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Abstract: The WHO grading of pancreatic neuroendocrine neoplasms (PanNENs) is es-
sential in patient management and an independent prognostic factor for patient survival.
Radiomics features from CE-CT images hold promise for the outcome and tumor grade
prediction. However, variations in reconstruction parameters can impact the predictive
value of radiomics. 127 patients with histopathologically confirmed PanNENs underwent
CT scans with filtered back projection (B20f) and iterative (I26f) reconstruction kernels.
3190 radiomic features were extracted from tumors and pancreatic volumes. Wilcoxon
paired tests assessed the impact of reconstruction kernels and ComBat harmonization
efficiency. SVM models were employed to predict tumor grade using the entire set of
radiomics features or only those identified as harmonizable. The models’ performance was
assessed on an independent dataset of 36 patients. Significant differences, after correction
for multiple testing, were observed in 69% of features in the pancreatic volume and 51% in
the tumor volume with B20f and I26f kernels. SVM models demonstrated accuracy ranging
from 0.67 (95%CI: 0.50–0.81) to 0.83 (95%CI: 0.69–0.94) in distinguishing grade 1 cases from
higher grades. Reconstruction kernels alter radiomics features and iterative kernel models
trended towards higher performance. ComBat harmonization mitigates kernel impacts but
addressing this effect is crucial in studies involving data from different kernels.

Keywords: pancreatic neoplasms; pancreatic neuroendocrine tumors; radiomics; reconstruction;
contrast-enhanced CT

1. Introduction
Pancreatic neuroendocrine neoplasms (PanNETs) are a heterogeneous group of neo-

plasms with differing pathological, genetic, and clinical features. The World Health Organi-
zation (WHO) classification system for PanNENs is based on the degree of cellular differen-
tiation and cellular proliferation using mitotic index, and Ki-67 proliferation index of the
tumor cells. The 2017 WHO classification system describes two categories of PanNENs:
well-differentiated pancreatic neuroendocrine tumors (PanNETs) and poorly differentiated
pancreatic neuroendocrine carcinoma (PanNECs). PanNETs are well-differentiated tumors
with minimal to moderate atypia and lack of necrosis and express intense synaptophysin
or chromogranin. A positivity is classified as grade 1, 2, or 3 based on the mitotic index
and the Ki-67 index [1]. PanNECs are tumors with high mitotic index and Ki-67 index
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and are characterized by poorly differentiated tumors consisting of atypical cells with
substantial necrosis that are faintly positive for neuroendocrine markers [1]. The tumor
grade based on the WHO classification system is an independent prognostic factor for
survival in patients with PanNENs [2,3]. Also, the low-grade small PanNETs are indolent
tumors with a good prognosis, and patients with small nonfunctioning PanNETs may
undergo active surveillance or surgical resection [4]. Therefore, pretreatment prediction of
the PanNENs pathological tumor grade is important in determining prognosis and helps
to guide the management of patients.

Radiomics analysis has emerged as a valuable tool in constructing prognostic and
predictive models in oncology [5], leveraging the capability of radiomic features to capture
underlying biological characteristics [6,7]. Machine learning models based on radiomics
features have demonstrated valuable clinical applications, supported by a growing body
of evidence [8–10]. Notably, these models have proven to be effective in applications
such as predicting the histological grade of PanNENs in computed tomography (CT) im-
ages [11–13], offering guidance for follow-up and clinical decision-making. Preoperative
tumor grading is essential for the effective clinical management of patients with PanNEN.
However, biopsy-based techniques, while commonly used, are not ideal due to their inva-
sive nature and the risk of misclassification due to tumor heterogeneity [14]. Radiomics
offers a non-invasive approach to capturing tumor heterogeneity, making it an excellent
method for achieving this evaluation. Despite their potential to reduce unnecessary pro-
cedures, a limitation hindering widespread clinical adoption lies in the generalizability
of the models across diverse scanner configurations and acquisition protocols. Studies
have shown the external validity of these models can be impacted by different acquisition
parameters [15,16], and the challenge of ensuring the transferability of these models to
different imaging characteristics remains.

Aiming to reduce the impact of differences in image characteristics, some pre-
processing steps such as harmonizing voxel size or delineating a volume of interest, can
be readily addressed prior to radiomics features extraction. However, challenges persist
with parameters related to image acquisition and reconstruction settings, as they often vary
across institutions, scanner manufacturers, and radiologists. While recent advancements in
deep learning can achieve post-reconstruction harmonization for such parameters [17,18],
their implementation remains complex, essentially due to time and computational resource
requirements associated with training tasks. One compelling approach to reduce the impact
of imaging protocol variations is the application of batch harmonizing strategies, such as
ComBat. Originally developed to reduce variability in center and batch effects for microar-
ray analysis [19], this method is now widely employed in medical image analysis [20–22].
However, the efficacy of such strategies in mitigating the influence of diverse acquisition
parameters remains uncertain.

