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Abstract: Enzymatic depolymerisation is increasingly recognised as a reliable and environ-
mentally friendly method. The development of this technology hinges on the availability
of high-quality enzymes and associated bioreaction systems for upscaling biodegradation.
Microbial heterologous expression systems have been studied for meeting this demand.
Among these systems, the Pichia pastoris expression system has emerged as a widely used
platform for producing secreted heterologous proteins. This article provides an overview
of studies involving the recombinant expression of polymer-degrading enzymes using
the P. pastoris expression system. Research on P. pastoris expression of interested enzymes
with depolymerising ability, including cutinase, lipase, and laccase, are highlighted in the
review. The key factors influencing the heterologous expression of polymer-degrading
enzymes in P. pastoris are discussed, shedding light on the challenges and opportunities in
the development of depolymerising biocatalysts through the P. pastoris expression system.

Keywords: biodegradation; depolymerisation; polymer-degrading enzyme; heterologous
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1. Introduction
The escalating plastic crisis has entered a more intricate phase with the introduction

of new biodegradable polymers and plant-based alternatives. Despite efforts to minimise
plastic waste, the growth of plastic products continues unabated. Many plastics face im-
pending phase-outs due to recycling challenges and adverse environmental and health
impacts, such as microplastic pollution. A rising dominance of biodegradable plastics in
the market is now offering a potential solution. However, the green claims surrounding
bioplastics are met with scrutiny, as they disrupt current plastic-recycling streams and, at
times, fail to readily degrade in natural environments [1]. Consequently, plastic biodegrada-
tion in nature is at low efficiency. The engineered enzymatic breakdown of these materials
could be a promising approach for sustainable waste management and bioplastic recycling.
Therefore, scientists are actively researching and developing “artificial enzymes” (often
called “plastic-eating enzymes”) to significantly speed up the breakdown of plastic waste,
allowing for a more efficient recycling and environmental cleanup process.

Therefore, active research activities have isolated polymer-degrading enzymes derived
from diverse microbial species. Predominantly classified as hydrolases and oxidoreduc-
tases, these enzymes play pivotal roles in the breakdown of plant polymers. Noteworthy
examples encompass laccases (EC 1.10.3.2), cutinases (EC 3.1.1.74), esterases (EC 3.1.1.1),
lipases (EC 3.1.1.3), and manganese peroxidases (EC 1.11.1.13) [2]. Particular enzymes,
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including PET hydrolases, cutinases, and polyesterases, are being explored for enhancing
the depolymerising ability by enzymatic engineering [3]. These enzymes exhibit signifi-
cant structural diversity and varied catalytic capabilities, demonstrating specific activities
towards different polymers.

However, the microbial degradation rate remains sluggish under constrained environ-
mental conditions. The development of these enzymes focuses on enhancing their catalytic
activity, substrate specificity, and stability across a range of environmental conditions. Re-
cent advancements have included directed evolution and protein-engineering techniques
to create more robust depolymerases. Currently, the technology is used to make enzymes
more tolerant under varying conditions and more flexible to be engineered [4].

To date, Escherichia coli has emerged as a widely used expression system for the het-
erologous production of depolymerases, primarily derived from microbial sources such
as bacteria and fungi [1]. This expression system has demonstrated tangible degradation
capabilities on polyethylene terephthalate (PET) [5]. However, it is imperative to acknowl-
edge the limitations of E. coli, as it is not universally adept at expressing active enzymes.
E. coli frequently engages in erroneous post-translational processes for proteins containing
cysteine residues [6,7], and encounters challenges in forming disulfide bonds [8,9]. Addi-
tionally, eukaryotic enzymes expressed in E. coli exhibited a short half time [10] or quickly
lost catalytic activity [11,12].

To overcome the limitations of E. coli expression systems, yeasts have been used
to achieve high-yield protein overexpression [13]. Yeast expression systems have been
adapted to produce varied polymer-degrading enzymes, using yeast hosts such as Cryptococ-
cus sp. [14,15], Saccharomyces cerevisiae [16], and Pichia pastoris (P. pastoris). The performance
of heterogeneous expression will be influenced by the choice of different expressing host
cells [17–19], suggesting that using a host with similar genetic characteristics will improve
the heterogenous protein expression.

Among them, P. pastoris (now Komagataella phaffii) is a well-recognised expression
system for producing heterologous proteins [13]. Pichia pastoris is an attractive host for
expressing these enzymes due to its ability to secrete active proteins efficiently, making
it a promising platform for producing polymer-degrading enzymes at scale. Current evi-
dence suggests that recombinant expression in P. pastoris could produce enzymes carrying
more stabilised structures and activity [20]. For example, the expression of a fungal cuti-
nase, demonstrating 90% catalytic activity over a span of 48 h at 50 ◦C, was reported by
Kazenwadel, Eiben et al. [21]. Additionally, a bacterial laccase has been expressed and
remains active for a duration of 10 days at 30 ◦C, as documented by Lu, Wang et al. [22].
Furthermore, a fungal lipase has been expressed that exhibits detectable activity for up
to 10 days, as described by Jallouli et al. [23]. Notably, the utilisation of high-cell-density
fermentation has facilitated enzyme production with low maintenance demand and min-
imised downstream processing requirements, as outlined in the work of Abdulrachman,
Thongkred et al. [24]. By fine-tuning these enzymes to work efficiently at ambient or
composting temperatures, researchers aim to make bioplastic degradation more practical
and cost viable. This enzymatic approach not only provides an environmentally friendly al-
ternative to chemical recycling but also opens opportunities for circular economy strategies,
where bioplastic waste is transformed into valuable monomers for new material synthesis.

