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Abstract: Accurate identification of surgical instruments is crucial for efficient workflows
and patient safety within the operating room, particularly in preventing complications
such as retained surgical instruments. Artificial Intelligence (AI) models have shown the
potential to automate this process. This study evaluates the accuracy of publicly available
Large Language Models (LLMs)—ChatGPT-4, ChatGPT-4o, and Gemini—and a specialized
commercial mobile application, Surgical-Instrument Directory (SID 2.0), in identifying
surgical instruments from images. The study utilized a dataset of 92 high-resolution images
of 25 surgical instruments (retractors, forceps, scissors, and trocars) photographed from
multiple angles. Model performance was evaluated using accuracy, weighted precision,
recall, and F1 score. ChatGPT-4o exhibited the highest accuracy (89.1%) in categorizing
instruments (e.g., scissors, forceps). SID 2.0 (77.2%) and ChatGPT-4 (76.1%) achieved
comparable accuracy, while Gemini (44.6%) demonstrated lower accuracy in this task.
For precise subtype identification of instrument names (like “Mayo scissors” or “Kelly
forceps”), all models had low accuracy, with SID 2.0 having an accuracy of 39.1%, followed
by ChatGPT-4o (33.69%). Subgroup analysis revealed ChatGPT-4 and 4o recognized trocars
in all instances. Similarly, Gemini identified surgical scissors in all instances. In conclusion,
publicly available LLMs can reliably identify surgical instruments at the category level,
with ChatGPT-4o demonstrating an overall edge. However, precise subtype identification
remains a challenge for all models. These findings highlight the potential of AI-driven
solutions to enhance surgical-instrument management and underscore the need for further
refinements to improve accuracy and support patient safety.

Keywords: artificial intelligence; AI; surgical instrument; multimodal AI; computer vision

1. Introduction
Artificial intelligence (AI) is quickly infiltrating the healthcare sector. AI is set to

transform surgical care akin to past medical breakthroughs like anesthesia, antibiotics, and
Minimally Invasive Surgery (MIS). Operating Rooms (ORs) are known for their high-risk
nature and dependency on advanced technology [1,2]. AI offers diverse uses within the
field of surgery, including tasks like predicting procedure duration, analyzing video data,
identifying surgical workflow patterns, assisting with endoscopic navigation, and tracking
bone movement [3–7]. The potential of AI to significantly enhance surgical procedures and
operational efficiency indicates a promising avenue for application. As operating rooms
become increasingly equipped with sensors, video technology, and other hardware, they
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produce a wealth of data [8–10]. The data generated during surgery offers a wealth of
information that AI can leverage to drive improvements and generate valuable insights.

Given the unique challenges in the OR, such as the handling and management of
instruments, where AI could offer a significant solution, this potential is substantial. The
manual identification of surgical instruments within the OR significantly impacts the
efficiency and safety of surgical procedures. This labor-intensive process is fraught with the
potential for human error. Instruments can be easily miscounted, misplaced, or incorrectly
identified, leading to delays and potential hazards, including the dire risk of Retained
Surgical Instruments (RSI) [11–13]. The variety of instruments used exacerbates these
challenges. Staff are expected to recognize and differentiate among hundreds of tools under
the timed-pressure and high-stakes surgical setting. This necessitates extensive training
and expertise, yet still does not eliminate the risk of errors, as the process is inherently
error-prone due to human involvement. Relying on manual instrument tracking creates
two significant risks. First, increased handling can lead to contamination, jeopardizing
infection control efforts [14]. Second, manual tracking makes it difficult to maintain accurate
documentation of the list of instruments.

Moreover, a surgeon’s preference for customized instrument trays adds another layer
of complexity. Each surgeon may use a distinct set of instruments, and over time, these
trays undergo modifications to suit their specific techniques and requirements better. This
evolution of surgical trays makes it particularly challenging to maintain an updated record
of which instruments are used more frequently and which are seldom needed [15]. The
lack of precise tracking leads to difficulties in optimizing inventory, resulting in potential
wastage of resources and inefficiencies in surgical workflow. Rarely used instruments
still need to be sterilized, maintained, and stored, consuming valuable resources without
contributing to surgical outcomes [16]. Conversely, frequently used instruments may not be
available in the required quantities or wear out more quickly without proper tracking and
management [17]. A practical solution that could monitor and analyze the usage frequency
of each instrument would significantly enhance operational efficiency. By identifying which
instruments are essential and which are superfluous, hospitals could tailor their inventories
more closely to actual needs, reducing wastage and ensuring that surgical teams have ready
access to the tools they require most [18]. Such a system would streamline the surgical
workflow, providing more efficient, cost-effective, and high-quality patient care. These
challenges with the current process underline the urgent need for an automated solution.

