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Abstract: In a prospective study, we examined the recovery trajectory of patients with lower
extremity fractures to better understand the healing process in the absence of complications.
Using a chest-mounted inertial measurement unit (IMU) device for gait analysis and col-
lecting patient-reported outcome measures, we focused on 12 key gait variables, including
Mean Leg Lift Acceleration, Stance Time, and Body Orientation. We employed a linear
mixed model (LMM) to analyze these variables over time, incorporating both fixed and
random effects to account for individual differences and the time since injury. This model
also adjusted for varying intervals between assessments. Our study provided insights into
gait recovery across different fracture types using data from 318 patients who experienced
no complications or readmissions during their recovery. Through LMM analysis, we found
that Tibia-Distal fractures demonstrated the fastest recovery, particularly in terms of mobil-
ity and strength. Tibia-Proximal fractures showed balanced improvements in both mobility
and stability, suggesting that rehabilitation should target both strength and balance. Femur
fractures exhibited varied recovery, with Diaphyseal fractures showing clear improvements
in stability, while Distal fractures reflected gains in limb strength but with some variability
in stability. To examine patients with readmissions, we conducted a Chi-squared test of
independence to determine whether there was a relationship between fracture type and
readmission rates, revealing a significant association (p < 0.001). Pelvis fractures had the
highest readmission rates, while Tibia-Diaphyseal and Tibia-Distal fractures were more
prone to infections, highlighting the need for enhanced infection control strategies. Femur
fractures showed moderate readmission and infection rates, indicating a mixed risk profile.
In conclusion, our findings emphasize the importance of fracture-specific rehabilitation
strategies, focusing on infection prevention and individualized treatment plans to optimize
recovery outcomes.

Keywords: gait analysis; recovery trajectory; lower extremity fractures; linear mixed
models (LMM)

1. Introduction
Orthopedic trauma to the lower extremities is prevalent in both military and civilian

populations, with the main treatment goal being the restoration of previous function [1].
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Rehabilitation involves early movement and weight-bearing, tailored by the type and
fixation of the injury, though these can sometimes risk damaging the healing structures [2].
Protocols vary; for instance, calcaneal fractures generally require non-weight-bearing
(NWB) for 6–12 weeks post-open reduction internal fixation (ORIF), whereas external
fixation allows immediate weight-bearing [3,4]. Similarly, tibial plafond fractures usually
involve a non-weight-bearing period of 6–12 weeks, with external fixation allowing for
immediate weight-bearing [5].

Tibial shaft fractures have different options, with immediate weight-bearing permitted
in both external and intramedullary fixation, but ORIF may require an NWB period of
6–12 weeks for comminuted or high-grade tibia fractures [6–8]. Similar considerations
apply to femoral and pelvic fractures [9–14].

In addition to weight-bearing protocols, gait analysis plays a key role in assessing
patient improvement and functionality following surgical treatment for lower extremity
fractures [15]. Gait analysis is increasingly recognized and important in assessing rehabili-
tation progress and mobility for patients with lower extremity fractures [16]. The use of
retro-reflective markers and high-speed cameras in gait analysis systems has significantly
improved their accuracy and reliability [17,18].

While measurement technology has matured, computer models used for interpret-
ing marker data are still evolving, with the Conventional Gait Model being commonly
employed [1]. Floor-based photocell systems have been traditional methods for gait eval-
uation but may be impractical due to limitations. Wearable inertial measurement units
(IMUs) offer an alternative, providing reliable gait parameters for effective rehabilitation
tracking [19–21].

Warschawski et al. [19] found that patients with tibial plateau fractures exhibited
persistent gait abnormalities such as slower walking speeds, reduced cadence, and shorter
step lengths compared to healthy controls. Warschawski et al. [19] emphasized the effec-
tiveness of computerized IMU-based gait analysis in providing precise data for evaluating
long-term rehabilitation outcomes. Millar et al. [20] found that after surgery for tibial
plateau fractures, patients experienced increased joint loads at the hip and ankle within
the first six months, while knee joint loading showed significant improvement only during
this period and then plateaued. Millar et al. [20] also demonstrated the effectiveness of gait
analysis and biomechanical tools in accurately tracking recovery dynamics and identifying
key milestones after tibial plateau fracture surgeries.

