address artifacts present in cerebral NIRS data during neuropathological states.
Artifacts that occur during recordings, specifically when neuropathology is impaired, pose
significant barriers to the widespread adoption of cerebral NIRS as an ICU hemodynamic
monitoring tool. These artifacts include motion artifacts that result in large spikes in
magnitude or substantial signal drift due to device disconnection. Both can result in false
alarms that either unnecessarily distract ICU staff or put the patient at risk if something
is missed.

4.2. Limitations of Review

There were several inherent limitations with this systematically conducted scoping
review. This study only covers research articles published prior to 26 January 2024 and
may not reflect the most recent research. The articles included were only those published
in English, introducing a potential language bias. Due to the heterogeneity of the study
types discussed above, there may have been inadequate conclusions that were able to be
made due to a lack of sufficient information to conduct a meta-analysis.

4.3. Future Directions

Future directions based on these findings should include an updated study reviewing
the effectiveness of each NIRS artifact removal method on the same data using the same
metrics. It would be very beneficial to perform an in-depth comparison of several leading
methods using the same dataset to truly evaluate the efficacy of one over the other. Dif-
ferent types of artifacts should be considered in this evaluation including rapid spikes in
magnitude, signal disconnection artifacts, baseline drift, small oscillations, and artifacts
resulting from physiological noise, similar to the study that was conducted by Fishburn



Bioengineering 2024, 11, 933 22 of 30

et al. [33]. Limiting the number of variables to consider when investigating the effectiveness
of each method will allow for a more robust analysis. The results of effectiveness will be
able to be directly interpreted allowing for leading methods to truly be elucidated.

As was identified in this review, hybrid methods are able to identify varying types
of artifacts using various integrated signal analysis methods. Future work that will be
conducted in this lab will involve the development of a methodology that employs several
signal analysis techniques, many of which were discussed in this review. This layered
approach will involve the following:

1. Threshold-based methods—will be used to detect extraneous data points as well as
signal drift based on the expected magnitude of signals.

2. Time-series autoregression-based methods—will be used to detect large magnitude
spikes common in high frequency artifacts that occur during patient motion.

3. Wavelet or Fourier transformation-based methods—the transformation of the time-
series cerebral NIRS signals into the time-frequency or frequency domains will allow
for the detection of artifacts in the oscillatory behavior of the cerebral NIRS data.

4. Waveform morphology detection-based methods—a catalog will be developed based
on high frequency data such that complex morphological artifacts can be identified
using their morphological structure like those that have been based off the Hu et al.
morphological clustering and analysis of ICP algorithm [92], which has been the basis
for several morphology-based signal detection algorithms for ICP signals [93–95].

All these techniques will be applied using machine learning and will be merged into a
single autonomous artifact management pipeline using machine learning techniques.

5. Conclusions

The results of the search conducted across multiple databases yielded cerebral NIRS
artifact management of two types: (1) motion and disconnection artifact removal methods;
(2) signal quality improvement and physiological/other noise removal methods. In conclu-
sion, this review provides a comprehensive overview of the existing methods for artifact
management in cerebral NIRS through an in-depth analysis of each method. However, the
heterogeneity of the metrics used to quantify effectiveness, variations in the definitions of
“artifacts”, and differences in the datasets used do not allow for a leading method in this
application to be elucidated. There were two articles that presented hybrid methods and
their efficacies relative to other methods in removing different artifact types. This further
indicates that it is likely through a sequential layered approach that the most robust artifact
removal can be conducted. Homogeneity in the metrics used to quantify effectiveness in
each method and comparisons conducted on a single set of data would allow for a more
accurate depiction of the efficacy of each method, and this was demonstrated in one article
included in this review. Future work should involve the creation of a robust methodology to
compare artifact management tools using a single dataset. The information presented will
be foundational to the development of a sequential layered artifact management pipeline
by our lab. It will make use of dynamic thresholding, time-series autoregressive models,
and wavelet-based models, all of which were discussed in-depth in this review, and in-
tegrated using machine learning techniques to accurately remove artifacts from cerebral
NIRS signals in real time.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bioengineering11090933/s1, Table S1: Motion and other
disconnection artifact management methods—Accelerometer-based methods, Table S2: Motion and
other disconnection artifact management methods—Wavelet-based methods, Table S3: Motion and
other disconnection artifact management methods—Machine learning-based methods, Table S4:
Motion and other disconnection artifact management methods—Filter-based methods, Table S5:
Motion and other disconnection artifact management methods—Component analysis-based meth-
ods, Table S6: Motion and other disconnection artifact management methods—Hybrid methods,
Table S7: Motion and other disconnection artifact management methods—Other methods, Table
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Appendix A

Table A1. PRISMA-ScR Checklist.