AI allows for automating and streamlining surgical-instrument detection [19]. Its
cost-effectiveness and cloud-based accessibility democratize the process, making it viable
even in remote or resource-limited settings. This proof-of-concept study aims to assess
the capabilities of AI systems, mainly publicly available Large Language Models (LLMs),
for surgical-instrument recognition without using the Retrieval-Augmented Generation
(RAG) process. This study introduces a novel approach to surgical-instrument recognition
by evaluating the capabilities of publicly available LLMs in this domain. While previous
research has focused on developing specialized computer-vision models and custom AI
solutions for surgical-instrument detection, our study is the first to assess how readily
available mobile LLMs like ChatGPT and Gemini perform in this task compared to spe-
cialized commercial mobile applications. This approach is particularly significant as it
explores whether widely accessible AI tools could provide a more cost-effective and scal-
able alternative to traditional hardware-based or custom-developed solutions. Our paper
first provides a comprehensive overview of AI models’ current state and challenges in
surgical-instrument recognition, emphasizing both public and specialized systems. We
then detail our methodology of testing four AI models (ChatGPT-4, ChatGPT-4o, Gemini,
and SID 2.0) on a dataset of 92 surgical-instrument images, then presenting comparative
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results and performance metrics. The paper concludes with an in-depth discussion of
our findings, practical applications, limitations, and future implications for AI-driven
surgical-instrument recognition in healthcare settings.

2. Literature Review
Research in surgical-instrument detection has evolved significantly, with particular

emphasis on applications in Minimally Invasive Surgery (MIS) and patient safety enhance-
ment [20,21]. Recent advances have produced two primary methodological approaches:
vision-based and hardware-based detection systems [22], each addressing different aspects
of surgical-instrument management. Vision-based technologies utilize computer vision
and AI to analyze imagery from surgical cameras or endoscopes [23,24]. The effectiveness
of these systems has been demonstrated by Deol et al., who developed a deep learning-
based computer-vision model achieving remarkable precision (98.5%) and recall (99.9%) in
distinguishing surgical tools, even maintaining this performance with overlapping instru-
ments [25]. This approach can employ feature extraction or more advanced deep learning
methods. The advantage of vision-based technologies is that they can easily integrate with
existing surgical setups and are low-cost because they do not need additional hardware.
Wagner et al. showed that combining imaging data with other operating room information
in a knowledge graph-based approach achieved a 66.86% F1 score in instrument anticipa-
tion tasks, illustrating how comprehensive data integration can enhance surgical workflow
prediction [26].

Other significant contributions include Funke et al.’s innovative deep learning method
using an inflated 3D Convolutional Neural Network (ConvNet) [27] and Lavanchy et al.’s
sophisticated three-stage machine learning system for evaluating laparoscopic cholecystec-
tomy [28]. Subsequent stages involve the extraction of motion features and linear regression
model application, designed to predict a surgeon’s skill level based on their movements.
The evolution of CNN models, particularly YOLOv7x with its Effective Layer Aggregated
Network (E-LAN) architecture, has significantly advanced instrument detection capabili-
ties [16]. The M2CAI 2016 Tool Presence Detection Challenge established new benchmarks
for surgical tool detection [29], while Google’s SAVI (Semi-Automated Vision Inspection)
system specifically addresses the critical need for thorough inspection of surgical trays [30].

While vision-based systems offer advantages such as easy integration with existing
surgical setups and low-cost implementation, they face challenges, including the need
for manually labeled training data and sensitivity to visual occlusions and lighting varia-
tions [31]. In contrast, hardware-based solutions employ RFID tags, Electromagnetic (EM)
tracking, and Optical Tracking systems, requiring physical modifications to either the surgi-
cal instruments or the operating room environment [32]. Building upon this foundation,
our research explores a novel application of publicly available LLMs for surgical-instrument
recognition. While these models represent another computer-vision technology, their use in
surgical settings is unique. They offer the advantage of not requiring specialized training
or custom datasets, potentially making automated instrument recognition systems more
accessible in resource-limited settings. Our study’s core problem is the challenge of ac-
curate, efficient, and cost-effective surgical-instrument identification in operating rooms.
Manual identification is time-consuming, error-prone, and carries risks of Retained Surgical
Items. While specialized hardware solutions exist, they are often expensive and require
infrastructure changes. Our study investigates whether publicly available AI models could
offer an accessible alternative.
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3. Methods
3.1. Dataset Creation

We assembled a dataset of 92 high-resolution images that captured 25 distinct types
of surgical instruments, categorized into four main groups. The first category, retractors,
included 7 varieties: the Malleable Retractor, Army Navy Retractor, Daever Retractor, Rake
Retractor, Richardson Retractor, Senn Retractor, and Weitlaner Retractor. The second and
largest category comprised 13 different types of forceps: Babcock, Kocher, Crile, Adson
Brown, Allis, DeBakey, Dressing, Gerald, Mosquito, Rat Tooth, Sponge, Kelly, and Tissue
Forceps. The third category consisted of 4 types of scissors: Bandage, Iris, Mayo, and
Tenotomy Scissors. The fourth and final category contained a single instrument type: the
trocar. This diverse collection of surgical instruments represented standard tools used
in various surgical procedures, providing a robust foundation for testing the AI models’
recognition capabilities.