In this study, we assess the impact of two soft tissue reconstruction kernels commonly
used in abdominal radiology, filtered back projection kernel (B20f) and iterative reconstruc-
tion kernel (I26f) on radiomics features extracted from PanNENs and the whole pancreas
and investigate the effectiveness of harmonizing trough ComBat features obtained from
one kernel to another. We also evaluate the impact of different reconstruction kernels on
the predictive value of radiomics features to distinguish WHO grade 1 from grade 2 or
3 PanNENs.

2. Materials and Methods
2.1. Patients

In this retrospective study, we included 127 patients diagnosed with histopathologi-
cally confirmed PanNENs from 2012 to 2018. The study was approved by the Institutional
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Review Board for Human Research and complied with all Health Insurance Portability and
Accountability Act regulations. All participants underwent a pancreas protocol CT scan
prior to any treatment. The imaging data were acquired using a dual-source multidetector
row CT scanner (Siemens Somatom Definition Flash or Siemens Drive), with 100–120 mL
of nonionic contrast material (iohexol [Omnipaque 350, GE Healthcare, Princeton, NJ,
USA], or Iodixanol [Visipaque 320, GE Healthcare, Princeton, NJ, USA]) administered
intravenously through a peripheral venous line at an injection rate of 4–5 mL/sec. Arterial
phase acquisition was timed by Bolus Tracking (Siemens Medical Solutions, USA, Inc.,
Malvern, PA, USA) at 230 HU in the abdominal aorta, followed by a venous phase with
30 s delay. Scan protocols were customized for each patient to minimize radiation dose but
were on the order of 120 kVp, effective mAs of 270, and a pitch of 0.6 for the majority of
patients (89%). The collimation was 128 × 0.6 mm or 192 × 0.6 mm. All patient images
were reconstructed in 0.75 mm slice thickness and 0.5 mm increment using two different
kernels in the arterial phase: one filtered back projection kernel (B20f) and one iterative
reconstruction kernel (I26f) (Figure 1A). In this study, only the arterial phase is analyzed,
because the images were reconstructed using two different kernels only in the arterial
phase. PanNENs were classified as grade 1, grade 2, grade 3 PanNET, or PanNEC on the
basis of the cellular differentiation and cellular proliferation using mitotic rate and the
Ki-67 index on pathological specimens, as described in the classification system of the 2017
World Health Organization (WHO) [23].
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Images reconstructed with the I26f kernel were segmented by two experienced re-
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Manual segmentations were performed to include PanNENs and the entire pancreas un-
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creatic duct and common bile duct, incidental pancreatic lesions such as cysts (if present), 
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arteries (celiac artery, splenic artery, and superior mesenteric artery) when these vessels 
are abutting or surrounded by the pancreas or PanNENs. 

Figure 1. Workflow illustrating the various configurations employed for the SVM in this study. CT
scans with B20f and I26f reconstructions were utilized (A), and segmentations of the full pancreas and
tumor were performed on I26f and transferred to B20f (B). Radiomics features were then extracted
from both B20f and I26f images of pancreas and tumors (C). A LASSO feature selection was applied to
choose sets of 10 features from the complete feature list and from features identified as harmonizable
by ComBat (D). Subsequently, SVM models were constructed on both B20f and I26f images using the
different sets of selected features (E).

2.2. Image Segmentation

Images reconstructed with the I26f kernel were segmented by two experienced re-
searchers and reviewed by two experienced radiologists with 7 and 23 years of experience.
Manual segmentations were performed to include PanNENs and the entire pancreas unin-
volved by PanNENs, as well as structures in the area near the pancreas including pancreatic
duct and common bile duct, incidental pancreatic lesions such as cysts (if present), major
peripancreatic veins (portal vein, superior mesenteric vein, and splenic vein) and arteries
(celiac artery, splenic artery, and superior mesenteric artery) when these vessels are abutting
or surrounded by the pancreas or PanNENs.

For clarity, we refer to tumor volume as the volume defined by PanNEN segmentation
and as the pancreas volume defined by the volume merging of the pancreatic tissue,
pancreatic duct, incidental pancreatic lesions (if present), and PanNENs, and excluding
peripancreatic arteries and veins, and the intrapancreatic common bile duct.
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Images reconstructed with B20f and I26f kernels shared the same spatial coordinates,
allowing the use of identical segmentations for both reconstructions without the need for
image registrations (Figure 1B).

2.3. Radiomics Features Extraction

Prior to radiomics feature extraction, images, and segmented volumes were resampled
to an isotropic voxel of 1 mm3 with the c3d tool in ITK-SNAP [24] using a trilinear interpo-
lation for the images and a nearest neighbor interpolation for the segmentation masks.

A total of 3190 radiomics features were extracted from both the tumor volume
(1595 features) and the pancreatic volume (1595 features) using the Pyradiomics package [25]
(Figure 1C). These features were composed of 28 shape descriptors, and 3162 histogram
and texture features resulting from 186 features extracted from original images and images
transformed by 16 different convolutional filters (186 ∗ (16 + 1) = 3162 features).