Pichia pastoris has a proven track record of efficiently producing abundant yields of
recombinant proteins [20]. In the context of expressing plastic depolymerising enzymes,
P. pastoris is considered a good host for expressing a number of enzymes, as described below.

This article focuses on studies describing recombinant expression systems of microbial
depolymerising-like enzymes (e.g., lipase, cutinase, and laccase) in P. pastoris over the
last ten years. The review summarises key research, discusses the main factors affecting
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the heterogenous expression of polymer-degrading enzyme in P. pastoris, and postulates
the following challenge of depolymerising enzyme production using P. pastoris expres-
sion systems.

2. Microbial Depolymerising Enzymes Commonly Expressed in
P. pastoris

Firstly, Pichia pastoris is an ideal host for expressing heterologous lipase (E.C. 3.1.1.3)
due to its lack of endogenous lipolytic activity when carrying an empty vector [25]. Lipases
usually prefer water-insoluble acyl esters and emulsified substrates with long-chain acyl
groups (≥C10) [26]. The potential activity of lipase on degrading biodegradable plastic
polymers has been reported. A lipase from Aspergillus niger maintained its efficacy through
recombinant expression in P. pastoris, and the recombinant lipase could degrade PLA 5000
(polylactic acid) (up to 87%), PLA 10,000 (up to 84%), and PCL 10,000 (polycaprolactone)
(up to 78%) in a 72 h treatment [27]. A lipase B from a Candida Antarctica variant was
reported to degrade PCL, and the ability was improved using P. pastoris as host for the
lipase production [17,18].

Esterase hydrolyses the ester bonds of water-soluble acyl esters and emulsified glyc-
erolesters with short-chain acyl groups (≤C8) [28]. Enzyme engineering has been used to
improve esterase activity for hydrolysing long-chain fatty acids (C10–14) [29]. The group
of enzymes often contains a pentapeptide motif (GYSLG) and the catalytic triad (Ser-Asp-
His) as a shared feature of proteins in the esterase/lipase superfamily [28]. P. pastoris has
been used for recombinantly expressing esterase (EC 3.1.1.1) for degrading plant polysac-
charides [30]. A polyhydroxyalkanote depolymerase from a Thermobifida sp. isolate was
expressed in P. pastoris with a C-terminal His6-tagged fusion and performed esterase-like
activity of degrading bioplastic polymer poly-[(R)-3-hydroxybutyrate] (PHB) films with
a measurable rate (870 ng/cm2) [31]. Since the P. pastoris genome contains non-specific
esterase genes, the enzymatic activity of exogenous esterase is often evaluated with a refer-
ence group expressing an empty vector with inactive inserts [32]. Somehow, the activity of
endogenous/non-specific esterase could be insignificant [33] or lost after the ultrafiltration
process [34].

Cutinases are versatile enzymes within the esterase family, known for their ability
to break down cutin, a natural polymer found in plant cuticles. Their capability extends
beyond natural substrates, as they can hydrolyse synthetic polyesters like PET and vari-
ous bioplastics. Cutinases (E.C. 3.1.1.74), as a class of serine esterase, can degrade high-
molecular-weight polyesters (up to C18) and perform esterification/transesterification
reactions, similar to lipase [35]. Thus, cutinases are often compared with lipases, which
usually require interfacial activation to yield similar enzymatic activity [36]. Assessments
of the polymer degradation efficiencies between cutinase and lipase [37–39] suggested
that cutinase performs more promising depolymerisation against polyester. Cutinases
are particularly effective in degrading hydrophobic polymers due to their amphipathic
nature, which enables them to interact with and hydrolyse the ester bonds on the surface of
plastics. The broad substrate specificity of cutinases makes them suitable for a wide range
of applications in plastic waste degradation.

Cutinases, which are overexpressed in P. pastoris, are promising depolymerisers on
breaking down synthetic polymers [40]. Exceptional candidates are reported, such as a
mutant of cutinase from Thermobifida cellulosilytica capable of hydrolysing poly (butylene
succinate) (PBS), with up to 92% weight loss within 96 h [41]; a cutinase from Fusarium solani
that could completely degrade PBS film in 6 h [42]; a cutinase from Aspergillous fumigatus
that completely degraded PCL and synthesised molecules with a molecular weight of 25,000
into dimers or monomers in 6 h [43]; and a glycosylated cutinase that originated from leaf
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and branch compost, causing 95% weight loss in amorphous PET film within 48 h [44].
In industrial settings, enzyme performance at elevated temperatures is often required to
match the thermomechanical properties of plastics, and cutinases have been engineered to
function optimally at these conditions. Thermostable cutinases have been developed that
maintain high activity and structural integrity at temperatures exceeding 60 ◦C, making
them valuable for large-scale bioremediation and recycling operations. These engineered
enzymes have shown promise not only in plastic degradation but also in improving the
recyclability of mixed and multilayered plastic materials.

Laccase (EC 1.10.3.2) belongs to the multicopper oxidase (MCO) family and has been
found both in fungi and bacteria. Many bacterial laccases have been recombinantly ex-
pressed in E. coli, but the intracellular production led to a difficult enzyme purification [45].
Alternatively, heterogenous expression of bacterial laccase was conducted in P. pastoris
to generate a higher yield with purified and active forms [22]. Fungal laccases tend to
display redox activity with a higher enzyme yield than bacterial laccases, and many of
them are modified (e.g., dye decolourisation in the textile industry) at a high temperature,
high salt concentration, or extremely acidic or alkaline pH [46,47] to become adaptive in
industrial applications for removing dye or toxic compounds. P. pastoris expressing laccase
was reported to degrade micropollutants such as endocrine-disrupting chemicals and non-
steroidal anti-inflammatory drugs [48]. High-expression yield of laccases in P. pastoris has
been seen [48,49], as well as low yield [19]. It is assumed that the similar genetic character
(e.g., shared codons and close GC content) between the expression host and the mother
microorganism (carrying the target enzyme) could determine the efficiency of heterogenous
expression [19]. Since laccases have roles in lignin degradation and wood modification [50],
their ability to play a role in plastic depolymerisation is expected [51–55]. But the ability to
degrade synthetic plastic polymers remains to be clarified.