3.2. AI Models Assessed

This study leveraged publicly available LLMs that did not employ RAG techniques.
Additionally, a commercially available application for surgical-instrument recognition was
utilized. The details of the AI models are below:

1. ChatGPT-4: A generative pre-trained transformer model developed by OpenAI [33].
2. ChatGPT-4o (aka omni): The multimodal version of ChatGPT by OpenAI that is

specially optimized for visual analysis, object identification, audio recognition, and
translation tasks [34].

3. Gemini: Google DeepMind developed Gemini (previously known as Bard), a suite of
Large Language Models building upon the successes of previous models like LaMDA
and PaLM 2 [35]. Gemini is designed to be multimodal, seamlessly integrating its
understanding of text, code, audio, images, and video.

4. SID 2.0: The Surgical-Instrument Directory (SID) is a commercially available
web/mobile-based AI application designed by LayerJot specifically for surgical-
instrument identification [36]. It is trained on a database of over 4 million instruments.
Its features include image recognition, barcode scanning, and a searchable database.

3.3. Image Acquisition and Evaluation

Images were captured from multiple perspectives to simulate real-world surgical
environments. Instruments were shown both resting on the blue surgical drapes and held
in hand wearing surgical gloves (Figure 1). All images were taken by an iPhone 14 Pro.

For the LLMs, a standard prompt was used (Figure 2):
“I am providing you with a picture of a surgical instrument. Please do your best to

identify the following:

i. The Category of the instrument:
ii. The Specific Name of the instrument:”
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3.4. Analysis

A comprehensive evaluation was conducted across the four AI models using 92 test
images, generating 736 distinct classification attempts (92 images × 4 models × 2 classifica-
tion tasks). Each model was assessed on its ability to identify both the general instrument
category and the specific instrument name, creating a two-tiered evaluation framework.
The performance metrics, such as accuracy, weighted precision, recall, and F1 scores, were
calculated for each model to provide an assessment of their classification capabilities. Sub-
group analysis was also performed to examine performance variations across different
instrument categories.

4. Results
Performance analysis across all four AI models showed varying capabilities in surgical-

instrument identification tasks. For general instrument categories (e.g., “scissors”, “for-
ceps”), ChatGPT-4o achieved the highest accuracy (89%), while both SID and ChatGPT-4
demonstrated similar accuracy (77% and 76%), and Gemini had the lowest accuracy at
45%. SID achieved the highest weighted F-1 score (0.84), followed by ChatGPT-4 (0.79) and
ChatGPT-4o (0.78), with Gemini showing notably lower performance across all metrics.
Performance metrics for general categorization are shown in Figure 3.
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Figure 3. Model performance across various surgical-instrument category identification tasks as
demonstrated by accuracy, weighted precision, weighted recall, and weighted F-1 score.

In specific instrument-subtype classification (e.g., “Mayo scissors”, “Kelly forceps”),
all models showed substantially lower performance. SID achieved the highest accuracy
(39%), while ChatGPT-4o demonstrated the highest weighted F-1 score (0.39). Both models
shared equal weighted precision (0.50), though ChatGPT-4 and Gemini showed markedly
lower performance across all metrics, as illustrated in Figure 4. Detailed classification
patterns and error types for each model are presented in confusion matrices in Tables 1–4.
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Table 1. Confusion Matrix representing the performance of SID 2.0 in identifying the category of the
surgical instrument.

SID 2.0
Actual

Retractor Forceps Scissor Trocar Other NA

Predicted

Retractor 19 2 0 1 0 0
Forceps 0 39 0 0 0 0
Scissor 0 1 13 0 0 0
Trocar 0 0 0 0 0 0
Other 0 3 1 1 0 0
NA 11 1 0 0 0 0

Table 2. Confusion Matrix representing the performance of ChatGPT-4 in identifying the category of
the surgical instrument.

ChatGPT-4
Actual

Retractor Forceps Scissor Trocar Other NA

Predicted

Retractor 22 3 0 0 0 0
Forceps 6 36 4 0 0 0
Scissor 0 3 10 0 0 0
Trocar 0 0 0 2 0 0
Other 2 4 0 0 0 0
NA 0 0 0 0 0 0

Table 3. Confusion Matrix representing the performance of Gemini in identifying the category of the
surgical instrument.

Gemini
Actual

Retractor Forceps Scissor Trocar Other NA

Predicted

Retractor 4 0 0 0 0 0
Forceps 1 23 0 0 0 0
Scissor 3 17 14 0 0 0
Trocar 0 0 0 0 0 0
Other 12 6 0 0 0 0
NA 10 0 0 2 0 0
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Table 4. Confusion Matrix representing the performance of ChatGPT-4o in identifying the category
of the surgical instrument.

ChatGPT 4o
Actual

Retractor Forceps Scissor Trocar Other NA

Predicted

Retractor 27 1 0 0 0 0
Forceps 2 42 3 0 0 0
Scissor 0 1 11 0 0 0
Trocar 0 0 0 2 0 0
Other 1 2 0 0 0 0
NA 0 0 0 0 0 0

Subgroup Analysis

Analysis by instrument category revealed varying strengths across models, as shown
in Figure 5.

