EfficientUNetViT: Efficient Breast Tumor Segmentation Utilizing UNet Architecture and Pretrained Vision Transformer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Structure
2.2. Dataset
2.3. Data Augmentation
2.4. Training Procedure
3. Experiments
3.1. Evaluation Metrics
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranjbarzadeh, R.; Dorosti, S.; Ghoushchi, S.J.; Caputo, A.; Tirkolaee, E.B.; Ali, S.S.; Arshadi, Z.; Bendechache, M. Breast tumor localization and segmentation using machine learning techniques: Overview of datasets, findings, and methods. Comput. Biol. Med. 2023, 152, 106443. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, T. Breast Cancer Semantic Segmentation for Accurate Breast Cancer Detection with an Ensemble Deep Neural Network. Neural Process. Lett. 2022, 54, 5185–5198. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Liu, D.; Chang, B. MF-Net: Multiple-feature extraction network for breast lesion segmentation in ultrasound images. Expert Syst. Appl. 2024, 249, 123798. [Google Scholar] [CrossRef]
- Tagnamas, J.; Ramadan, H.; Yahyaouy, A.; Tairi, H. Multi-task approach based on combined CNN-transformer for efficient segmentation and classification of breast tumors in ultrasound images. Vis. Comput. Ind. Biomed. Art 2024, 7, 2. [Google Scholar] [CrossRef]
- El Adoui, M.; Mahmoudi, S.A.; Larhmam, M.A.; Benjelloun, M. MRI Breast Tumor Segmentation Using Different Encoder and Decoder CNN Architectures. Computers 2019, 8, 52. [Google Scholar] [CrossRef]
- Benhammou, Y.; Achchab, B.; Herrera, F.; Tabik, S. BreakHis based breast cancer automatic diagnosis using deep learning: Taxonomy, survey and insights. Neurocomputing 2020, 375, 9–24. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, Y.; Meng, Y.; Yang, Y.; Qiu, B.; Cao, Y.; Zheng, J. LMA-Net: A lesion morphology aware network for medical image segmentation towards breast tumors. Comput. Biol. Med. 2022, 147, 105685. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Ghoushchi, S.J.; Sarshar, N.T.; Tirkolaee, E.B.; Ali, S.S.; Kumar, T.; Bendechache, M. ME-CCNN: Multi-encoded images and a cascade convolutional neural network for breast tumor segmentation and recognition. Artif. Intell. Rev. 2023, 56, 10099–10136. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Crane, M.; Bendechache, M. The Impact of Backbone Selection in Yolov8 Models on Brain Tumor Localization. SSRN 2024. [Google Scholar] [CrossRef]
- Qi, W.; Wu, H.C.; Chan, S.C. MDF-Net: A Multi-Scale Dynamic Fusion Network for Breast Tumor Segmentation of Ultrasound Images. IEEE Trans. Image Process. 2023, 32, 4842–4855. [Google Scholar] [CrossRef]
- Lei, Y.; He, X.; Yao, J.; Wang, T.; Wang, L.; Li, W.; Curran, W.J.; Liu, T.; Xu, D.; Yang, X. Breast tumor segmentation in 3D automatic breast ultrasound using Mask scoring R-CNN. Med. Phys. 2021, 48, 204–214. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Keles, A.; Crane, M.; Anari, S.; Bendechache, M. Secure and Decentralized Collaboration in Oncology: A Blockchain Approach to Tumor Segmentation. In Proceedings of the 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC), Osaka, Japan, 2–4 July 2024; pp. 1681–1686. [Google Scholar]
- Tang, P.; Yang, X.; Nan, Y.; Xiang, S.; Liang, Q. Feature Pyramid Nonlocal Network with Transform Modal Ensemble Learning for Breast Tumor Segmentation in Ultrasound Images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 3549–3559. [Google Scholar] [CrossRef]
- Zhu, C.; Chai, X.; Xiao, Y.; Liu, X.; Zhang, R.; Yang, Z.; Wang, Z. Swin-Net: A Swin-Transformer-Based Network Combing with Multi-Scale Features for Segmentation of Breast Tumor Ultrasound Images. Diagnostics 2024, 14, 269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liao, M.; Wang, J.; Zhu, Y.; Zhang, Y.; Zhang, J.; Zheng, R.; Lv, L.; Zhu, D.; Chen, H.; et al. Fully automatic tumor segmentation of breast ultrasound images with deep learning. J. Appl. Clin. Med. Phys. 2022, 24, e13863. [Google Scholar] [CrossRef]
- Aghamohammadi, A.; Shirazi, S.A.B.; Banihashem, S.Y.; Shishechi, S.; Ranjbarzadeh, R.; Ghoushchi, S.J.; Bendechache, M. A deep learning model for ergonomics risk assessment and sports and health monitoring in self-occluded images. Signal Image Video Process. 2023, 18, 1161–1173. [Google Scholar] [CrossRef]