The 186 features comprised of two sets of 93 features each, corresponding to tumor
and pancreas volumes. They included 18 histogram features, 24 gray-level co-occurrence
matrix (GLCM) features, 14 gray-level differences matrix (GLDM) features, 16 gray-level
run-length matrix (GLRLM) features, 16 gray-level size-zone matrix (GLSZM) features,
and 5 neighbor gray-tone difference matrix (NGTDM) features. Features extraction was
performed following the guidelines outlined by the Image Biomarker Standardization
Initiative (IBSI) [26], with a bin width of 25 HU, a 26-connectivity for GLSZM and GLCM,
and a distance of 1 mm for GLCM, GLDM, and NGTDM.

The convolutional filtering techniques used were a Wavelets transform (Coiflets 3
wavelets transform with low-pass (L) and high-pass (H) filtering in three spatial coordinates,
resulting in eight sub-bands: LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH), Laplacian
of Gaussian (LoG, with sigma values of 1, 3, 5, and 10 mm), and Gabor filtering (2D axial,
kernel size = 8, frequency = 0.5 with four orientations: 0, π/4, π/2, and 3π/4). These
convolutional filters are detailed in the Standardized Convolutional Filters for Quantitative
Radiomics paper from the Image Biomarker Standardization Initiative (IBSI) [27].

2.4. Statistical Analysis and Modeling

The statistical analyses and predictive models were implemented using Python
(v3.11.3) with the assistance of the scipy [28] and scikit-learn (sklearn) libraries [29].

Patients were divided into training (70%) and testing (30%) sets using a stratified
sampling method to ensure an equivalent proportion of tumor grades in both patient sets.
Radiomics features were subsequently extracted from the training set and normalized using
minimum and maximum values to a [0–1] scale.

Wilcoxon paired tests were employed to assess the impact of the reconstruction kernels
on the radiomic features. To account for the potential increase in Type I errors resulting
from multiple hypothesis testing a Bonferroni correction [30] was applied to adjust the
p-values, ensuring a more stringent control over the overall significance level.

We applied the ComBat algorithm [20–22] to harmonize the features extracted on I26f
to those extracted on B20f, and vice versa. Subsequently, we assessed the effectiveness of
harmonization in mitigating the impact of reconstruction bias on radiomics features using
Wilcoxon paired tests. We defined harmonizable features as those for which no statistical
differences were identified between features extracted from I26f and B20f reconstructions
after harmonization, including features extracted from both tumor and pancreas volumes.

The training set was upsampled to address the imbalance between the proportion of
grade 1 cases versus grades 2/3 (Table 1). The Least Absolute Shrinkage and Selection
Operator (LASSO) [31] feature selection method was applied to the upsampled I26f and
B20f datasets. LASSO was performed with five-fold cross-validation to identify radiomics
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features pertinent to predicting the grade of PanNENs. The regularization parameter alpha
was tuned using a grid search, ranging from 0.01 to 1 in steps of 0.01, with the objective of
selecting the minimum alpha value that resulted in the selection of 10 features. LASSO was
applied to both the full set of features and the subset of features identified as harmonizable
through ComBat (Figure 1D).

Table 1. Patients and tumors’ characteristics.

Training Testing All

Patients 91 36 127
Tumors 96 36 132

Grade
PanNET 1 58 (60%) 23 (64%) 81 (61 %)

2 34 (35%) 12 (33%) 46 (35 %)
3 1 (1%) 0 (0%) 1 (1 %)

PanNEC 3 (3%) 1 (3%) 4 (3%)

Gender
Female 52 (57%) 17 (47%) 69 (54%)
Male 39 (43%) 19 (53%) 58 (46%)

Surgery
Yes 95 (99%) 35 (97%) 130 (98%)
No 1 (1%) 1 (3%) 2 (2%)

Location
Head 27 (28%) 12 (33%) 39 (30%)
Body 17 (18%) 6 (17%) 23 (17%)
Tail 47 (49%) 16 (44%) 63 (48%)
Neck 1 (1%) 1 (3%) 2 (2%)
Uncinate 3 (3%) 1 (3%) 4 (3%)
Diffuse 1 (1%) 0 (0%) 1 (1%)

Patient with cyst
Yes 6 (7%) 1 (3%) 7 (6%)
No 85 (93%) 35 (97%) 120 (94%)

BMI
Underweight (<18.5) 1 (1%) 1 (3%) 2 (2%)
Healthy Weight [18.5–25] 28 (31%) 9 (25%) 37 (29%)
Overweight [25–30] 35 (39%) 13 (36%) 48 (38%)
Obesity [30–40] 23 (25%) 12 (33%) 35 (27%)
Severe Obesity (≥40) 4 (4%) 1 (3%) 5 (4%)

Age

Median [range] 61
[23.2–83.4]

59.6
[21.5–82]

61.3
[21.5–83.4]

Functional Type
Nonfunctional 18 (19%) 10 (28%) 28 (21%)
Serotonin 3 (3%) 1 (3%) 4 (3%)
Insulinoma 6 (6%) 1 (3%) 7 (5%)
Unknown 69 (72%) 24 (67%) 93 (70%)

Tumor Focality
Unifocal 86 (90%) 34 (94%) 120 (91%)
Multifocal 10 (10%) 2 (6%) 12 (9%)

Subsequently, radiomics features were extracted from the testing set and normalized
using statistics obtained from the training set. It is noteworthy that if features for images
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in the testing set could extend beyond the observed range in the training set, this leads to
normalized features outside of the 0–1 range.