3. Intrinsic Features of Enzyme Associated with the Functional
Overexpression

The effective functional overexpression of plastic-depolymerising enzymes in yeast
is contingent upon several intrinsic and extrinsic features [25] (Figure 1). Enzymes must
demonstrate stability within the conditions of yeast growth, encompassing the temperature
and pH range conducive to yeast fermentation. Proper folding and maintenance of the
correct conformation are imperative for functional activity, as misfolded proteins can result
in diminished enzyme activity or degradation [19].

Resistance to degradation by yeast proteases is essential to maintaining stability and
functionality during both expression and secretion. Efficient gene expression relies on
compatibility with yeast promoters [23], with certain promoters, such as those inducible
by specific carbon sources like methanol, being employed for controlled expression [56].
Enzymes necessitating disulfide bonds for stability or activity should form these bonds
correctly within the reducing environment of the yeast cell. Ideally, enzymes should exhibit
a codon usage pattern compatible with yeast, optimising translation efficiency. Moreover,
enzymes should not induce cytotoxic effects on yeast cells to ensure cell viability and
sustained enzyme production. The overexpression of enzymes should be balanced to avoid
imposing an excessive metabolic burden on yeast cells, allowing for sustained growth
and production.

Early works, as discussed by Ma et al. and Lin et al., highlight the pivotal role of
specific structural features essential for catalytic performance in Pichia pastoris [57,58]. How-
ever, our understanding of comparative homology with other depolymerising enzymes,
such as lipase, laccase, and esterase, remains limited. The investigation into the correlation
between homology and enzyme properties is still in its nascent stages. As an increasing
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number of depolymerising enzymes are being reported, homology modelling emerges as
an indispensable approach for elucidating the bio-mechanisms underlying the superior
degradative capabilities of these enzymes.
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Homological analysis of cutinase-like enzymes has revealed a conserved G-Y-S-Q-
G domain containing a catalytic S-D-H triad [59], and disulfide bonds in the enzyme
contribute to the thermodynamic stability and the kinetic stability of cutinases [60]. The
cutinase, which prefers medium- to long-chain substrates, often exhibits depolymerising
ability [61]. This property of cutinase has been reported to be associated with different
structural features of active enzymatic sites, such as a mutant change on the small helical
flap [62] and the presence of a deep continuous groove extending across the active site
(in comparison with another cutinase carrying a shallow and interrupted groove at active
sites that favours short-chain substrates) [60]. More accessible space at the active site
of the enzyme is assumed to facilitate the catalytic activity. As reported, the presence
of an extended groove near the catalytic triad (Ser-Asp-His) is important for a better
accommodation of polymeric substrates [63], and the enlarging active site was further
found to enhance fungal cutinases’ activity for recognising and fitting towards polymer
chains like polyethylene terephthalate (PET) and polyamide 6,6 (PA 6,6) fibres [64]. Also,
the hydrophobicity of the Ser-Asp-His catalytic triad could determine the affinity ability to
amphiphilic long-chain substrates such as PET [65].

The primary focus remains on the continual enhancement of enzymatic stability and
catalytic efficiency [66]. Recent insights into optimising protein structures to improve
plastic biodegradation performance are highlighted in a comprehensive review [67]. Many
polymer-degrading enzymes require high temperatures to be effective, especially for appli-
cations involving PET, which has a high glass transition temperature. Pichia pastoris has
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been used to express engineered enzymes with improved thermostability, allowing the
enzymes to maintain activity under industrially relevant conditions.

Plastic surfaces are hydrophobic, which can limit enzyme access. To address this,
enzymes can be engineered to have enhanced surface-binding properties. Pichia is used to
express such modified enzymes; however, the modifications do not compromise enzyme
activity or stability.

One illustrative example involves the cutinase from Aspergillus oryzae, where the in-
troduction of additional mutations, forming a salt bridge network in its structure, led to
a notable increase in enzyme stability of 6 ◦C. However, this optimisation did not corre-
spondingly enhance catalytic activity [63]. Challenges in enzyme engineering arise from
specific characteristics, such as the disparity between the thermo-unfolding temperature
of the active site and that of the enzyme’s overall structure, as elucidated in the works of
Sulaiman et al. and Shirke et al. [63,65].

4. The Influence of Post-Translational Modification During the
Overexpression of Depolymerising Enzymes

Enzymes must exhibit specificity for the target substrate, such as plastic polymers, and
demonstrate high catalytic efficiency to ensure effective depolymerisation. Compatibility
with yeast post-translational modification machinery is crucial for enzymes to undergo
necessary modifications, which can significantly impact enzyme stability and activity.
Hyper-glycosylation of heterologous proteins [68] is one of the post-translational modi-
fications resulting in changes in the stability and activity of expressed enzymes [69,70].
Sometimes, non-glycosylated variants may be preferable for certain applications, requiring
the use of strains engineered for minimal or no glycosylation.

The efficiency of target protein secretion in P. pastoris can be also influenced by the
different glycosylation states of the protein variants [7,71]. Hyper-glycosylation in P. pastoris
expression has been particularly postulated to be responsible for influencing the molecular
mass, isoelectric point, and pH range of the expressed protein [40,72,73], and even the
biodegradation activity [41,44]. The impact of glycosylation on cutinases has been inves-
tigated, with early studies determining the presence or absence of N- or O-glycosylation
sites prior to fusion [74].