- Karkehabadi, A.; Homayoun, H.; Sasan, A. FFCL: Forward-Forward Net with Cortical Loops, Training and Inference on Edge Without Backpropagation. arXiv 2024, arXiv:2405.12443. [Google Scholar] [CrossRef]
- Raherinirina, A.; Randriamandroso, A.; Hajalalaina, A.R.; Rakotoarivelo, R.A.; Rafamatantantsoa, F. A Gaussian Multivariate Hidden Markov Model for Breast Tumor Diagnosis. Appl. Math. 2021, 12, 679–693. [Google Scholar] [CrossRef]
- Anari, S.; Sarshar, N.T.; Mahjoori, N.; Dorosti, S.; Rezaie, A. Review of Deep Learning Approaches for Thyroid Cancer Diagnosis. Math. Probl. Eng. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Sarshar, N.T.; Mirzaei, M. Premature Ventricular Contraction Recognition Based on a Deep Learning Approach. J. Health Eng. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Safavi, S.; Jalali, M. RecPOID: POI Recommendation with Friendship Aware and Deep CNN. Futur. Internet 2021, 13, 79. [Google Scholar] [CrossRef]
- Ru, J.; Lu, B.; Chen, B.; Shi, J.; Chen, G.; Wang, M.; Pan, Z.; Lin, Y.; Gao, Z.; Zhou, J.; et al. Attention guided neural ODE network for breast tumor segmentation in medical images. Comput. Biol. Med. 2023, 159, 106884. [Google Scholar] [CrossRef] [PubMed]
- Zarbakhsh, P. Spatial Attention Mechanism and Cascade Feature Extraction in a U-Net Model for Enhancing Breast Tumor Segmentation. Appl. Sci. 2023, 13, 8758. [Google Scholar] [CrossRef]
- Karkehabadi, A.; Oftadeh, P.; Shafaie, D.; Hassanpour, J. On the Connection between Saliency Guided Training and Robustness in Image Classification. In Proceedings of the 2024 12th International Conference on Intelligent Control and Information Processing (ICICIP), Nanjing, China, 8–10 March 2024; pp. 203–210. [Google Scholar]
- Iqbal, A.; Sharif, M. PDF-UNet: A semi-supervised method for segmentation of breast tumor images using a U-shaped pyramid-dilated network. Expert Syst. Appl. 2023, 221, 119718. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, L.; Zhang, J.; Yin, X.; Cui, L.; Dai, Y. ESKNet: An enhanced adaptive selection kernel convolution for ultrasound breast tumors segmentation. Expert Syst. Appl. 2024, 246, 123265. [Google Scholar] [CrossRef]
- Huang, T.; Chen, J.; Jiang, L. DS-UNeXt: Depthwise separable convolution network with large convolutional kernel for medical image segmentation. Signal Image Video Process 2023, 17, 1775–1783. [Google Scholar] [CrossRef]
- Nguyen, X.T.; Tran, G.S. Hyperspectral image classification using an encoder-decoder model with depthwise separable convolution, squeeze and excitation blocks. Earth Sci. Inform. 2024, 17, 527–538. [Google Scholar] [CrossRef]
- Jang, J.-G.; Quan, C.; Lee, H.D.; Kang, U. Falcon: Lightweight and accurate convolution based on depthwise separable convolution. Knowl. Inf. Syst. 2023, 65, 2225–2249. [Google Scholar] [CrossRef]
- Huang, H.; Du, R.; Wang, Z.; Li, X.; Yuan, G. A Malicious Code Detection Method Based on Stacked Depthwise Separable Convolutions and Attention Mechanism. Sensors 2023, 23, 7084. [Google Scholar] [CrossRef] [PubMed]
- Sriwastawa, A.; Jothi, J.A.A. Vision transformer and its variants for image classification in digital breast cancer histopathology: A comparative study. Multimed. Tools Appl. 2024, 83, 39731–39753. [Google Scholar] [CrossRef]
- Himel, G.M.S.; Islam, M.; Al-Aff, K.A.; Karim, S.I.; Sikder, K.U. Skin Cancer Segmentation and Classification Using Vision Transformer for Automatic Analysis in Dermatoscopy-Based Noninvasive Digital System. Int. J. Biomed. Imaging 2024, 1, 3022192. [Google Scholar] [CrossRef]
- Zeineldin, R.A.; Karar, M.E.; Elshaer, Z.; Coburger, J.; Wirtz, C.R.; Burgert, O.; Mathis-Ullrich, F. Explainable hybrid vision transformers and convolutional network for multimodal glioma segmentation in brain MRI. Sci. Rep. 2024, 14, 3713. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Wen, Y.; Evangelidis, G.; Salahi, K.; Wang, Y.; Tulyakov, S.; Ren, J. Rethinking Vision Transformers for MobileNet Size and Speed. 2023. Available online: https://github.com/snap-research/EfficientFormer (accessed on 29 December 2023).