Bioengineering 2025, 12, x FOR PEER REVIEW  9  of  14 
 

 

Figure 5. Model performance across various  surgical-instrument  category  identification  tasks as 

demonstrated by accuracy, precision, recall, and F-1 score. 

5. Discussion 

The findings in this study highlight substantial variability in the performance of four 

AI models—ChatGPT-4o, ChatGPT-4, SID2.0, and Gemini—when identifying both surgi-

cal-instrument categories and specific instrument names. For category-level identification, 

ChatGPT-4o outperformed all other models with an accuracy of 89.1%, followed by SID2.0 

(77.2%)  and ChatGPT-4  (76.1%) with  similar  accuracy  levels, while Gemini  trailed  at 

44.6%. These results suggest that ChatGPT-4o is the most robust choice for categorizing 

instruments into general groups (e.g., scissors, forceps, trocars, retractors). 

However, when  identifying precise  instrument names, all models demonstrated a 

dramatic drop in performance. SID led this specific-level classification with an accuracy 

of 39%, while ChatGPT-4o achieved 34% accuracy and the highest weighted F1-score of 

0.39. Both models achieved equal weighted precision (0.50), suggesting similar confidence 

in  their  positive  predictions.  ChatGPT-4  (18.5%  accuracy)  and Gemini  (9%  accuracy) 

showed markedly lower performance in specific instrument identification. These signifi-

cant performance drops between general and specific identification (e.g., from 89% to 34% 

for ChatGPT-4o) highlight a critical limitation in current AI systems’ ability to make fine-

grained distinctions between similar surgical instruments. 

5.1. Model Performance Insights 

Analysis of performance by instrument category reveals distinct patterns and chal-

lenges across the four models. The varying accuracy and reliability observed in this study 

can be attributed to several factors. First, dataset quality and diversity play a critical role, 

as models  trained on  larger, more heterogeneous  image sets  tend  to capture better  the 

nuances of  shapes,  textures, and  reflective properties  inherent  to surgical  instruments. 

Figure 5. Model performance across various surgical-instrument category identification tasks as
demonstrated by accuracy, precision, recall, and F-1 score.

5. Discussion
The findings in this study highlight substantial variability in the performance of

four AI models—ChatGPT-4o, ChatGPT-4, SID2.0, and Gemini—when identifying both
surgical-instrument categories and specific instrument names. For category-level identifica-
tion, ChatGPT-4o outperformed all other models with an accuracy of 89.1%, followed by
SID2.0 (77.2%) and ChatGPT-4 (76.1%) with similar accuracy levels, while Gemini trailed at
44.6%. These results suggest that ChatGPT-4o is the most robust choice for categorizing
instruments into general groups (e.g., scissors, forceps, trocars, retractors).

However, when identifying precise instrument names, all models demonstrated a
dramatic drop in performance. SID led this specific-level classification with an accuracy
of 39%, while ChatGPT-4o achieved 34% accuracy and the highest weighted F1-score of
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0.39. Both models achieved equal weighted precision (0.50), suggesting similar confidence
in their positive predictions. ChatGPT-4 (18.5% accuracy) and Gemini (9% accuracy)
showed markedly lower performance in specific instrument identification. These significant
performance drops between general and specific identification (e.g., from 89% to 34% for
ChatGPT-4o) highlight a critical limitation in current AI systems’ ability to make fine-
grained distinctions between similar surgical instruments.

5.1. Model Performance Insights

Analysis of performance by instrument category reveals distinct patterns and chal-
lenges across the four models. The varying accuracy and reliability observed in this study
can be attributed to several factors. First, dataset quality and diversity play a critical role, as
models trained on larger, more heterogeneous image sets tend to capture better the nuances
of shapes, textures, and reflective properties inherent to surgical instruments. SID2.0, for
instance, has reportedly trained on millions of instrument images, enhancing its ability
to identify subtle differences in instrument design. Conversely, language-based models
often rely on broader, less specialized training data. Notably, ChatGPT-4o was developed
with enhanced image-recognition capabilities and is optimized for general identification
tasks, which likely explains its strong performance in categorizing instruments, even if
it struggled with more precise naming. Second, image quality and context—including
lighting, angle, and resolution—can shape model output. Even minor differences in image
characteristics may influence the final predictions, especially when instruments have similar
shapes or features. Finally, instrument variability remains a significant challenge: retractors,
for example, exhibit considerable diversity in size, shape, and design, and instruments
less frequently represented in training sets tend to be recognized at lower rates. These
factors, taken together, underscore the importance of specialized training data and robust,
multimodal approaches for more accurate AI-driven surgical-instrument recognition.