Support Vector Machine (SVM) classifiers with a linear kernel were trained to predict
PanNEN grades with the regularization parameter (C) set to 1.0, and five-fold cross-
validation to evaluate the generalization performance. The models were retrained using the
full training dataset with a probabilistic Platt scaling [32] and ROC curves were generated
by varying the decision thresholds to compute AUC and evaluate the models’ perfor-
mance. Eight models were individually trained on the upsampled I26f and B20f training
datasets, employing radiomics features selected by the LASSO on the respective I26f and
B20f training datasets, with the full set of features and the subset of features identified as
harmonizable by ComBat (Figure 1E). We also investigated four additional models built
from features identified as harmonizable (i.e., no significant differences after harmoniza-
tion) before correction for multiple hypothesis testing. This shorter list of features provides
an idea of how models can perform when selecting from only the features with the lowest
likelihood of suffering alterations during harmonization. To test the effect of the recon-
struction kernel in the feature selection process, we performed the feature selection process
using LASSO in the I26b and B20f tests separately and then used these independent lists
of features to extract the values from both kernel groups (e.g., the list of features selected
on I26f was extracted from both the I26f and B20f datasets and used to train separate
models). Different models were compared using evaluation metrics, including accuracy,
specificity, sensitivity, precision, and F1 score, computed for both the training and testing
sets with 95% confidence intervals (95%CI) computed using a bootstrapping approach with
1000 iterations.

All statistical tests conducted in this study considered p-values < 0.05 as indicative
of significance.

3. Results
3.1. Patients

Among 127 patients included, 4 (3.1%) patients were diagnosed with multiple Pan-
NETs, comprising three cases with two PanNETs and one case with three PanNETs. Overall,
61% (81 tumors) had WHO grade 1 PanNETs, 35% (46 tumors) were grade 2, 1% (1 tumor)
was grade 3, and 3% (4 tumors) were PanNECs (Table 1). All tumors except two were
confirmed by surgical pathology from tumor resection, the remaining tumors (one grade 1
tumor and one grade 2 tumor) were diagnosed by endoscopic ultrasound with fine needle
aspiration (FNA). The grade 1 tumor diagnosed by FNA was stable on imaging studies for
at least four years. The majority of the tumors were located in the tail (48% or 63 tumors)
and 6% (seven patients) had additional cysts. The median tumor volume obtained by
manual tumor segmentation was 4.49 cm³, ranging from 0.14 cm³ to 659.00 cm³. Table 1
presents a summary of the demographic and clinical characteristics of all included patients.

3.2. Features Altered by Image Reconstruction

The Wilcoxon paired tests revealed significant differences between features extracted
from B20f and I26f images in 82% of the features extracted from the pancreatic volume
and 77% of those extracted from the tumor volume. After applying the Bonferroni cor-
rection, these percentages decreased to 69% and 51% for the pancreas and tumor volume,
respectively. Shape features are morphological descriptors and consequently, they were not
impacted by the reconstruction kernel (Figure 1A,B).

In the pancreas volume, NGTDM features had the highest number of impacted fea-
tures, with 95% of the features affected and 79% after Bonferroni correction. On the opposite,
GLSZM features showed lower susceptibility, with 70% of the features affected and 50%
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after Bonferroni correction. Looking at image filtering, wavelet convolutions resulted in
the highest percentage of features being affected (88% and 74% after Bonferroni correction).
Conversely, Gabor filtering led to the lowest number of impacted features (75% and 61%
after the Bonferroni correction). Detailed results are presented in Figure 2A.
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Figure 2. Percentage of features significantly altered by reconstruction on the full pancreas (A,C,E)
and on the tumor (B,D,F) volume. Results are shown for images without harmonization (A,B), images
harmonized with B20f as the reference (C,D), and images harmonized with I26f as the reference (E,F).
Feature categories are presented in columns, and the image convolution used to extract the features is
indicated in rows. A blue-to-yellow scale was used to display percentages, with the lower percentages
in blue, the middle range in greenish tones, and the highest in yellow.

In the tumor volume, GLCM features had the highest number of impacted features,
with 83% of the features affected and 61% after Bonferroni correction. Similar to results
observed in the pancreas volume, GLZSM features exhibited lower susceptibility, with 64%
of the features significantly altered and 29% after Bonferroni correction. Analyzing image
filtering, original images exhibited the highest percentage of features being affected (77%
and 60% after Bonferroni correction). Consistent with results observed in the pancreas
volume, Gabor filtering resulted in the lowest number of impacted features (73% and 45%
after Bonferroni correction). LoG with a sigma of 10 mm and wavelet filtering with the
HHH sub-bands resulted in 58% and 66% of features being impacted, respectively (15% and
20%, respectively, after Bonferroni correction). Detailed results are presented in Figure 2B.