Tammer et al. reported that a cutinase gene deduced from Aspergillus niger carries
33 sites for O-glycosylation, and its expression by P. pastoris generated a larger target
(40 kDa) than expected (29 kDa, taking into account the His-tag), sustaining hydrolytic
activity against ester polymers [40]. Glycosylation-site knock-out mutants of a cutinase
from Thermobifida cellulosilytica showed no difference in the protein expression level but
higher hydrolysing activity against poly (butylene succinate) compared with the wildtype
protein [41].

Li et al. have reported that a PET-degrading enzyme variant, CtPLDM from Caldimonas
taiwanensis, was expressed in the industrial strain P. pastoris [75]. However, the enzyme
initially exhibited inactivity towards PET, contrasting with active expression in E. coli.
Structural analysis revealed that N-glycosylation at residue N181 restrained the flexibility
of a substrate-binding tryptophan, impairing enzyme activity [75]. The glycosylation site
restricted the conformational adjustments needed for PET degradation. Another N181A
variant was engineered to eliminate the problematic glycosylation, restoring PET hydrolytic
activity. Further rational design and molecular engineering expanded the substrate-binding
tunnel (F235L), enhancing enzyme performance [75]. This variant cutinase was identified
as a promising candidate for additional improvements, such as enhancing thermostability,
which is critical for industrial applications.
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Another case study by Gamerith et al. revealed a distinct impact of glycosylation on
the degradation ability of Thermobifida cellulosilytica cutinase 1 (Thc_Cut1) and its glycosyla-
tion mutants, Thc_Cut1_koAsn and Thc_Cut1_koST, which were expressed in P. pastoris.
Thc_Cut1_koST, for instance, was significantly more active on poly (butylene succinate)
(PBS) compared to its native form. All Thc_Cut1 and its mutants effectively hydrolysed
PET, PBS, and PHBV, with better efficiency on PBS [41]. Thc_Cut1_koST exhibited up to
92% weight loss in PBS films in 96 h, indicating significant potential for biodegradable
polyester recycling [41]. Interestingly, the glycosylation site knock-out mutant showed no
significant impact on total protein yield, and the removal of glycosylation sites did not
reduce performance on PET and, in fact, enhanced activity on PBS [41]. This structural
modification implies that glycosylation effects depend on the specific substrate and desired
enzyme characteristics.

Differently, Shirke et al. explored leaf and branch compost cutinase (LCC) from
bacterial origin and used glycosylation to improve thermal stability and reduce aggregation
in the P. pastoris expression system [44]. It was found that glycosylation of LCC (LCC-G)
increased the temperature tolerance by 10 ◦C and slowed aggregation, crucial for PET
hydrolysis at temperatures above PET’s glass transition temperature, making it a robust
candidate for practical recycling applications [44]. In this study [44], the glycosylated
cutinase showed an enhanced kinetic stability above the glass transition temperature of
PET to achieve better efficiency on PET degradation compared to that of the natively non-
glycosylated cutinase. Therefore, investigation of the influence of glycosylation is necessary
in each specific case.

5. The Impact of Vector Construction on Functional Overexpression
Selecting the appropriate vector for functional overexpression is a critical decision

in the pursuit of high-purity depolymerising enzyme expression. The vectors pPICZ and
pGAPZ were popularly used to express depolymerising enzymes with high purity in
P. pastoris [25,76]. The codon optimisation of the target enzyme sequence is crucial for
vector construction to enhance protein secretion, stability, and biofunction [77–80].

Equally influential is the decision regarding signal sequence addition or the engi-
neering of the N-terminal peptide, which significantly impacts the expression level of the
foreign protein. Examples are the utilisation of the Saccharomyces cerevisiae α-factor signal
sequence [23] and other native propeptide signal sequences [78,79]. Signal peptides guide
enzymes to the secretory pathway, facilitating extracellular expression [23]. Signal peptides
are often optimised to improve enzyme secretion into the culture medium, which simplifies
downstream processing. These choices play a pivotal role in dictating the success of the
overexpression strategy, offering a nuanced approach to tailoring the outcome based on
specific biological and functional requirements [79]. Therefore, an effective secretion signal
is necessary to ensure the proper trafficking of the enzyme to the extracellular space, where
plastic degradation typically occurs.

The AOX1 promoter, which is inducible by methanol, is often used for high-level
expression of plastic-degrading enzymes. However, constitutive promoters like GAP are
also explored to avoid the use of methanol, especially when continuous enzyme production
is needed.

6. Other Factors Influencing Heterogeneously Produced
Depolymerising Enzymes

The activity of expressed enzymes could be significantly reduced or lost after filtra-
tion, and enzyme purification is a key step to obtaining the target enzyme. Yang et al.
demonstrated that the acetyl xylan esterase (AXE, one of the fungal enzymes required for
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degrading hemicelluloses) exhibited 0.68% of the total initial activity after the purifica-
tion process but a 26.1-fold increase in specific activity compared with the crude culture
filtrate [34].

Vectors constructed with the (His)6-tag are considered a way to achieve easy purifi-
cation and detection of recombinant protein [81,82]. A redox-responsive cutinase gene
(Mfcut1) fused to the (His)6-tag was firstly expressed at high levels in P. pastoris using the
vector pPIC9K, and the results demonstrated that the recombinant expression of a cutinase
could be induced by cutin monomer presence or glucose depletion [83]. Other His-tagged
cutinases (e.g., a cutinase from Aspergillus niger [84]; a cutinase from the ascomycetous plant
pathogen Sirococcous conigenus [74]) were subsequently reported in P. pastoris expression,
and the recombinant enzymes showed activity over a broad range of pHs with maximal
activity. On the other hand, a study on a Fusarium solani cutinase [85] reported that the ad-
dition of (His)6 tag negatively affected a cellular process for proper synthesis, folding, and
secretion of cutinase, associated with the generation of two secreted proteins in different
molecular weights in the expression cells with the His tag, assuming that other factors of
post-translational modification, particularly glycosylation, would determine the activities
of expressed proteins.