In our recent study [21], we demonstrated the potential of a wearable IMU to provide
accurate, clinically relevant gait data for patients with lower extremity trauma in an out-
patient clinic setting. The IMU data, when compared to the gold-standard Vicon video
motion capture system, showed strong correlations across various gait parameters such
as vertical acceleration, vertical displacement, and angular velocities (pitch and roll). The
system was able to reliably measure and differentiate between normal and pathological gait
patterns in trauma patients, capturing subtle asymmetries and compensatory movements
that may not be easily detected through visual inspection alone. By providing quantitative
data on gait parameters like stance time and vertical displacement, the IMU could serve
as an efficient performance-based measure (PBM) to objectively assess gait outcomes and
track patient recovery.

In another study, we pioneered the integration of supervised machine learning models
with gait analysis to predict post-injury complications such as infection, malunion, and
hardware irritation in individuals with lower extremity fractures [22]. We collected data us-
ing the IMU and developed a novel machine-learning algorithm named GUARD-XGBoost,
which significantly outperformed other models. With an area under the curve (AUC) of
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0.90 and accuracy rates of 86%, our study underscored the transformative potential of
machine learning in orthopedic care.

In the current study, we aim to quantitatively assess the recovery trajectories of patients
with lower extremity fractures by employing gait analysis to measure their mobility and
functionality over time. Our primary objective is to leverage the chest-mounted IMU [21] to
collect detailed gait data from patients who have sustained various types of fractures. The
gait data collected with the IMU are analyzed using Linear Mixed Models (LMM) [23] to
account for both fixed and random effects, thereby accommodating individual differences
in baseline gait characteristics and the rate of recovery. This methodological choice enables
us to discern the average effects of time since injury on specific gait variables, providing a
robust statistical framework to assess and predict recovery patterns across diverse patient
groups. Additionally, we employ the Chi-squared test [24] to investigate the association
between fracture types and the frequency of readmissions, a key indicator of post-treatment
complications.

2. Materials and Methods
Our study received approval from three successive Institutional Review Boards (IRBs):

It was initially approved by the Carolinas HealthCare System IRB (IRB File #03-15-11E)
on 18 March 2015, subsequently by the Atrium Health IRB (IRB File #03-15-11E), and is
currently approved by the Wake Forest University School of Medicine IRB (IRB00082570).
All methods were carried out in accordance with relevant guidelines and regulations. We
obtained written informed consent from all participants or their legal guardian(s) prior to
their involvement in any study-related activities.

Following approval from the institutional review board, we began identifying poten-
tial participants at an academic tertiary medical center. These were patients with lower
extremity fractures located in the orthopedic trauma clinic after receiving treatment for
their injuries at an urban Level 1 trauma center between 12/14/2015 and 09/12/2019. The
enrolment process commenced before any performance tests were conducted. As part of
the standard care, these patients had routine visits to the treating surgeon, during which we
invited them to participate in our study. The participant demographics represented a broad
range of ages, from 19 to 76 years, with a gender distribution of 65% male and 35% female.

The ethnicity mix included individuals from a variety of backgrounds, with 2% identi-
fying as Hispanic, 90% non-Hispanic, and 8% of unspecified ethnicity. Additionally, the
study’s racial composition was diverse, comprising 77% White, 17% African American, 1%
American Indian or Alaska Native, 1% Asian, and 4% of unspecified race. We ensured that
they were fully aware of the study’s purpose, procedures, and benefits, giving them the
opportunity to ask questions and address any concerns beforehand. The study did not
include any minors.

In this study, patients with lower extremity fractures underwent gait analysis using
a validated chest-mounted IMU device [21]. Throughout the recovery process, they com-
pleted patient-reported outcome measures and participated in assessments focusing on
12 specific gait variables (Table 1). We preprocessed the raw data, analyzing variables such
as movement efficiency, coordination, power generation, gait symmetry, stability, balance,
temporal dynamics, and body orientation.