GLSZM features on LoG filtering images with a sigma of 5 mm and 10 mm were found
to be unaffected by the kernel reconstruction. Specifically, focusing on the tumor volume,
a sigma of 3 mm, and GLRLM and NGTDM features with a sigma of 10 mm were also
identified as not significantly altered. (see Figure 2A,B).
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ComBat features harmonization resulted in a reduction in the percentage of impacted
features, with 27% and 25% of the features found to be impacted in the full pancreas when
harmonizing with B20f and I26f as references, respectively. After Bonferroni correction,
these percentages dropped to 10% for both reconstruction references. In the tumor volumes,
38% and 40% of the features were found to be impacted with harmonization using B20f and
I26f as references, respectively. Following Bonferroni correction, these numbers decreased
to 14% and 15%, respectively. ComBat harmonization also influences shape features,
leading to features affected by the reconstruction even after Bonferroni correction when
using I26f as references (7% and 86% for the pancreas and tumor volumes, respectively).
For both pancreas and tumor volume, LoG was identified as the image category for which
harmonization had the least impact, particularly for high sigma values, resulting in up to
62% of the features being impacted after harmonization after Bonferroni correction for the
tumor volume, with I26f as the reference and LoG with a sigma of 10 mm. Detailed results
are presented in Figure 2C–F.

The Wilcoxon results for each individual radiomics feature are available in the
Supplementary Table S1. This document also includes a list of features found to be im-
pacted by the reconstruction after Bonferroni correction for any harmonization (tumor
volume, pancreas volume, with I26f or with B20f as a reference).

3.3. Tumor Grade Prediction Models
3.3.1. Feature Selection

From the 3190 initial features, 1740 (55%) were found to be harmonizable, and 1472
(46%) were found to be harmonizable before accounting for multiple testing corrections.

Tumor grade prediction models were built using the set of 10 features identified by
the Least Absolute Shrinkage and Selection Operator (LASSO) on images reconstructed
with B20f and I26f kernels using the full set of radiomics features or the subset of features
identified as harmonizable (Figure 2D).

With the full set of features on B20f images, the LASSO selected eight features from
the tumor volume and two from the pancreas volume. All the selected features were
obtained on the images after convolutional filtering (six LoG and four wavelet features).
Among the list of selected features, three were found not to be harmonizable with Combat
(Figure 3A). On I26f images, the LASSO selected seven features from the tumor volume
and three from the pancreas volume. All the selected features were obtained on the images
after convolutional filtering (five LoG, three wavelet, and two Gabor features). Among the
list of selected features four were found not to be harmonizable with Combat (Figure 3B).
Four features were selected in both B20f and I26f images, and three of them were found not
to be harmonizable.

Within the subset of harmonizable features, on B20f images, the LASSO selected eight
features from the tumor volume and two from the pancreas volume. All the selected
features were obtained on the images after convolutional filtering (five LoG and five
wavelets features) (Figure 4A). On I26f images, the LASSO selected six features from the
tumor volume and four from the pancreas volume. All the selected features were obtained
on the images after convolution filtering (four LoG, four wavelet, and two Gabor features)
(Figure 4B). Three features were selected in both B20f and I26f images.

The features selected from the subset of harmonizable features identified without
correction for multiple testing are similar, in terms of feature categories and associated
weights, to the features selected from the subset of harmonizable features identified with
Bonferroni correction (Supplementary Figure S1).
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3.3.2. SVM Models

Models were found robust by the five-fold cross-validation, exhibiting accuracies
slightly lower than those based on the full training dataset (ranging from identical to 0.10
lower performance), with standard deviations between the folds ranging from 0.03 to 0.09
(Supplementary Table S2).

When focusing on sets of features selected from the full list of radiomics, we found
that models built from features selected on I26f led to the highest accuracies: 0.83 (95%CI:
0.69–0.94) and 0.81 (95%CI: 0.67–0.92) for B20f and I26f models respectively, vs. 0.67 (95%CI:
0.50–0.81) and 0.72 (95%CI: 0.58–0.86) for features selected on B20f and models built on
B20f and I26f, respectively (Figure 5A,B and Table 2). Models with features selected on I26f
led to AUC of 0.83 and 0.84 vs. 0.82 for models with features selected on B20f (Figure 6A).
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When employing sets of features selected from the list of harmonizable radiomics fea-
tures, we observed the highest accuracy of 0.78 (95%CI: 0.64–0.89) for the model constructed
on I26f using features selected on I26f. Conversely, the model built on B20f and utiliz-
ing features selected on B20f demonstrated the lowest accuracy of 0.67 (95%CI: 0.50–0.81)
(Figure 5C,D, and Table 2). Models with features selected on I26f led to AUC of 0.80 and
0.81 vs. 0.75 and 0.79 for models with features selected on B20f (Figure 6B).
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Models built from features selected before accounting for multiple testing correction
perform slightly lower than models using features from the entire set of harmonizable features
with accessories ranging from 0.61 (95% CI 0.44–0.78) to 0.78 (95% CI 0.64–0.89). These results
are presented in Supplementary Figures S2 and S3, and Supplementary Table S3.