The high yield and purity of enzymes through a heterogenous expression system
does not assure an expect catalytic ability regarding the activity per unit, since enzyme
application in high density may cause a negative influence. A Fusarium verticillioides
cutinase expressed by P. pastoris was reported to form numerous tuberculate or warty
protrusions on a treated surface when being used in a bioreactor for hydrolysing rice straw,
leading to repressed enzymatic activity [86].

Additionally, many metal ions and chemicals play various roles in the stability and
depolymerising activity of overexpressed enzymes. The activity of a cloned Fusarium solani
cutinase was enhanced by K+ and Na+ and inhibited by Zn2+, Fe2+, Mn2+, and Co2+ [42].
The activity of overexpressed lipases from Fusarium solani was enhanced by Ca2+ [23,87],
and the structural modelling reveal that the most probable Ca2+ binding site is not inside
the active site but rather located in a surface loop participating in the hydrophobic interface
with the substrate [87]. Another researcher demonstrated that the catalysing efficacy of
an expressed lipase from Aspergillus oryzae was limited by Zn2+ and Cu2+ [26]. EDTA and
β-mercaptoethanol exerted a significant inhibitory effect by breaking the disulfide bonds,
indicating the biofunctional importance of a serine residue in the enzymatic activity [42,87].
Chemicals like Tween-20 showed inhibitory effects on the enzymatic activity, indicating
that the cloned enzyme contains hydrophobic groups at its active site [42].

7. Strategies Incorporated into Depolymerising Enzyme Overexpression
New strategies for enhancing the overexpression of depolymerising enzymes have

been explored (Figure 2), with a focus on well-known enzymes such as PET hydrolases
(PETases), which are involved in the degradation of PET. PET hydrolases (PETases) are
a crucial class of enzymes that hydrolyse the ester bonds in polyethylene terephthalate
(PET), a plastic widely used in bottles, clothing fibres, and food containers. The enzymatic
breakdown of PET produces its monomeric components, primarily terephthalic acid and
ethylene glycol, which can be recycled into new PET products or repurposed for other
uses. The PETase enzyme from Ideonella sakaiensis [88,89] gained significant attention after
it was discovered for its ability to degrade PET under mild conditions. Researchers have
since worked on enhancing the enzyme’s activity and stability to make it more suitable for
industrial applications. For example, variants have been engineered to exhibit improved
thermal stability, allowing the enzyme to operate effectively at higher temperatures, which
increases the plastic’s amorphous regions and facilitates faster hydrolysis [90,91]. Efforts
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also focus on increasing the enzyme’s catalytic efficiency by modifying its active site and
substrate-binding regions.
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Expression of dual enzymes has been designated to improve thermal stability [92], with
an increase in catalytic efficiency [93,94], to minimise any pre-treatment step for polymer
biodegradation [95]. The two-enzyme PETase/MHETase system for PET depolymerisation
is a first example, using E. coli as the expression host [67,96]. A chimeric lipase–cutinase
was successfully overexpressed in P. pastoris and exhibited lipase and cutinase activities
127% and 210% higher than their parent enzymes [97], contributing an improved effect
of degrading vinyl acetate (PVAC) by the synergistic action of the moieties [97]. Its PCL-
degrading ability was subsequently determined, and the weight loss in PCL films with the
fusion protein treatment was 14.35, 12.77, and 6.67 times higher than that achieved with
lipase and cutinase alone or with a mixture of lipase and cutinase, respectively [98]. The
use of an anchor peptide (adhesion promoter) with a target enzyme has been used for the
immobilisation of functional protein to different polymer surfaces [99–101]. The introduc-
tion of material-binding peptide was reported to accelerate the degradation efficiency of
the secreted enzyme against polymer nanoparticles [102] and polymers in suspension [103],
indicating a bio-strategy of treating waste water containing microplastics.
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Enzyme immobilisation on the cell surface of the expression host also showed a posi-
tive impact on enhancing the enzymatic activity [104,105]. A lipase B from Candida antarctica
was reported to be expressed and displayed on the surface of modified P. pastoris cells,
which co-expressed a hydrophobin responsible for structural and hydrophobic changes
in the P. pastoris cell surface, and the lipase activity was enhanced on the cell surface with
glycerol barrier removal in an anchoring form, causing substrates to easily access the lipase
active site [106]. Recently, Chen et al. [80] established a whole-cell biocatalyst model by
displaying PETase on the surface of P. pastoris cells with significantly enhanced catalytic
efficiency, enabling the degradation of commercial PET bottles. This technology can easily
produce enzymes from P. pastoris (as the expression host) and make the secreted enzyme
anchor on the surface of the same P. pastoris cell (as the support cell) to avoid the extra
process of enzyme separation and purification [107]. The continuing turnover of the an-
chored enzyme further contributes to a better reusability of the biocatalysis through simply
optimising the culture conditions [80], a key to biodegradation engineering for stabilising
the catalytic rate in a streamlined process.

8. Applications and Industrial Relevance
It is commonly recognised that P. pastoris secreting proteins into the culture medium

simplifies downstream processing and purification. Its ability to grow on simple, defined
media enhances cost-effectiveness, distinguishing it from expression systems requiring
more complex formulations. Utilising methanol as a carbon source for induction, P. pastoris
offers an inducible system that allows for precise control over the timing and level of protein
expression, providing a switchable expression system independent of nutrient depletion.
The yeast also provides a favourable environment for proper protein folding and secretion,
facilitated by its secretion machinery that corrects protein folding, often eliminating the
need for extensive refolding during purification. Therefore, P. pastoris is well suited for
large-scale fermentation, making it suitable for industrial-scale enzyme production, thanks
to its scalability and robust fermentation characteristics [24].