5.2. Practical Applications

Despite these performance differentials, all four models share notable advantages:
they can be accessed via a simple smartphone application and require minimal hardware.
Such accessibility is invaluable in resource-limited settings. Furthermore, deploying an
automated instrument recognition tool can enhance patient safety by reducing the risk of
RSI. By keeping an accurate count of instruments, AI solutions address one of the critical
safety concerns in the OR [37,38]. Integrating AI in perioperative workflows can streamline
instrument setup, sterilization, and post-operative processing. By automating these labor-
intensive tasks, OR teams can focus on high-value patient care activities. Beyond the OR,
AI can power inventory control and surgical set assembly, potentially decreasing costs
and reducing human error [39,40]. As these systems become more sophisticated, LLMs
could also analyze usage patterns to recommend optimized tray configurations, aiding in
cost-reduction strategies and more efficient staffing.

While specialized models like SID2.0 are trained to solely recognize instruments, Mul-
timodal LLMs such as ChatGPT-4o offer a breadth of contextual and analytical capabilities
that could further enhance decision-making in surgery. Multimodal AI—integrating text,
images, voice, and potentially other sensor data—could resolve ambiguities and bolster
identification and classification tasks [41]. This synergy might enable voice-driven queries
(“Identify that clamp”, “Is this a Kelly forceps”?) with real-time validation by a visual AI
subsystem. Nevertheless, designing effective multimodal architectures remains an open
area of research, requiring careful coordination of data streams and robust model training.

Existing surgical skill assessment platforms could benefit from integrating AI-driven
insights on instrument usage, therefore providing objective feedback on surgeons’ tech-
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nique and efficiency [22]. In parallel, it is critical to develop and maintain a comprehensive,
well-annotated database of surgical instruments to ensure accurate detection across a wide
array of clinical scenarios. Rigorous data security measures must remain a priority to
protect patient and institutional confidentiality.

The contrast between category-level and specific instrument identification capabil-
ities has important implications for practical implementation. While the high accuracy
in general categorization (particularly by ChatGPT-4o) suggests potential utility in basic
instrument tracking and inventory management, the significant drop in performance for
specific instrument identification indicates current limitations for more precise applications.
This distinction is crucial for healthcare settings where accurate instrument identification is
vital for patient safety and procedural efficiency. LLMs in their current state should not be
relied on for instrument identification. Developing comprehensive, well-annotated datasets
representing the full spectrum of surgical instruments in various conditions is imperative.
These datasets will be the bedrock upon which robust and adaptable AI models can differ-
entiate between instruments’ conditions. Moreover, a seamless integration with existing
systems is paramount for smooth hospital adoption. Finally, the responsible handling of
sensitive data generated by these systems is critical. Data security and privacy protocols
must always be in place to ensure AI’s ethical and secure use in the surgical setting.

5.3. Limitations

The primary methodological challenge in our study stemmed from the varying image-
processing capabilities across the evaluated models. While ChatGPT can process multiple
images simultaneously, Gemini is limited to single-image analysis, and SID 2.0 is designed
explicitly for two-image comparison. To maintain consistency in our evaluation, we
implemented a single-image approach where ChatGPT and Gemini received one image,
while SID 2.0 was provided with duplicate copies of the same image. We recognize that
this standardization may not have utilized each model’s full capabilities.

Our dataset included 92 images from 25 surgical instruments in this proof-of-concept
study. While this served as an effective testing dataset for pre-trained models, certain
instrument categories, particularly trocars, had a smaller representation. Future research
would benefit from testing with a larger variety of surgical tools to validate the performance
patterns observed, especially for underrepresented instrument categories.

Furthermore, while our study attempted to simulate a surgical environment, the
simplified nature of our image dataset did not fully capture the complexity of real-world
operating rooms. In actual surgical scenarios, instruments are rarely presented in isolation.
Instead, they appear in dynamic environments with multiple complications: tools may be
partially obscured, lighting conditions can vary significantly, surrounding tissue/blood
is often present, and various instruments move simultaneously. These real-world factors
introduce additional challenges that our current image dataset has not addressed.

6. Conclusions
This study demonstrates that publicly available LLMs can effectively categorize sur-

gical instruments, with ChatGPT-4o achieving 89% accuracy (precision = 0.92) in broad
classification tasks. However, specific instrument identification remains challenging, with
specialized SID 2.0 reaching the highest accuracy of only 39%. The performance varied
significantly across instrument types—both ChatGPT-4 and ChatGPT-4o achieved perfect
recognition of trocar (100% accuracy), while Gemini achieved 100% accuracy for the scis-
sor category but with low precision (0.41), and SID 2.0 demonstrated a more balanced
performance (77% accuracy and 0.92 precision).
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These findings fill critical knowledge gaps by providing the first direct comparison
between general-purpose LLMs and specialized medical applications in surgical-instrument
recognition. The study reveals that accessible, low-cost AI solutions using public LLMs
can match or exceed specialized mobile applications for basic categorization tasks, though
precise instrument identification still requires improvement. This creates a foundation
for developing more accurate and cost-effective surgical-instrument recognition systems
that could enhance operating room efficiency and patient safety, particularly in resource-
limited settings.