Section Item Checklist Item Location Where Item Is
Reported

Title
1 Identify the report as a systematic review. See pg. 1

Abstract
Structured summary 2 See the PRISMA 2020 for Abstracts checklist. See pg. 1 (Abstract)

Introduction

Rationale 3 Describe the rationale for the review in the context of existing
knowledge. See pg. 2 (Section 1)

Objectives 4 Provide an explicit statement of the objective(s) or question(s)
the review addresses. See pg. 2 (Section 1)

Methods

Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and
how studies were grouped for the syntheses. See pg. 3 (Section 2.2)

Information sources 6

Specify all databases, registers, websites, organisations,
reference lists and other sources searched or consulted to

identify studies. Specify the date when each source was last
searched or consulted.

See pg. 3 (Section 2.3)

Search strategy 7 Present the full search strategies for all databases, registers and
websites, including any filters and limits used.

See pg. 3 (Section 2.3) &
pg. 23 (Appendix B)

Selection process 8

Specify the methods used to decide whether a study met the
inclusion criteria of the review, including how many reviewers
screened each record and each report retrieved, whether they

worked independently, and if applicable, details of automation
tools used in the process.

See pg. 3 (Section 2.4)
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Table A1. Cont.

Section Item Checklist Item Location Where Item Is
Reported

Data collection process 9

Specify the methods used to collect data from reports, including
how many reviewers collected data from each report, whether

they worked independently, any processes for obtaining or
confirming data from study investigators, and if applicable,

details of automation tools used in the process.

See pg.4 (Section 2.5)

Data items 10a

List and define all outcomes for which data were sought.
Specify whether all results that were compatible with each

outcome domain in each study were sought (e.g. for all
measures, time points, analyses), and if not, the methods used

to decide which results to collect.

See pg.4 (Section 2.5)

Critical appraisal of
individual sources of

evidence
10b

List and define all other variables for which data were sought
(e.g. participant and intervention characteristics, funding

sources). Describe any assumptions made about any missing or
unclear information.

N/A

Study risk of bias
assessment 11

Specify the methods used to assess risk of bias in the included
studies, including details of the tool(s) used, how many

reviewers assessed each study and whether they worked
independently, and if applicable, details of automation tools

used in the process.

All articles published in
academic journals, as such,

biases were assumed to
have been screened

Effect measures 12 Specify for each outcome the effect measure(s) (e.g. risk ratio,
mean difference) used in the synthesis or presentation of results. N/A

Synthesis methods

13a

Describe the processes used to decide which studies were
eligible for each synthesis (e.g. tabulating the study

intervention characteristics and comparing against the planned
groups for each synthesis (item #5)).

N/A

13b
Describe any methods required to prepare the data for

presentation or synthesis, such as handling of missing summary
statistics, or data conversions.

N/A

13c Describe any methods used to tabulate or visually display
results of individual studies and syntheses.

All data items for each
method were tabulated

and are included in
Supplementary Materials

(Tables S1–S10)

13d

Describe any methods used to synthesize results and provide a
rationale for the choice(s). If meta-analysis was performed,

describe the model(s), method(s) to identify the presence and
extent of statistical heterogeneity, and software package(s) used.

N/A

Reporting bias
assessment 14 Describe any methods used to assess risk of bias due to missing

results in a synthesis (arising from reporting biases). See pg. 12 (Section 4.2)

Certainty assessment 15 Describe any methods used to assess certainty (or confidence)
in the body of evidence for an outcome. N/A

Results

Study selection 16a
Describe the results of the search and selection process, from

the number of records identified in the search to the number of
studies included in the review, ideally using a flow diagram.

See pg. 4 (Section 3)

16b Cite studies that might appear to meet the inclusion criteria, but
which were excluded, and explain why they were excluded. N/A

Study characteristics 17 Cite each included study and present its characteristics. See pg. 5–9
(Sections 3.1 and 3.2)

Risk of bias in studies 18 Present assessments of risk of bias for each included study.

All articles published in
academic journals, as such,

biases were assumed to
have been screened
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Table A1. Cont.

Section Item Checklist Item Location Where Item Is
Reported

Results of individual
studies 19

For all outcomes, present, for each study: (a) summary statistics
for each group (where appropriate) and (b) an effect estimate
and its precision (e.g., confidence/credible interval), ideally

using structured tables or plots.

See pg. 5–10
(Sections 3.1 and 3.2)

Results of syntheses

20a For each synthesis, briefly summarise the characteristics and
risk of bias among contributing studies.