Enzymatic depolymerisation requires highly effective enzymes on a large scale and are
in high demand. This section highlights the pichia-overexpression of polyesterase, which
demonstrated activity against some bioplastics, showcasing their potential for sustainable
application and the technological possibilities when moving to the scale-up stage. In
this context, we focus on two commonly used biodegradable and recyclable polyesters—
poly(lactic acid) (PLA) and polycaprolactone (PCL)—as promising alternatives to conven-
tional plastics [27].

Poly(lactic acid) (PLA) is a compostable thermoplastic polyester that can be derived
from renewable resources like corn, sugarcane, or cassava. Nowadays, demand for it has
grown, especially in food- and beverage-packing materials. As the use of biodegradable
plastics like polylactic acid (PLA) continues to grow [108], there is an increasing need for
efficient recycling and disposal methods. Enzymatic degradation represents a potential
solution in current scientific investigation. A recent study evaluated the suitability of
cutinases derived from Aspergillus nidulans and expressed in P. pastoris to recover lactic acid
and create higher-value products. They found that one enzyme, ANCUT1, produced a
significant amount of L-lactic acid—higher than that produced by proteinase K, a known
PLA-degrading enzyme [109]. Comparatively, Carbios has reported significantly higher
enzymatic efficiency, with yields 2.23 times greater than those achieved with ANCUT1
(0.91 mmol lactic acid/g enzyme/h−1) [109,110]. This discrepancy underscores the need
for optimisation, leading to efforts focused on factors such as PLA particle size/form,
reaction temperature, pH, and enzyme concentration [109]. In a related approach, the
cutinase secreted by Fusarium solani (FsC) was heterologously produced in high yields, and
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its hydrolytic efficiency was evaluated on PLA polymers with varying stereochemistry,
crystallinity, and degrees of polymerisation [111]. Under the experimental conditions,
FsC exhibited enantioselectivity, demonstrating optimal activity on poly-D,L-lactic acid
(PDLLA), while showing no hydrolytic activity on poly-L-lactic acid (PLLA) [111]. The
hydrolysis of PDLLA was further optimised using response surface methodology, resulting
in an 88% hydrolysis rate within 10 h under the optimised conditions [111].

The findings suggest that PLA particle size plays a critical role in balancing enzyme–
substrate contact and efficient product release. Similarly, enzyme concentration was ob-
served to impact yield, as excessively high enzyme levels may interfere with the mobility
required for effective degradation reactions. These insights provide a foundation for
refining enzymatic processes to improve PLA-recycling efficiency.

Polycaprolactone (PCL) is a biodegradable polyester with a low melting point that
is widely used in applications such as biomedical devices, drug-delivery systems, and
packaging materials. In terms of recycling and sustainability, PCL is also considered
more eco-friendly than conventional petroleum-based plastics. However, its degradation
rate in natural environments is relatively slow compared to other bioplastics. Efforts are
being made to improve its cycling through enzymatic and chemical recycling methods.
Enzymatic depolymerisation, driven by specialised enzymes capable of breaking down
polyester bonds, shows promise for enhancing PCL’s recyclability by converting it back
into its monomer form, which can then be repolymerised to create new products. Current
research is focused on optimising these biotechnological processes.

Oh et al. successfully screened for PCL-depolymerising enzymes, identifying a su-
perior variant, CalB-658, through a PCL emulsion agar plate assay [17,18]. CalB-658, a
modified lipase B from Candida antarctica, demonstrated significantly enhanced activity
compared to the wildtype enzyme, depolymerising 97.3% of PCL films over 32 h [17].
Using P. pastoris as the recombinant host, CalB-658 was produced extracellularly in large
quantities (844.3 mg/L), with a lipase activity of 13,753.3 U/L [17]. This production system
leverages the strong, methanol-inducible AOX1 promoter, simplifying the purification
process due to low levels of endogenous secreted proteins. CalB-658 showed a significant
improvement in converting PCL to 6-hydroxyhexanoic acid (6-HHA), yielding 5.0-fold
more 6-HHA than the wildtype enzyme [17]. This study further explored the conversion of
6-HHA into value-added biochemicals, such as succinic acid and polyhydroxyalkanoate
(PHA), using metabolically engineered strains of E. coli. Overall, the use of Pichia pastoris as
a host for expressing plastic- and bioplastic-degrading enzymes presents a versatile and
scalable approach for industrial applications [17].

The current lab bioreactor testing shows that CalB-658 exhibits plastic degradation
(60 mg) over 32 h, indicating a time-dependent activity that may limit its immediate
real-world application. However, the enzyme could be further engineered to accelerate
the degradation rate. Engineered enzymes could then be employed in large-scale plastic
waste recycling by optimising enzyme concentration and reaction time in bioreactors
to break down plastics like PCL into reusable monomers. For environmental cleanup,
enzymes could also be immobilised or used in biofilms to enhance plastic degradation in
contaminated sites.

Alternatively, one promising approach is the development of enzyme cocktails, which
combine multiple enzymes to degrade a wider range of plastic polymers simultaneously.
These cocktails could be produced in co-cultures or through engineered Pichia strains
capable of co-expressing complementary enzymes, making them more effective at tackling
mixed or multilayered plastic waste. Such innovations hold potential for large-scale
bioremediation efforts, offering a proactive solution to plastic pollution in both terrestrial
and aquatic ecosystems. The industrial relevance of these enzymes is underscored by their



Bioengineering 2025, 12, 68 12 of 20

potential to transform how we handle plastic waste, providing eco-friendly alternatives
that align with global environmental goals.