To evaluate the recovery rates from fractures in an uncomplicated context, we formed
a cohort of 318 individuals who experienced no post-injury readmissions. Each patient
had at least one follow-up visit within the first 200 weeks after their injury, allowing us to
analyze which types of fractures demonstrate the highest rates of recovery.
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Table 1. Summary of gait variables and descriptions.

Variable Unit Description

Mean Left Leg
Lift Acceleration m/s2 The average acceleration of the left leg

during the lifting phase of the gait cycle.

Left Leg Lift
Acceleration SEM m/s2

Standard Error Mean (SEM) of the
acceleration of the left leg during the lifting

phase of the gait cycle.
Mean Right Leg
Lift Acceleration m/s2 The average acceleration of the right leg

during the lifting phase of the gait cycle.

Right Leg Lift
Acceleration SEM m/s2

Standard Error Mean (SEM) of the
acceleration of the right leg during the

lifting phase of the gait cycle.

Mean Left Stance Time s
The average duration of the left leg’s stance
phase, which is the period when the foot is

in contact with the ground.

Left Stance Time SEM s Standard Error Mean (SEM) of the duration
of the left leg’s stance phase.

Mean Right Stance Time s
The average duration of the right leg’s

stance phase, which is the period when the
foot is in contact with the ground.

Right Stance Time SEM s Standard Error Mean (SEM) of the duration
of the right leg’s stance phase.

Mean Pitch Magnitude degrees◦
The average magnitude of the pitch

(forward–backward) movement of the body
during walking.

Pitch Magnitude SEM degrees◦
Standard Error Mean (SEM) of the

magnitude of the pitch (forward–backward)
movement of the body during walking.

Mean Roll Magnitude degrees◦
The average magnitude of the roll

(side-to-side) movement of the body
during walking.

Roll Magnitude SEM degrees◦
Standard Error Mean (SEM) of the
magnitude of the roll (side-to-side)

movement of the body during walking.

The selection of patients without readmissions was intentional and important to the
study’s design. This approach was adopted to mitigate any confounding factors that
readmissions might introduce, whether directly related to the fractures or due to other
medical complications. By focusing on this specific patient group, we can more accurately
compare the recovery trajectories across all fracture types under observation. This method
ensures that our findings reflect the natural progression of healing and rehabilitation,
uncontaminated by external variables that could skew the data and confound the results.

Since we collected gait variable data for both the left and right sides, irrespective
of the subjects’ injury side, throughout this study, we consider only the gait variables
that correspond to the side of the injury. For example, if the injury side is left, we only
consider the Mean Left Leg Lift Acceleration, which we then refer to simply as Mean Leg
Lift Acceleration. Similarly, if the injury side is right, we only consider Mean Right Leg
Lift Acceleration and again label it Mean Leg Lift Acceleration. This approach allows us to
consistently combine data from both left and right injuries and to focus exclusively on the
variables corresponding to the side of the injury, whether it is right or left.

Monitoring the gait analysis variables over time allows for the objective assessment
of improvements and customization of rehabilitation programs. These variables act as
precise markers of recovery, quantitatively enhancing evaluations alongside subjective
assessments. However, the variability among individuals and the timing of the injury poses
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challenges in gait analysis. To overcome these, Linear Mixed Models (LMM) analysis [23]
can be used to account for individual differences and the temporal effects on gait variables.
The LMM model can be represented by the following formula:

gij =
(

β0 + u0j
)
+

(
β1 + u1j

)
wij + ϵij, (1)

where, gij represents the gait variable for patient i at the jth gait analysis visit, where j
can take values of 1 or 2. Additionally, wij represents the number of weeks that have
passed since the injury for patient i at the jth gait analysis visit. The model comprises
both random effects and fixed effects [25], which enable a robust analysis. The random
effects, represented by u0j and u1j, capture the patient-specific deviations from the average
intercept and slope, respectively. These random effects account for the inherent variability
between patients and allow us to account for individual differences in the baseline gait
variable value and the rate of change over time.