All articles published in
academic journals, as such,

biases were assumed to
have been screened

20b

Present results of all statistical syntheses conducted. If
meta-analysis was undertaken, present for each the summary
estimate and its precision (e.g., confidence/credible interval)

and measures of statistical heterogeneity. If comparing groups,
describe the direction of the effect.

No statistical synthesis
conducted

20c Present results of all investigations of possible causes of
heterogeneity among study results.

See pg. 5–10
(Sections 3.1 and 3.2)

20d Present results of all sensitivity analyses conducted to assess the
robustness of the synthesized results.

See pg. 5–10
(Sections 3.1 and 3.2)

Reporting biases 21 Present assessments of risk of bias due to missing results
(arising from reporting biases) for each synthesis assessed. See pg. 12 (Section 4.2)

Certainty of evidence 22 Present assessments of certainty (or confidence) in the body of
evidence for each outcome assessed. N/A

Discussion

Discussion
23a Provide a general interpretation of the results in the context of

other evidence. See pg. 10–12 (Section 4)

23b Discuss any limitations of the evidence included in the review. See pg. 12 (Section 4.1)
23c Discuss any limitations of the review processes used. See pg. 12 (Section 4.2)

23d Discuss implications of the results for practice, policy, and
future research. See pg. 12–13 (Section 4.3)

Other information

Registration
andprotocol 24a

Provide registration information for the review, including
register name and registration number, or state that the review

was not registered.
Review was not registered

24b Indicate where the review protocol can be accessed, or state that
a protocol was not prepared. Protocol not prepared

24c Describe and explain any amendments to information provided
at registration or in the protocol. N/A

Support 25 Describe sources of financial or non-financial support for the
review, and the role of the funders or sponsors in the review. See pg. 20 (Funding)

Competing interests 26 Declare any competing interests of review authors. See pg. 20 (Conflicts of
Interest)

Availability of data,
code and other

materials
27

Report which of the following are publicly available and where
they can be found: template data collection forms; data

extracted from included studies; data used for all analyses;
analytic code; any other materials used in the review.

N/A

N/A = Not applicable to this review.

Appendix B

The detailed strings of keywords that were used as search parameters in BIOSIS,
Scopus, EMBASE, PubMed, and Cochrane Database were:

“Near infrared spectroscopy” OR “Near-Infrared Spectroscopies” OR “Spectroscopy,
Near-Infrared” OR “Spectroscopies, Near-Infrared” OR “Near-Infrared Spectroscopy” OR
“Near-Infrared Spectroscopies” OR “Near Infrared Spectroscopy” OR “NIR Spectroscopy”
OR “NIR Spectroscopies” OR “Near-Infrared Spectrometry” OR “Near-Infrared Spec-
trometries” OR “Near Infrared Spectrometry “ OR “Near Infrared Spectrometries” OR
“NIRS” OR “Optical density” OR “Absorbance” OR “Photographic density” OR “Trans-
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mission density” OR “Oxygen saturation” OR “Saturation, Oxygen” OR “Blood Oxygen
Levels” OR “Blood Oxygen Level” OR “Level, Blood Oxygen” OR “Oxygen Level, Blood”
OR “Saturation of Peripheral Oxygen” OR “Oxygen Saturation, Peripheral” OR “Periph-
eral Oxygen Saturation” OR “SpO2” OR “Regional oxygen saturation” OR “HbO” OR
“rSO2 Oxyhemoglobin” OR “Oxyhemoglobin” OR “Oxycobalthemoglobin” OR “Oxy-
cobalt Hemoglobin” OR “Hemoglobin, Oxycobalt” OR “HbO” OR “Deoxyhemoglobin”
OR “Hb” OR “Total hemoglobin” OR “HbTot” OR “Difference between oxyhemoglobin
and deoxyhemoglobin” OR “HbDiff”

AND
“Artifact management techniques” OR “Artefact management techniques” OR “Ar-

tifact management system” OR “Artefact management system” OR “Thresholding” OR
“Signal morphological analysis” OR “Wave form analysis” OR “Physiological structure” OR
“Physiological signal” OR “Artifact detection” OR “Error detection” OR “Error assessment”
OR “Error management” OR “Investigative Technique” OR “Technique, Investigative” OR
“Techniques, Investigative” OR “Investigative Technics” OR “Investigative Technic” OR
“Technic, Investigative” OR “Technics, Investigative” OR “Autoanalyses” OR “Laboratory
Automation” OR “Data Curation” OR “Artifact removal technique” OR “Artefact removal
technique” OR “Artifact removal method” OR “Artefact removal method”

All unique results yielded from these searches were considered eligible for the two-
stage screening that was conducted.
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