9. Future Directions and Research Focus
The complexity of plastic waste requires a multifaceted approach to biodegradation.

To address this, Pichia pastoris strains are being engineered to co-express multiple enzymes
capable of working in tandem to degrade plastics more efficiently. For instance, PET, one of
the most common plastics, can be broken down into simpler monomers through a series of
enzymatic reactions [112]. By co-expressing enzymes such as PETases [113], which initiate
the breakdown of PET into smaller oligomers, and MHETases, which further hydrolyse
mono(2-hydroxyethyl) terephthalate (MHET) into terephthalic acid and ethylene glycol, a
sequential and more effective degradation process can be achieved. Additional enzymes
like cutinases can complement this process by enhancing the breakdown of polyesters and
mixed plastic materials [91]. The challenge lies in ensuring these enzymes are expressed at
appropriate levels, remain stable, and function efficiently within the same biological system.
Optimising expression cassettes and regulatory elements to balance enzyme production,
minimise metabolic burden, and prevent potential interference between enzymes is an
ongoing area of research [114]. Moreover, the development of Pichia strains that can
efficiently secrete these enzymes into the extracellular environment is essential for practical
applications in bioremediation and recycling processes.

By designing Pichia strains with synthetic gene circuits and optimised metabolic path-
ways, researchers can fine-tune the production and secretion of plastic-degrading enzymes.
These advancements include the use of CRISPR-based genome editing [115] to insert or
delete genes with high precision, as well as the implementation of synthetic promoters
and transcriptional regulators to control gene expression. Additionally, synthetic biology
enables the integration of biosensors into Pichia cells, allowing for real-time monitoring of
enzyme production and cellular health [116]. These biosensors can be designed to respond
to specific signals, such as the presence of plastic degradation products or changes in
pH, providing feedback that can be used to adjust fermentation conditions dynamically.
Furthermore, efforts are being made to incorporate pathway engineering strategies that
reroute cellular resources towards enzyme synthesis, thereby maximising productivity. The
integration of synthetic metabolic pathways can also support the co-production of valuable
by-products, adding economic value to the biodegradation process.

A major focus in the development of Pichia as a production host for plastic-degrading
enzymes is the sustainability of the bioprocesses involved. Traditionally, Pichia pastoris
uses methanol as an inducer for the AOX1 promoter, but methanol is both flammable and
derived from fossil fuels, posing safety and environmental concerns [117]. To address this,
researchers are developing methanol-free fermentation systems that employ alternative
promoters, such as the constitutive GAP promoter or novel inducers that are safer and more
sustainable [118]. These methanol-free systems not only reduce the environmental impact
but also simplify the fermentation process, making it more cost-effective and suitable for
large-scale applications. Additionally, efforts are being made to use renewable and low-cost
feedstocks, such as agricultural residues, waste glycerol from biodiesel production, or
lignocellulosic biomass, as carbon sources for Pichia growth and enzyme production [117].
This approach leverages existing waste streams, turning them into valuable inputs for
enzyme synthesis and further contributing to the circular economy. Process strategies,
such as continuous fermentation and the use of high-cell-density cultures, are also being
explored to increase productivity and reduce resource consumption [117].
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10. Summary
Plastics depolymerisation poses a challenge due to the demanding redox potential

requirements, often exceeding those exhibited by most oxidoreductases [119]. This review
advocates for the heterogenous expression of depolymerising enzymes in the P. pastoris
system, which has demonstrated success in many in vitro cases. Numerous enzymes
expressed in P. pastoris exhibit potential for a complete plastic depolymerisation in vitro.
Table 1 summarises the key studies.

Table 1. Key studies on heterogenous expression of depolymerising enzymes in Pichia pastoris.

Enzyme Polimer Enzyme Mass Activity/Yield pH/Temp (◦C) Degrading Efficacy Ref.

Aspergillus niger
lipase (without the
signal peptide
sequence)

PLA
PCL

The native peptides at
35 and 37 kDa (the
bigger molecular mass
due to glycosylation);
the purified
recombinant at higher
sizes (43 and 45 kDa)
due to the His-tag in the
protein

Vmax of
32.21 µmol/min/mg
and Km of 3.83 mM
using olive oil as
substrate

pH of 4.0 to 10.0,
temp of 37 to 50 ◦C,
optimal pH and
temperature 7.0 and
37 ◦C

Ten mg/mL of each
plastic was degraded by
the lipases, and the
degradation % was
calculated by measuring
the decrease in turbidity
of the emulsions at
580 nm before and after
addition of the enzyme),
with 87 and 83% loss of
PLA 5000, 75 and 84%
loss of PLA 10,000, and
78 and 31% loss of PCL
10,000 at 30 ◦C in 72 h.

[27]

Candida Antarctica
lipase B PCL 34 kDa

At a concentration
of 844.3 mg/L with
a lipase activity of
13.75 U/mL, using
ρ-NPP (C6) as
substrate

Optimal activity at
50 ◦C and pH 7.0

A lipase mutant
(CalB-658) degraded
97.3% of 60 mg PCL film
at 32 h, and the
production of the
monomer of PCL
(6-HHA) was further
improved in a bioreactor
at 50 ◦C.

[17,18]

Thermobifida sp.
polyhydroxyalkan-
ote depolymerase

PHB Two glycosylated
forms at 61 and 70 kDa

Vmax of 3.63 ±
0.16 µmol/min/mg
protein and Km of
0.79 ± 0.12 mM
using ρ-NPB (C10)
as substrate

Optimal activity at
50–55 ◦C and pH
7.0–8.0

The degradation rate of
PHB was linear for the
first 400 min, estimated
at 130 ng cm−2 h−1, and
declined thereafter.