The fixed effects, represented by β0 and β1, represent the average intercept and slope,
respectively, across all patients. They provide insights into the overall relationships between
the gait variable and the time elapsed since the injury. Moreover, wij serves a dual purpose
in this model. It acts as an input variable, capturing the effect of time since the injury on
the gait variable g. Additionally, wij is considered as a covariate [26,27] in the model. As
a covariate, wij addresses the specific challenge of uneven intervals between time points.
By incorporating wij as a covariate, we account for the uneven-varying nature of the gait
analysis data and ensure the model appropriately adjusts for the effect of time elapsed
since the injury on the gait variable g.

Finally, ϵij represents the residual error or variation not explained by the fixed effects
or random effects. It captures the inherent randomness in the gait variable measurements
that cannot be accounted for by the model. Residuals are assumed to follow a normal
distribution with mean zero and constant variance. Both random effects and residuals are
assumed to be independent and identically distributed across patients and time points.
When fitting the linear mixed model, the model estimates the fixed effects coefficients
(β0 and β1) and the variance components for the random effects (u0j and u1j). The estimated
coefficients provide quantitative information about the average effects of Weeks Since Injury
on the gait variable g. The model’s output includes various statistical measures, such as
p-values and confidence intervals, aiding in assessing the significance and precision of the
estimated coefficients.

In this study, the choice to employ LMM rather than multivariate mixed-effects models
was driven by several key considerations. First and foremost, the primary aim was to
understand the relationship between the time elapsed since injury and specific gait variables
individually rather than exploring multiple interdependent outcomes simultaneously.
Furthermore, LMMs offer a more straightforward interpretation and easier management of
data complexity when focusing on single outcomes. Multivariate models, which evaluate
multiple dependent variables simultaneously, can yield results that are complex to interpret,
especially when interactions between variables are considered. Given the specific objectives
of our study, which require clear, actionable outcomes for clinical application, the simpler
interpretative framework of LMMs was deemed more appropriate.

Additionally, the use of LMMs facilitates a robust handling of missing data and
unbalanced time points across the dataset. In studies like ours, where follow-up times
may vary and not all patients are assessed at every intended time point, LMMs efficiently
handle this irregularity without compromising the statistical integrity of the results.

Following the analysis of patients without complications or readmissions, it is equally
important to examine those who experienced readmissions during their recovery. This
additional analysis allows us to develop a more comprehensive understanding of recovery
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trajectories and the challenges associated with different fracture types. To determine
whether the type of fracture and the frequency of readmissions are statistically associated,
we performed a Chi-squared test [24]. This test evaluates the relationship between fracture
type and the number of readmissions, identifying whether specific fractures are more prone
to complications necessitating readmissions. Figure 1 illustrates a schematic view of the
gait analysis methodology, objectives, and a summary of our findings.
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Figure 1. Schematic overview of the gait analysis methodology, objectives, and a summary of key
findings from the study.

Among the various reasons for readmissions, infection stands out as a concern due to
its significant impact on recovery outcomes and the potential for long-term complications.
Understanding the prevalence of infection for each fracture type provides valuable insights
into the risk profile associated with these injuries. By calculating the percentage of infections
within the dataset for each fracture type, we aim to identify patterns that can inform clinical
decision-making and targeted interventions.

3. Results
Figure 2 illustrates the number of visits that each patient made and other demographic

features such as age, sex, ethnicity, race, and BMI, which are important for understanding
the diversity within the cohort and potential factors that could influence recovery patterns.
We examined the patterns of fracture types and the distribution of injury sides within our
patient cohort. Figure 3 illustrates these distributions, where Figure 3a presents the types
of fractures observed, and Figure 3b details the side of the injury: left or right.

Figure 4 illustrates the coefficients (slope) of the LMM, highlighting the quantifiable
impact of weeks since injury on specific gait variables across different types of lower
extremity fractures. This figure captures the effects where the time since injury has shown
a substantial influence on gait dynamics, as evidenced by the coefficients plotted for
each variable.
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To investigate whether the number of readmissions is associated with fracture type, we
conducted a Chi-squared test. The results indicated a statistically significant relationship
between fracture type and the number of readmissions (Chi-squared Test statistic: 35.684,
p-value < 0.0001). This finding suggests that certain fracture types are more likely to result
in readmissions compared to others.