- Hassan, N.M.; Hamad, S.; Mahar, K. YOLO-based CAD framework with ViT transformer for breast mass detection and classification in CESM and FFDM images. Neural Comput. Appl. 2024, 36, 6467–6496. [Google Scholar] [CrossRef]
- Zhao, Z.; Du, S.; Xu, Z.; Yin, Z.; Huang, X.; Huang, X.; Wong, C.; Liang, Y.; Shen, J.; Wu, J.; et al. SwinHR: Hemodynamic-powered hierarchical vision transformer for breast tumor segmentation. Comput. Biol. Med. 2024, 169, 107939. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [Google Scholar] [CrossRef] [PubMed]
- Kannappan, B.; MariaNavin, J.R.; Sridevi, N.; Suresh, P. Data augmentation guided breast tumor segmentation based on generative adversarial neural networks. Eng. Appl. Artif. Intell. 2023, 125, 106753. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J. Comput. Sci. 2019, 30, 174–182. [Google Scholar] [CrossRef]
- Noguchi, S.; Nishio, M.; Yakami, M.; Nakagomi, K.; Togashi, K. Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques. Comput. Biol. Med. 2020, 121, 103767. [Google Scholar] [CrossRef]
- Vo, T.M.; Vo, T.T.; Phan, T.T.; Nguyen, H.T.; Tran, D.T. Data Augmentation Techniques Evaluation on Ultrasound Images for Breast Tumor Segmentation Tasks. Stud. Comput. Intell. 2023, 1097, 153–164. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Huang, H.; Wang, C.; Dong, B. Nostalgic Adam: Weighting more of the past gradients when designing the adaptive learning rate. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 2556–2562. [Google Scholar]
- Pezeshki, H. Breast tumor segmentation in digital mammograms using spiculated regions. Biomed. Signal Process. Control 2022, 76, 103652. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Sadeghi, S.; Fadaeian, A.; Ghoushchi, S.J.; Tirkolaee, E.B.; Caputo, A.; Bendechache, M. ETACM: An encoded-texture active contour model for image segmentation with fuzzy boundaries. Soft Comput. 2023, 1–13. [Google Scholar] [CrossRef]
- Dar, M.F.; Ganivada, A. EfficientU-Net: A Novel Deep Learning Method for Breast Tumor Segmentation and Classification in Ultrasound Images. Neural Process. Lett. 2023, 55, 10439–10462. [Google Scholar] [CrossRef]
- Vadhnani, S.; Singh, N. Brain tumor segmentation and classification in MRI using SVM and its variants: A survey. Multimed. Tools Appl. 2022, 81, 31631–31656. [Google Scholar] [CrossRef]
Models | Precision | Recall | F1 | IoU | Dice |
---|---|---|---|---|---|
UNet | 0.8281 | 0.6122 | 0.6622 | 0.5311 | 0.6622 |
UNet + Augmentation | 0.5123 | 0.1420 | 0.2087 | 0.1372 | 0.2087 |
EfficientNet + UNet | 0.7691 | 0.6638 | 0.6916 | 0.5514 | 0.6916 |
EfficientNet + UNet + Augmentation | 0.5978 | 0.3141 | 0.3869 | 0.2760 | 0.3869 |
ViT + UNet | 0.7901 | 0.7882 | 0.7584 | 0.6292 | 0.7584 |
ViT + UNet + Augmentation | 0.5200 | 0.2995 | 0.3527 | 0.2510 | 0.3527 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anari, S.; de Oliveira, G.G.; Ranjbarzadeh, R.; Alves, A.M.; Vaz, G.C.; Bendechache, M. EfficientUNetViT: Efficient Breast Tumor Segmentation Utilizing UNet Architecture and Pretrained Vision Transformer. Bioengineering 2024, 11, 945. https://doi.org/10.3390/bioengineering11090945
Anari S, de Oliveira GG, Ranjbarzadeh R, Alves AM, Vaz GC, Bendechache M. EfficientUNetViT: Efficient Breast Tumor Segmentation Utilizing UNet Architecture and Pretrained Vision Transformer. Bioengineering. 2024; 11(9):945. https://doi.org/10.3390/bioengineering11090945
Chicago/Turabian StyleAnari, Shokofeh, Gabriel Gomes de Oliveira, Ramin Ranjbarzadeh, Angela Maria Alves, Gabriel Caumo Vaz, and Malika Bendechache. 2024. "EfficientUNetViT: Efficient Breast Tumor Segmentation Utilizing UNet Architecture and Pretrained Vision Transformer" Bioengineering 11, no. 9: 945. https://doi.org/10.3390/bioengineering11090945
APA StyleAnari, S., de Oliveira, G. G., Ranjbarzadeh, R., Alves, A. M., Vaz, G. C., & Bendechache, M. (2024). EfficientUNetViT: Efficient Breast Tumor Segmentation Utilizing UNet Architecture and Pretrained Vision Transformer. Bioengineering, 11(9), 945. https://doi.org/10.3390/bioengineering11090945