[31]

A. oryzae cutinase;
F. solani cutinase PCL N/A

F. solani cutinase:
Km of 1.50 µM
using ρ-NPH (C12)
as substrate
A. oryzae cutinase:
Km of 4.96 µM
using ρ-NPA (C8)
as substrate

High reactivity at
40 ◦C and pH 8.0 for
both enzymes

87% of PCL weight loss
(mg/cm2) in the
presence of A. oryzea
cuitnase and 30% by F.
solani cutinase within 6 h

[60]

F. solani cutinase PBS 24 kDa
Km of 1.37 mM
using ρ-NPB as
substrate

pH of 4.0 to 10.0,
temp of 20 to 50 ◦C,
optimal pH and
temperature were 8.0
and 50 ◦C [6]

100% weight loss in PBS
films (30 × 10 × 0.1 mm)
after 6 h at 50 ◦C [6];
100% weight loss in PBS
films (30 × 10 × 0.5 mm)
after 26 h incubation at
37 or 45 ◦C [7]

[37,42]

F. solani cutinase; A.
fumigatus cutinase PCL Similar size at 20 kDa

Using ρ-NPB as
substrate,
4370.5 U/g of
F. solani cutinase
and 797.2 U/g of
A. fumigatus

F. solani cutinase pH
7.5 and 40 ◦C;
A. fumigatus cutinase
pH 8.0 and 60 ◦C

At 40 ◦C, A. fumigatus
cutinase completely
degraded the PCL films
after 6 h, while F. solani
degraded it by 44.3%
after 12 h.

[43]

C. antarctica lipase,
F. solani cutinase PCL N/A

45 U/mL lipase or
45 U/mL cutinase
using ρ-NPB as
substrate

Lipase at 45 ◦C and
pH 7.2 or cutinase at
37 ◦C and pH 7.2

87.56% (lipase) and
80.8% (cutinase) weight
loss in PCL films after
72 h of incubation

[38]
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Table 1. Cont.

Enzyme Polimer Enzyme Mass Activity/Yield pH/Temp (◦C) Degrading Efficacy Ref.

Thermobifida
cellulosilytica
cutinase

PBS
PET

38 kDa (wildtype)
29.4 kDa
(deglycosylated
mutants)

100–210 U/mg
using ρ-nitrophenyl
butyrate (ρ-NPB) as
soluble substrate

65 ◦C and pH 8.0

After 96 h of incubation,
~24% degradation in
initial PET powder to
soluble TPA was seen in
both wildtype and
mutant enzymes;
~24 and 48% degradation
in initial PBS powder to
soluble released products
by wildtype and
mutants, respectively.

[41]

Cutinase (leaf and
branch compost) PET N/A

200–300 mg/L of
glycosylated LCC
produced by
P. pastoris

70 ◦C
pH 8

∼95% weight loss in PET
film (1 cm × 1 cm and
250 µm thick) after 48 h
incubation

[44]

Glomerella cingulata
cutinase PET 25 kDa

kcat/Km of
7.7 ± 0.7 mM−1 s−1

using ρ-NPC (C8)
as substrate

25 ◦C
pH 8

PET film surface was
peeled, pitted, and
corroded under a
scanning electron
microscope after 24 h
incubation.

[61]

Lipase–cutinase
fusion enzyme
(Thermomyces
lanuginosus and
Thielavia terrestris)

PCL 50 kDa 188.1 mg/L 40 ◦C
pH 8

The weight loss in PCL
films reached 91.95%
after 6 h degradation by
Lip–Cut.

[98]

Note: All listed enzymes are heterogeneously expressed in P. pastoris using vector pPICZαA. The degradation
outcomes were achieved in vitro using purified enzymes from the recombinant expression.

The current focus is on sustaining a bioanalysing reaction and the emergence of a novel
biocatalysis system [79], showing a promising role of the P. pastoris fermentation system in
developing a biocatalysing reactor that closely mirrors real-world conditions. The support-
ive outcomes open up prospects for advancing plastic depolymerisation technologies.

The expression of plastic- and bioplastic-degrading enzymes in Pichia pastoris rep-
resents a significant advancement in the quest for sustainable waste management and
environmentally friendly recycling methods. By leveraging Pichia’s ability to produce
high yields of active enzymes, researchers are developing bio-based solutions that could
revolutionise how we address plastic waste. Enzymes such as PETases, cutinases, and
polyesterases are being engineered and optimised for enhanced activity, stability, and
efficiency under various environmental and industrial conditions. These efforts are making
the idea of enzymatic recycling more feasible and scalable.

Despite the progress, the efficient degradation of highly crystalline plastics, enzyme
stability under harsh industrial conditions, and the economic feasibility of large-scale bio-
processes are the main challenges requiring further research. Additionally, the optimisation
of fermentation processes to reduce costs, improve yields, and enhance the sustainability
of enzyme production is crucial. Innovations in protein engineering, such as developing
multi-enzyme systems and synthetic biology approaches, are driving this field forward,
while methanol-free fermentation and the use of renewable feedstocks are aligning enzyme
production with eco-friendly practices. The continued collaboration between scientists,
industry partners, and policymakers will be essential to realise these promising solutions
on a global scale.
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Abbreviations

PLA polylactic acid
PCL polycaprolactone
PHB poly-[(R)-3-hydroxybutyrate]
PBS poly (butylene succinate)
ρ-NPP ρ-nitrophenyl palmitate
ρ-NPB ρ-nitrophenyl butyrate
ρ-NPH ρ-nitrophenylhexanoate
ρ-NPA ρ-nitrophenylacetate
6-HHA 6-hydroxyhexanoic acid
ρ-NPC ρ-nitrophenylcaprylate
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