Figures 5 and 6 provide a detailed visualization of these patterns. Figure 5 illustrates
the distribution of patients with readmissions across different fracture types, highlighting
variations in readmission frequency. Figure 6 focuses specifically on the subset of patients
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who experienced readmissions due to infection complications, offering insights into how
infection-related readmissions are distributed among fracture types.
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4. Discussion
The results of the LMM (see Figure 4) suggest distinct recovery trajectories for different

fracture types, as reflected in the slopes of various gait variables over time. Among the
fracture types, Tibia-Distal (43) demonstrated the fastest recovery progress, particularly
in Mean Leg Lift Acceleration (m/s2), which had a significant positive slope (0.137225,
p = 0.010797). This indicates rapid improvement in Leg Lift Acceleration, suggesting en-
hanced mobility and strength in the affected limb. Although the slopes for Tibia-Distal
fractures, including Mean Stance Time (s), Mean Pitch Magnitude (deg), and Mean Roll
Magnitude (deg), were not statistically significant, they still provide insights into the re-
covery dynamics. The slight negative slope in Mean Stance Time (s) (–0.000893) could
indicate a gradual reduction in the time spent in the stance phase of the gait cycle, sug-
gesting subtle improvements in gait efficiency. Similarly, the negative slope in Mean Pitch
Magnitude (deg) (−0.009100) might reflect a trend toward reduced variability in sagittal
plane motion, potentially indicative of greater stability and control as recovery progresses.
Finally, the negative slope in Mean Roll Magnitude (deg) (−0.012644) suggests a decrease
in side-to-side (coronal plane) motion, which could signify improved balance. Although
these trends are not statistically significant, they are consistent with expected recovery
patterns and underscore the gradual improvements across multiple dimensions of gait
function for Tibia-Distal fractures.

Tibia-Proximal (41) also exhibited notable recovery progress, with significant im-
provement in Mean Leg Lift Acceleration (m/s2) (0.026469, p = 0.021521) and Mean Pitch
Magnitude (deg) (−0.021914, p = 0.026378). The positive slope in Leg Lift Acceleration
reflects better limb mobility and strength, while the negative slope in pitch magnitude
suggests reduced sagittal plane variability, indicative of improved balance and stability.
Although changes in Mean Stance Time (s) and Mean Roll Magnitude (deg) were not signif-
icant, the modest negative slope in roll magnitude (−0.012327) hints at subtle progress in
gait efficiency and balance. These findings suggest that recovery in Tibia-Proximal fractures
is characterized by simultaneous improvements in mobility and stability.

In contrast, Femur-Diaphyseal (32) displayed more limited recovery, with significant
changes observed only in Mean Roll Magnitude (deg) (−0.040382, p = 0.011702). This
reduction in roll magnitude likely reflects improved control in coronal plane motion and
better balance during gait. The lack of significant changes in other gait variables, including
Mean Leg Lift Acceleration (m/s2) (0.007733, p = 0.547054) and Mean Stance Time (s)
(−0.000617, p = 0.169622), suggests that while balance improvements are evident, broader
gains in mobility and gait efficiency may require more time or targeted intervention.

Femur-Distal (33) showed notable slopes in Mean Leg Lift Acceleration (m/s2)
(0.100069), albeit without statistical significance. The high slope for Mean Leg Lift Ac-
celeration suggests a substantial improvement in limb mobility and strength, potentially
reflecting recovery efforts to regain dynamic movement. Femur-Proximal (31) demon-
strated modest progress, as indicated by the positive slope in Mean Leg Lift Acceleration
(m/s2) (0.020631). This suggests gradual improvement in lower-limb strength and mo-
bility, although the slope is less pronounced than that of Distal femur fractures. The
negative slopes in Mean Pitch Magnitude (deg) (−0.013163) and Mean Roll Magnitude
(deg) (−0.035157) reflect a reduction in sagittal and coronal plane variability, respectively,
suggesting progressive stabilization and control in gait mechanics.