Future research should focus on improving specific instrument recognition capabilities
and exploring hybrid approaches that combine the strengths of both general-purpose LLMs
and specialized medical applications. A key direction would be testing the multimodal
abilities of LLMs by incorporating audio, real-time operating room images, and surgical
videos. Additionally, expanding the test dataset beyond the current 25 instruments would
provide more comprehensive performance metrics across a broader range of surgical tools.
Future experimentation should also investigate specialized RAG techniques to enhance the
accuracy of surgical-instrument identification, particularly for rare or specialized tools.

Author Contributions: Conceptualization S.A.H. and A.J.F., Methodology S.A.H. and S.B., Software
S.A.H. and C.A.G.-C., Validation S.M.P. and A.J.F., Formal Analysis S.A.H. and S.B., Investigation
S.A.H. and S.B., Resources C.A.G.-C. and S.M.P., Data Curation S.A.H. and S.B., Writing—Original
Draft S.A.H. and C.A.G.-C., Writing—Review and Editing S.M.P., A.J.F., D.C., A.S. and B.C.L.,
Visualization S.A.H., S.B. and C.A.G.-C., Supervision A.J.F., S.A.H., A.S., O.A.H. and B.C.L., Project
Administration A.J.F. and O.A.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors upon request.

Acknowledgments: Images created with BioRender© (https://www.biorender.com/, accessed on 13
January 2025).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publica-
tion of this manuscript. No financial or personal relationships with other people or organizations
have inappropriately influenced (biased) our work.

Abbreviations
AI: Artificial Intelligence; SID, Surgical-Instrument Directory; RAG, Retrieval-Augmented

Generation.

References
1. Schimpff, S.C. Improving Operating Room and Perioperative Safety: Background and Specific Recommendations. Surg. Innov.

2007, 14, 127–135. [CrossRef] [PubMed]
2. Schurr, M.O.; Buess, G.F. Systems technology in the operating theatre: A prerequisite for the use of advanced devices in surgery.

Minim. Invasive Ther. Allied Technol. 2000, 9, 179–184. [CrossRef] [PubMed]
3. Palen, T.; Tavel, H.; Brill, J.; Bajaj, J. B1-1: Predictive Modeling to Identify Patients at Risk for Index Hospitalization. Clin. Med.

Res. 2014, 12, 93. [CrossRef]
4. ShahabiKargar, Z.; Khanna, S.; Good, N.; Sattar, A.; Lind, J.; O’Dwyer, J. Predicting Procedure Duration to Improve Scheduling of

Elective Surgery. In PRICAI 2014: Trends in Artificial Intelligence: 13th Pacific Rim International Conference on Artificial Intelligence,
Gold Coast, QLD, Australia, 1–5 December 2014; Proceedings 13; Springer International Publishing: Basel, Switzerland, 2014.

https://www.biorender.com/
https://doi.org/10.1177/1553350607301746
https://www.ncbi.nlm.nih.gov/pubmed/17558019
https://doi.org/10.1080/13645700009169645
https://www.ncbi.nlm.nih.gov/pubmed/20156012
https://doi.org/10.3121/cmr.2014.1250.b1-1


Bioengineering 2025, 12, 72 12 of 13

5. Jiao, Y.; Sharma, A.; Ben Abdallah, A.; Maddox, T.M.; Kannampallil, T. Probabilistic forecasting of surgical case duration using
machine learning: Model development and validation. J. Am. Med. Inform. Assoc. 2020, 27, 1885–1893. [CrossRef]

6. Messmann, H. Artificial Intelligence in Endoscopy. Bildverarb. Med. 2021, 37, 471–475.
7. Liu, H.; Baena, F.R.Y. Automatic Markerless Registration and Tracking of the Bone for Computer-Assisted Orthopaedic Surgery.

IEEE Access 2020, 8, 42010–42020. [CrossRef]
8. Kawka, M.; Gall, T.M.H.; Fang, C.; Liu, R.; Jiao, L.R. Intraoperative video analysis and machine learning models will change the

future of surgical training. Intell. Surg. 2021, 1, 13–15. [CrossRef]
9. Padoy, N. Machine and deep learning for workflow recognition during surgery. Minim. Invasive Ther. Allied Technol. 2019, 28,

82–90. [CrossRef]
10. Ward, T.M.; Mascagni, P.; Ban, Y.; Rosman, G.; Padoy, N.; Meireles, O.R.; Hashimoto, D.A. Computer vision in surgery. Surgery

2020, 169, 1253–1256. [CrossRef]
11. Johnson, A. Manual Care & Handling of Basic Surgical Instruments-A Prospective. Int. J. Clin. Ski. 2021, 15, 442–443.
12. Jackson, S.; Brady, S. Counting difficulties: Retained instruments, sponges, and needles. AORN J. 2008, 87, 315–321. [CrossRef]

[PubMed]
13. Nasir, G.A.A. Missed Instrument and Surgical Sponge (Gauze and Pack). Internet J. Surg. 2008, 20, 14–20.
14. Heibeyn, J.; König, N.; Domnik, N.; Schweizer, M.R.; Kinzius, M.; Janß, A.; Radermacher, K. Design and Evaluation of a Novel