Table 2. SVM performance evaluation metrics. Bolded lines indicate models with the highest accuracies.

LASSO SVM Accuracy
[95% CI]

Sensitivity
[95% CI]

Specificity
[95% CI]

Precision
[95% CI]

F1 Score
[95% CI]

Selection using
all features

B20f features
selected on B20f

0.67
[0.50–0.81]

0.85
[0.63–1.0]

0.57
[0.36–0.77]

0.52
[0.30–0.75]

0.65
[0.43–0.81]

I26f features selected
on B20f

0.72
[0.58–0.86]

0.85
[0.62–1.0]

0.65
[0.45–0.84]

0.58
[0.35–0.80]

0.69
[0.48–0.85]

B20f features
selected on I26f

0.83
[0.69–0.94] 1.0 [1.0–1.0] 0.74

[0.55–0.91]
0.68
[0.47–0.88]

0.81
[0.64–0.94]

I26f features selected
on I26f

0.81
[0.67–0.92] 1.0 [1.0–1.0] 0.70

[0.50–0.88]
0.65
[0.43–0.85]

0.79
[0.61–0.92]

Selection on
harmonizable
features

B20f features
selected on B20f

0.67
[0.50–0.81]

0.69
[0.43–0.92]

0.65
[0.45–0.84]

0.53
[0.29–0.77]

0.60
[0.36–0.79]

I26f features selected
on B20f

0.72
[0.58–0.86]

0.92
[0.75–1.0]

0.61
[0.41–0.81]

0.57
[0.35–0.78]

0.71
[0.50–0.86]

B20f features
selected on I26f

0.69
[0.56–0.83]

0.85
[0.63–1.0]

0.61
[0.41–0.80]

0.55
[0.33–0.76]

0.67
[0.45–0.83]

I26f features
selected on I26f

0.78
[0.64–0.89]

0.92
[0.75–1.0]

0.70
[0.50–0.88]

0.63
[0.40–0.85]

0.75
[0.55–0.90]

4. Discussion
In this study, we assessed the impact of soft tissue image reconstruction kernels on

the radiomics features, explored the possibility of correcting for this effect using ComBat
harmonization, and evaluated the predictive value of the radiomic features from images
reconstructed with B20f and I26f to distinguish between WHO grade 1 and higher grade
PanNENs, including grade 2 or 3 PanNETs and PanNECs. The primary objective was
to investigate the reconstruction variability to provide valuable insights to improve the
generalizability of PanNENs grading models based on radiomics. However, the results on
feature robustness to reconstruction kernel and ComBat harmonization should extend to
other radiomic models based on contrast CT features obtained from images reconstructed
with iterative or filtered back projection soft tissue reconstruction kernels.

Our results reveal that a substantial proportion of features were biased by the recon-
struction kernel, affecting 69% of the features in the pancreas volume and 51% on the tumor
volume. This difference can be explained by the nature of radiomics features that seek to
characterize heterogeneity. In volumes with low heterogeneity, radiomics features become
more sensitive to non-informative factors such as noise or reconstruction parameters, and
the features may capture aspects of the image that are not diagnostically relevant. In our
study, tumor volumes are more heterogeneous than the entire pancreas, making features
extracted from tumor volumes more informative. Heterogeneity is a well-known feature of
tumors that can be associated with heterogeneous tumor microenvironments with regional
variations in proliferation, metabolic activity, angiogenesis, hypoxia, cell death, and necro-
sis that are reflected on histopathologic and imaging data [7,33]. Conversely, the effect of
reconstruction parameters becomes more noticeable for radiomic features in the pancreas
due to its lower heterogeneity.

Erdal B.S. et al. reported 47.12% of features to be stable between iterative (I26f) and
filtered back projection (B40f) reconstruction on 28 features extracted from lung nodules of
23 non-contrast-enhanced chest CT scans [34], which is close to the 40% stability we found
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on the 93 features obtained from original images (no convolution filtering prior to radiomic
features extraction) on tumor volumes. Our study presents the advantage of exploring a
broader range of radiomics features, including those extracted from filtered images that
enhance edges and that were recently introduced in the IBSI guidelines [27]. This notably
allowed us to identify that GLSZM features are less impacted than other feature categories,
and wavelet filtering with high-pass filters is less impacted than low-pass filters. This can
probably be explained by the fact that GLSZM features aim to characterize heterogeneity
at a larger scale than other texture categories [35], and high-pass filtering better preserves
the edge information of the volume, while low-pass filters blur the image and reduce
heterogeneity. Zhao B. et al. assessed the reproducibility of radiomic features across
different reconstruction settings, exploring a wider range of images, from sharp to smooth
reconstructions [36]. In contrast, our study focuses specifically on kernels commonly used
in clinical practice for abdominal soft tissue. Additionally, we have investigated the impact
of reconstruction kernels not only on the tumor but also on the entire pancreas, which is
particularly relevant given the significant clinical challenge of detecting small lesions in the
pancreas [37].