Femur-Diaphyseal (32) showed the most pronounced changes in Mean Roll Magni-
tude (deg) (−0.040382), which was statistically significant (p = 0.011702). This indicates
substantial improvements in lateral stability and control over time. However, the slope for
Mean Leg Lift Acceleration (m/s2) (0.007733) was comparatively low, suggesting slower
gains in mobility. The negative slope in Mean Pitch Magnitude (deg) (−0.018175) reflects
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a trend toward reduced sagittal plane variability, aligning with improved balance and
gait regularity.

Pelvis (61–62) showed relatively small slopes across all gait variables, indicating
gradual and less pronounced recovery progress. The positive slope in Mean Leg Lift
Acceleration (m/s2) (0.008834) reflects slight improvements in limb strength and mobility.
Tibia-Malleolar (44) displayed a modest positive slope in Mean Leg Lift Acceleration (m/s2)
(0.013113), suggesting slight improvements in mobility. However, the slopes in Mean
Pitch Magnitude (deg) (0.010781) and Mean Roll Magnitude (deg) (−0.001406) were small,
indicating minimal variability changes in sagittal and coronal planes, respectively.

Tibia-Diaphyseal (42) demonstrated a small positive slope in Mean Leg Lift Accel-
eration (m/s2) (0.013983) and a significant reduction in Mean Pitch Magnitude (deg)
(−0.060911, p = 0.012145). The former suggests gradual improvements in mobility, while the
latter indicates enhanced sagittal plane control, reflecting better balance and coordination.
The negative slope in Mean Roll Magnitude (deg) (−0.031750) highlights potential gains in
lateral stability, although it was not statistically significant.

Note that within the 200-week follow-up period of our study, even the small slopes
observed in various gait variables hold significant clinical relevance. These small but
consistent changes in gait metrics, such as Mean Stance Time, Mean Pitch Magnitude,
and Mean Roll Magnitude, are important indicators of gradual improvements in stability,
balance, and efficiency of movement, which might not be immediately apparent but are
essential for long-term recovery. While dramatic improvements might be expected shortly
after medical interventions, these subtle shifts are indicative of the body’s ongoing adap-
tation and compensation mechanisms in response to the initial trauma and subsequent
healing processes.

The Chi-squared test of independence (χ2) revealed a statistically significant associa-
tion between fracture type and the frequency of readmissions (χ2 = 35.68, p = 10 × 10−5).
This finding underscores the varying risk profiles of different fractures and their suscepti-
bility to complications requiring hospital readmissions. By analyzing the percentages of
readmissions for each fracture type (Figure 5), along with the infection rates (Figure 6), we
gain valuable insights into the challenges associated with recovery from these injuries.

Fractures of the pelvis (61–62) exhibited the highest rate of readmissions at 17.3%,
marking them as particularly prone to complications. Despite this, the infection rate
for pelvic fractures was relatively low (1.8%), suggesting that other factors, such as pain
management, immobility, or comorbid conditions, may play a significant role in driving
readmissions for this fracture type.

Similarly, Tibia-Proximal (41) fractures had the second-highest readmission rate at
15.1%, accompanied by a moderate infection rate of 3.4%. This suggests a dual burden of
complications, potentially stemming from the complexity of Proximal tibia fractures and
their associated surgical interventions.

The Tibia-Malleolar (44) fractures presented a distinct profile, with a high readmission
rate of 14.2% and an infection rate of 5.8%. This indicates that infections may significantly
contribute to readmissions in this fracture type, potentially due to their proximity to the
skin and soft tissue, making them more susceptible to wound-related complications.

On the other hand, fractures such as Tibia-Distal (43) and Tibia-Diaphyseal (42) also
stood out with readmission rates of 7.7% and 8.6%, respectively, coupled with notably high
infection rates (12.0% and 14.3%). These findings suggest that Distal and Diaphyseal tibia
fractures face elevated risks of infection, potentially due to factors like compromised blood
supply, open fractures, or prolonged immobilization.