Instrument Gripper for Handling of Surgical Instruments. Curr. Dir. Biomed. Eng. 2021, 7, 1–5. [CrossRef]
15. Toor, J.; Bhangu, A.; Wolfstadt, J.I.; Bassi, G.; Chung, S.; Rampersaud, R.; Mitchell, W.; Milner, J.; Koyle, M. Optimizing the surgical

instrument tray to immediately increase efficiency and lower costs in the operating room. Can. J. Surg. 2022, 65, E275–E281.
[CrossRef]

16. Ran, B.; Huang, B.; Liang, S.; Hou, Y. Surgical Instrument Detection Algorithm Based on Improved YOLOv7x. Sensors 2023,
23, 5037. [CrossRef]

17. Ahmadi, E.; Masel, D.T.; Metcalf, A.Y.; Schuller, K. Inventory management of surgical supplies and sterile instruments in hospitals:
A literature review. Health Syst. 2019, 8, 134–151. [CrossRef]

18. Nast, K.; Swords, K.A. Decreasing operating room costs via reduction of surgical instruments. J. Pediatr. Urol. 2019, 15,
153.e151–153.e156. [CrossRef]

19. Tracking Surgical Instruments with AI: A New Approach to Patient Safety. Available online: https://www.healthcareitnews.
com/news/tracking-surgical-instruments-ai-new-approach-patient-safety (accessed on 7 July 2024).

20. Yamazaki, Y.; Kanaji, S.; Matsuda, T.; Oshikiri, T.; Nakamura, T.; Suzuki, S.; Hiasa, Y.; Otake, Y.; Sato, Y.; Kakeji, Y. Automated
Surgical Instrument Detection from Laparoscopic Gastrectomy Video Images Using an Open Source Convolutional Neural
Network Platform. J. Am. Coll. Surg. 2020, 230, 725–732.e721. [CrossRef]

21. Sun, Y.; Pan, B.; Fu, Y. Lightweight Deep Neural Network for Articulated Joint Detection of Surgical Instrument in Minimally
Invasive Surgical Robot. J. Digit. Imaging 2022, 35, 923–937. [CrossRef]

22. Nema, S.; Vachhani, L. Surgical instrument detection and tracking technologies: Automating dataset labeling for surgical skill
assessment. Front. Robot. AI 2022, 9, 1030846. [CrossRef]

23. Wang, Y.; Sun, Q.; Liu, Z.; Gu, L. Visual detection and tracking algorithms for minimally invasive surgical instruments: A
comprehensive review of the state-of-the-art. Robot. Auton. Syst. 2021, 149, 103945. [CrossRef]

24. Zhang, B.; Wang, S.-S.; Dong, L.; Chen, P. Surgical Tools Detection Based on Modulated Anchoring Network in Laparoscopic
Videos. IEEE Access 2020, 8, 23748–23758. [CrossRef]

25. Deol, E.S.; Henning, G.; Basourakos, S.; Vasdev, R.M.; Sharma, V.; Kavoussi, N.L.; Karnes, R.J.; Leibovich, B.C.; Boorjian,
S.A.; Khanna, A. Artificial intelligence model for automated surgical instrument detection and counting: An experimental
proof-of-concept study. Patient Saf. Surg. 2024, 18, 24. [CrossRef] [PubMed]

26. Wagner, L.; Schneider, D.N.; Mayer, L.; Jell, A.; Müller, C.; Lenz, A.; Knoll, A.; Wilhelm, D. Towards multimodal graph neural
networks for surgical instrument anticipation. Int. J. Comput. Assist. Radiol. Surg. 2024, 19, 1929–1937. [CrossRef]

27. Funke, I.; Mees, S.T.; Weitz, J.; Speidel, S. Video-based surgical skill assessment using 3D convolutional neural networks. Int. J.
Comput. Assist. Radiol. Surg. 2019, 14, 1217–1225. [CrossRef]

28. Lavanchy, J.L.; Zindel, J.; Kirtac, K.; Twick, I.; Hosgor, E.; Candinas, D.; Beldi, G. Automation of surgical skill assessment using a
three-stage machine learning algorithm. Sci. Rep. 2021, 11, 5197. [CrossRef]

29. Namazi, B.; Sankaranarayanan, G.; Devarajan, V. A contextual detector of surgical tools in laparoscopic videos using deep
learning. Surg. Endosc. 2022, 36, 679–688. [CrossRef]

30. SAVI transforms surgical instrument tracking with Google Cloud | Google Cloud Blog. Available online: https://cloud.
google.com/blog/products/ai-machine-learning/savi-transforms-surgical-instrument-tracking-with-google-cloud (accessed on
7 July 2024).