ComBat harmonization proved effective in mitigating the reconstruction effect for
many of the features. However, it is noteworthy that such harmonization may introduce
variability in shape features, as shown in Figure 2. Consequently, shape features should
probably be excluded from the harmonization as variations in image protocols are likely to
have a minimal impact on segmentation volumes, and harmonization could potentially
introduce more bias. We also identified that ComBat harmonization did not perform well
for features obtained from images filtered with LoG, especially for large sigma values.
Across all feature categories, up to 15% (for tumor volume and harmonization with I26f as
a reference) of the features were found to be statistically different after harmonization. This
implies that in studies aiming to build or apply models with images obtained from different
reconstructions, caution is needed in selecting features for the model even if using ComBat
harmonization. One potential solution could be to remove non-harmonizable features
before feature selection, however, this approach may lead to the exclusion of features that
are informative, despite the inability of harmonization to correct for the reconstruction
effect. This may be the case for features that are more influenced by the classification
objective (e.g., grade in our study) than the kernel properties. Furthermore, our study
explored harmonization using the standard ComBat method without any covariate, which
can increase the risk of reducing the predictive power of the features by smoothing out
informative information. While our results could potentially be enhanced by adding tumor
grade as a covariate, we chose not to include it, as predicting the grade was the primary
objective of the SVM models. Nevertheless, in the context of outcome prediction models,
where tumor grade has been histopathologically proven, incorporating grade as a covariate
could potentially improve harmonization. Additionally, employing modified ComBat
techniques, such as bootstrapped ComBat [22], or more advanced harmonization methods
based on deep learning [38,39] could also lead to better results.

In our study, SVM models were evaluated on the testing set using general perfor-
mance metrics from five-fold cross-validation (Table 2), along with a more comprehensive
assessment of model performance across various thresholds (Figure 6). Features selected
from the I26f kernel performed better than those selected from the B20f reconstruction
images, regardless of the reconstruction that those features would be extracted next. We
hypothesize that the filtered back projection kernel (B20f) might induce more noise in the
reconstruction than the iterative reconstruction kernel (I26f). This could generate bigger
differences between training and testing sets and that could impact the feature selection
process, making it harder to validate the models on the testing set. Training models using
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only harmonizable features seemed to slightly affect the accuracy of the models (up to a 0.14
accuracy reduction in the model built on B20f features from the set selected on I26f). This
result highlights the potential trade-off in performance when building models that work
with both kernel (harmonizable features) versus models that include non-harmonizable
features. Harmonizable features were identified using the Bonferroni correction, which is
known to be overly conservative. In the Supplementary Material, we also present models
built from features identified as harmonizable before applying multiple hypothesis testing
corrections. Although these models showed a slight decrease in accuracy, the impact on
performance was not significant and did not alter the interpretation of our findings. As a
result, we did not find a need to further refine the selection of harmonizable features. In
our experimental design, we chose to investigate some models built from features extracted
using a different kernel than the one used for feature selection. This approach ensures that
the selected features are not overly dependent on specific image reconstruction parameters.
It also allowed us to highlight how a model trained on images from one kernel can be
reliably applied to patients imaged with another, using ComBAT harmonization.

Our study is not the only one trying to predict PanNEN grade, Bian Y et al. reported
similar results with a sensitivity of 94% and a specificity of 63.5% in identifying patients
with grade 2 using radiomics features extracted from contrast-enhanced CT scans from
102 non-functioning PanNET patients [13]. Gu D et al. built a nomogram to differentiate
PanNET of grade 1 vs. grade 2 or 3 and from the radiomic features extracted on the arterial
phase they reported a model with a sensitivity of 77.8% and a specificity of 81.3% [11]. This
study, although conducted on a comparable number of patients, differs from our cohort
in crucial aspects, including multicentric data, the exclusion of tumors with a maximum
diameter < 10 mm, and a higher proportion of grade 2/3 cases. Zhao Z et al. reported a
higher-performing model with a sensitivity of 90.9% and specificity of 88.9% in identifying
grade 2 from radiomics features extracted from non-enhanced and contrast-enhanced CT
scans [40]. In this study, only non-functional tumors were included, and the authors also
investigated CoLIAGe (Cooccurrence of Local Anisotropic Gradient Orientations) features
that can capture local entropy patterns [41]. Most of the selected features were obtained
in the portal venous phase while in our study features were acquired in the arterial phase
only. Also, we have chosen to limit our analysis to features included in the IBSI guidelines
and did not incorporate other engineered features, such as CoLIAGe. These differences
could explain the variations observed in model performance. Several other studies have in-
vestigated tumor grade prediction using other image modalities such as 18F-FDG PET [42],
MRI [43] or ultrasound [44]. However, none of these modalities have demonstrated a
distinct advantage in predicting the grade compared to contrast-enhanced CT.