Femur fractures, including Proximal (31), Distal (33), and Diaphyseal (32), exhibited
intermediate rates of readmissions, ranging from 6.3% for Distal femur fractures to 8.3%
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for Diaphyseal femur fractures. Interestingly, Distal femur fractures had one of the lowest
infection rates (1.6%), suggesting that non-infectious complications such as joint stiffness,
delayed union, or hardware failure may contribute to readmissions. Conversely, Diaphyseal
femur fractures had a higher infection rate of 4.9%, indicating a mixed profile of risks,
including infections and potential mechanical issues.

Proximal femur fractures, while displaying a moderate readmission rate of 8.0%, had
a relatively low infection rate of 1.3%, highlighting the importance of addressing other
factors, such as rehabilitation challenges or age-related vulnerabilities, that may complicate
recovery in this fracture type. Fractures of the foot had a readmission rate of 9.1%, with an
infection rate of 2.3%. While these rates are moderate, they likely reflect the complexity of
managing weight-bearing fractures and the challenges of returning to ambulation.

Similarly, fractures of the fibula exhibited a lower readmission rate (2.9%) but a
relatively high infection rate (3.6%). This suggests that while fibula fractures are less likely
to lead to readmissions overall, infections can be a significant concern in cases requiring
surgical intervention. Patella fractures, with the lowest readmission rate (2.4%) and no
recorded infections, appear to have the least complicated recovery profile among the
fracture types analyzed.

In summary, the Chi-squared analysis and subsequent infection and readmission rate
data reveal distinct risk profiles for different fracture types. Pelvis, Tibia-Proximal, and
Tibia-Malleolar fractures emerge as the most problematic in terms of overall readmissions,
while Tibia-Distal and Tibia-Diaphyseal fractures show high infection rates, highlighting
the need for targeted infection prevention strategies. Femur fractures and foot fractures
display moderate complication rates, while patella fractures exhibit a relatively low risk
of complications. These findings emphasize the importance of tailoring post-fracture
management strategies to the unique challenges posed by each fracture type, with a
focus on mitigating infection risks and addressing factors contributing to readmissions.
Future studies could further explore the specific causes of readmissions and the impact of
individualized interventions on improving recovery outcomes.

5. Conclusions
Our study offered important insights into gait recovery across different types of lower

extremity fractures, highlighting the significance of early gait dynamics and the possibility
of personalized rehabilitation strategies. By analyzing gait data from 318 patients who
underwent successful recovery without complications or readmissions, we used a chest-
mounted inertial measurement unit (IMU) to capture detailed gait metrics such as Mean Leg
Lift Acceleration, stance time, pitch, and roll magnitudes. The use of linear mixed model
(LMM) analysis provided an objective assessment of gait variables over time, allowing
us to understand individual recovery dynamics and average trajectories across fracture
types. Among these, Tibia-Distal fractures showed the most positive recovery trajectory,
marked by rapid improvements in mobility and strength, suggesting effective responses
to dynamic movement and early mobilization. Moreover, trends of reduced variability in
pitch and roll magnitudes indicated improving gait efficiency and stabilization over time.

The study also found notable recovery progress in Tibia-Proximal fractures, with si-
multaneous improvements in mobility and stability, suggesting benefits from rehabilitation
that focuses on strength and balance. Femur fractures exhibited varied recovery patterns;
Diaphyseal femur fractures improved in stability but showed slower mobility progress,
while Distal femur fractures had mixed results in strength and stability, underlining the
individualized nature of recovery for these injuries. Pelvic and malleolar fractures demon-
strated slower recovery trajectories due to challenges in core stability and maintaining
joint integrity, respectively. Chi-squared analysis revealed variability in readmission and
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infection rates across fracture types, with pelvic fractures showing the highest readmission
rates and a need for enhanced infection control in fractures like Distal and Diaphyseal tibia.

Limitations

This study has limitations to consider. The follow-up period, while extensive, may
not fully capture long-term recovery patterns that occur after the study ends, potentially
missing later complications and recovery trajectories. Additionally, the use of a chest-
mounted IMU for gait analysis could introduce biases due to device positioning and
technology limitations like signal drift. While measurements were validated against a
gold-standard system, differences in technology could still affect the results. Furthermore,
the study focuses on general gait variables without evaluating specific gait characteristics
like body movement angles or step asymmetry, which could provide deeper insights into
biomechanical changes during recovery.
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