31. Voros, S.; Long, J.-A.; Cinquin, P. Automatic Detection of Instruments in Laparoscopic Images: A First Step Towards High-level
Command of Robotic Endoscopic Holders. Int. J. Robot. Res. 2007, 26, 1173–1190. [CrossRef]

https://doi.org/10.1093/jamia/ocaa140
https://doi.org/10.1109/ACCESS.2020.2977072
https://doi.org/10.1016/j.isurg.2021.03.001
https://doi.org/10.1080/13645706.2019.1584116
https://doi.org/10.1016/j.surg.2020.10.039
https://doi.org/10.1016/j.aorn.2007.07.023
https://www.ncbi.nlm.nih.gov/pubmed/18323022
https://doi.org/10.1515/cdbme-2021-1001
https://doi.org/10.1503/cjs.022720
https://doi.org/10.3390/s23115037
https://doi.org/10.1080/20476965.2018.1496875
https://doi.org/10.1016/j.jpurol.2019.01.013
https://www.healthcareitnews.com/news/tracking-surgical-instruments-ai-new-approach-patient-safety
https://www.healthcareitnews.com/news/tracking-surgical-instruments-ai-new-approach-patient-safety
https://doi.org/10.1016/j.jamcollsurg.2020.01.037
https://doi.org/10.1007/s10278-022-00616-9
https://doi.org/10.3389/frobt.2022.1030846
https://doi.org/10.1016/j.robot.2021.103945
https://doi.org/10.1109/ACCESS.2020.2969885
https://doi.org/10.1186/s13037-024-00406-y
https://www.ncbi.nlm.nih.gov/pubmed/39034409
https://doi.org/10.1007/s11548-024-03226-8
https://doi.org/10.1007/s11548-019-01995-1
https://doi.org/10.1038/s41598-021-84295-6
https://doi.org/10.1007/s00464-021-08336-x
https://cloud.google.com/blog/products/ai-machine-learning/savi-transforms-surgical-instrument-tracking-with-google-cloud
https://cloud.google.com/blog/products/ai-machine-learning/savi-transforms-surgical-instrument-tracking-with-google-cloud
https://doi.org/10.1177/0278364907083395


Bioengineering 2025, 12, 72 13 of 13

32. Neumuth, T.; Meissner, C. Online recognition of surgical instruments by information fusion. Int. J. Comput. Assist. Radiol. Surg.
2012, 7, 297–304. [CrossRef]

33. ChatGPT. Available online: https://openai.com/chatgpt/overview/ (accessed on 13 January 2024).
34. OpenAI. Hello GPT-4o. 2025. Available online: https://openai.com/index/hello-gpt-4o (accessed on 9 January 2025).
35. Google. Gemini. 2024. Available online: https://gemini.google.com/app/1018718432ef9dbf (accessed on 7 July 2024).
36. SID by LayerJot. Available online: https://www.layerjot.com/sid (accessed on 7 July 2024).
37. Schnock, K.O.; Biggs, B.; Fladger, A.; Bates, D.; Rozenblum, R. Evaluating the Impact of Radio Frequency Identification Retained

Surgical Instruments Tracking on Patient Safety: Literature Review. J. Patient Saf. 2017, 17, e462–e468. [CrossRef]
38. Yamaguchi, S.; Soyama, A.; Ono, S.; Hamauzu, S.; Yamada, M.; Fukuda, T.; Hidaka, M.; Tsurumoto, T.; Uetani, M.; Eguchi, S.

Novel Computer-Aided Diagnosis Software for the Prevention of Retained Surgical Items. J. Am. Coll. Surg. 2021, 233, 686–696.
[CrossRef] [PubMed]

39. Nadeau, K. The Sterile Processing Department Digital Transformation. 2024. Available online: https://www.hpnonline.com/
sterile-processing/article/53083618/the-sterile-processing-department-digital-transformation (accessed on 13 January 2025).

40. Revolutionizing Sterile Processing Management with AI | CensisAI2. Available online: https://censis.com/solutions/ai2/
(accessed on 13 January 2025).

41. Kline, A.; Wang, H.; Li, Y.; Dennis, S.; Hutch, M.; Xu, Z.; Wang, F.; Cheng, F.; Luo, Y. Multimodal machine learning in precision
health: A scoping review. NPJ Digit. Med. 2022, 5, 171. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11548-011-0662-5
https://openai.com/chatgpt/overview/
https://openai.com/index/hello-gpt-4o
https://gemini.google.com/app/1018718432ef9dbf
https://www.layerjot.com/sid
https://doi.org/10.1097/PTS.0000000000000365
https://doi.org/10.1016/j.jamcollsurg.2021.08.689
https://www.ncbi.nlm.nih.gov/pubmed/34592404
https://www.hpnonline.com/sterile-processing/article/53083618/the-sterile-processing-department-digital-transformation
https://www.hpnonline.com/sterile-processing/article/53083618/the-sterile-processing-department-digital-transformation
https://censis.com/solutions/ai2/
https://doi.org/10.1038/s41746-022-00712-8
https://www.ncbi.nlm.nih.gov/pubmed/36344814

	Introduction 
	Literature Review 
	Methods 
	Dataset Creation 
	AI Models Assessed 
	Image Acquisition and Evaluation 
	Analysis 

	Results 
	Discussion 
	Model Performance Insights 
	Practical Applications 
	Limitations 

	Conclusions 
	References