Our study has some limitations, including a dataset of only 127 patients (or 132 tumors)
that was unbalanced, with a majority of grade 1 cases (61%). We addressed the issue
of unbalanced data by upsampling the training datasets used for SVM model training.
However, a compromise had to be made between the number of data points in the training
set and those available for testing the model. We opted to include only 40 tumors in the
testing set (with 13 being grade 2 or 3). Furthermore, this distribution is representative of
the patients seen in the clinic making our findings more applicable to real-world scenarios.
With this approach, we were able to identify the I26f kernel as more promising than the
B20f in grading models, and additional patients would likely narrow the 95% confidence
intervals in the results. Additionally, due to limited image availability, another limitation is
the fact that we were only able to analyze the effect of two reconstruction kernels from a
single vendor (Siemens). However, Dennis M. et al. provide the closest matching kernels for
GE, Philips, Siemens, and Toshiba, which can be used to extend our results to kernels from
other vendors [45]. Finally, the scan protocol was adjusted for each patient to minimize
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radiation dose while ensuring consistent image quality. Consequently, patients with higher
BMI, who require slightly modified scan protocols, may exhibit differences in radiomic
features. Further investigation is needed to quantify this effect. Predictions from the SVM
models were made on 40 tumors that were held out from our patient dataset and not used
at any stage of training. Although this is a widely accepted standard practice, ideally,
model evaluation should be conducted on an independent dataset. However, this was not
feasible in our study.

Several other reconstruction techniques exist, including adaptive statistical iterative
reconstruction [46] and deep learning CT reconstruction [47]. Each of these methods can
produce diverse reconstruction kernels, which contribute to additional image variability,
such as differences in smoothing and noise level. Our study provides valuable insights into
the impact of two commonly used soft tissue reconstruction kernels in abdominal radiology,
one iterative and one filter back projection, where tissue contrast is more critical than
sharp edge detection. While smooth kernels may reduce the amount of useful information
extracted through radiomics, sharp kernels, on the other hand, introduce noise that can bias
radiomics data. Therefore, further investigations are essential to comprehensively explore
the effects of different reconstruction kernels in detail.

However, the integration of radiomics into clinical practice necessitates a concerted
effort to standardize reconstruction algorithms. This task is particularly challenging given
the rapid advancements in scanner technologies, such as photon counting CT, which
introduce new complexities for achieving harmonization in radiomics. Nevertheless, these
technological shifts also present opportunities to enhance the utility of radiomics [48,49].

Image reconstruction represents one of the numerous challenges for the clinical use
of radiomics. To facilitate the translation into clinical practice, it is essential to provide a
detailed description of all image processing steps, from data acquisition to modeling, and
follow already established guidelines such as those from the IBSI [26,27]. In multicenter
studies, various parameters, including CT manufacturer and acquisition settings, can vary
and impact radiomic features [15,16]. These additional sources of variability should be
considered and must be carefully managed to harmonize images or radiomics features
prior to modeling. Furthermore, when interpreting and generalizing radiomics findings
across different centers, it is essential to understand precisely how data vary from the
datasets used to develop the models.

5. Conclusions
In this paper, we explored the influence of two soft tissue reconstruction kernels (I26f

and B20f) on radiomics features and their predictive value for determining PanNET grades.
Our findings indicate that a substantial number of features are biased by the reconstruction
kernel, and I26f showed more promise than B20f for predicting PanNET grades. For
studies employing mixed data arising from different reconstruction kernels, it is imperative
to address this effect through harmonization techniques, such as ComBat, and by being
cautious if using features not identified as harmonizable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering12010080/s1, Figure S1: Features selected by
LASSO on the features found to be harmonizable before accounting for multiple testing correc-
tion and their absolute weights on the B20f training cohort (A) and the I26f training cohort (B);
Figure S2: S VM performance evaluation metrics on the testing set for models using 10 features se-
lected from harmonizable features founds before accounting for multiple testing correction. (A) shows
the models with features selected on B20f, and (B) shows the models with features selected on
I26f; Figure S3: ROC curves generated from probabilistic Platt scaling of SVM models on the test-
ing set using features selected from harmonizable features found before accounting for multiple
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testing correction; Table S1: Wilcoxon results for each individual radiomics feature. In column D,
list of features found to be impacted by the reconstruction kernel after harmonization in at least
one of the configurations examined (Tumor—Combat Harmonization—Reference I26f, Pancreas—
Combat Harmonization—Reference I26f, Pancreas—Combat Harmonization—Reference B20f, and
Tumor—Combat Harmonization—Reference B20f); Table S2: SVM performance on the training set;
Table S3: SVM performance on the training and testing sets for models built using features found
harmonizable before accounting for multiple testing correction.
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