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Abstract: Odontogenic sinusitis is a type of sinusitis caused by apical lesions of teeth near
the maxillary sinus floor. Its clinical symptoms are highly like other types of sinusitis,
often leading to misdiagnosis as general sinusitis by dentists in the early stages. This
misdiagnosis delays treatment and may be accompanied by toothache. Therefore, using
artificial intelligence to assist dentists in accurately diagnosing odontogenic sinusitis is
crucial. This study introduces an innovative odontogenic sinusitis image processing
technique, which is fused with common contrast limited adaptive histogram equalization,
Min-Max normalization, and the RGB mapping method. Moreover, this study combined
various deep learning models to enhance diagnostic accuracy. The YOLO 11n model was
used to detect odontogenic sinusitis single tooth position in dental panoramic
radiographs and achieved an accuracy of 98.2%. The YOLOv8n-cls model diagnosed
odontogenic sinusitis with a final classification accuracy of 96.1%, achieving a 16.9%
improvement over non-enhanced methods and outperforming recent studies by at least
4%. Additionally, in clinical applications, the classification accuracy for non-odontogenic
sinusitis was 95.8%, while for odontogenic sinusitis it was 97.6%. The detection method
developed in this study effectively reduces the radiation dose patients receive during CT
imaging and serves as an auxiliary system, providing dentists with reliable support for
the precise diagnosis of odontogenic sinusitis.

Keywords: image enhancement; intelligent healthcare; medical image processing; object
detection; odontogenic sinusitis; YOLOv8n-cls; YOLO 11n
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1. Introduction

In recent years, the rapid development of artificial intelligence (AI) has brought
significant advancements to various technological fields, and the medical domain is no
exception. Particularly in integrating medical imaging and deep learning, AI has
demonstrated its advantages in efficient learning, driving innovations in intelligent
healthcare systems that surpass traditional methods [1-4]. These research findings
underscore Al's extensive applications and remarkable effectiveness in the medical field,
providing a solid foundation for the continued development of intelligent healthcare.
Moreover, in the field of Al-assisted dentistry, Al has shown significant potential in
improving diagnostic efficiency and accuracy. Studies have demonstrated using CNN
models to tackle various dental challenges, such as detecting retained roots, endodontic-
treated teeth, implants, impacted third molars, apical lesions, caries, and restorations [5—
8]. For instance, CNN-based models like ResNet, YOLOv3, AlexNet, and GoogleNet have
achieved high accuracy levels, often exceeding 90%. This integration of Al into dental
medicine enhances diagnostic precision and streamlines clinical workflows, addressing
the growing demand for efficient and reliable dental care solutions. However, research
specifically focusing on the application of Al to odontogenic sinusitis-related features
remains scarce. This highlights a critical gap in leveraging Al to assist in diagnosing and
managing this condition, which is often associated with complex dental and sinus
interactions. Bridging this gap could significantly improve early detection and treatment
planning for odontogenic sinusitis, benefiting both patients and practitioners.

Odontogenic sinusitis is a multifactorial disease that has garnered significant
attention [9], with etiologies including dental surgeries, foreign bodies, and odontogenic
infections [10]. Studies have shown a positive correlation between the increase in dental
surgeries and the incidence of odontogenic sinusitis [11]. This condition predominantly
affects individuals aged 40 to 60, with a slightly higher prevalence in females than males.
In odontogenic infections, the infection often originates from diseased teeth, such as
pulpitis or periodontitis. Bacteria spread through the dental pulp or periodontal tissues,
extending along the tooth roots into the sinus cavity, causing sinus inflammation and
infection. When the root apices are in close proximity to the sinus floor, periodontal
disease, dental caries, or dental treatments such as extractions and implant procedures
can further increase the risk of sinus infection. Improper postoperative wound care
following tooth extraction may also lead to sinus membrane perforation, which occurs
when the thin maxillary sinus mucosa or Schneiderian membrane is damaged, allowing
direct communication between the oral cavity and the sinus. This condition predisposes
patients to secondary infections and can result in oroantral communication, where air or
fluids pass between the oral cavity and the sinus, leading to prolonged healing or surgical
complications.

The early symptoms of odontogenic sinusitis closely resemble those of general
sinusitis, including nasal congestion, rhinorrhea, and foul odor [12]. Due to these
nonspecific symptoms, distinguishing odontogenic sinusitis from other types of sinusitis
can be challenging. Diagnosis often requires collaboration between otolaryngologists and
dental professionals [13], further complicating early detection. Moreover, only about one-
third of patients experience dental pain, making it even more challenging to identify the
condition promptly [14]. Recognizing the anatomical relationship between the apical part
of the teeth and the sinus floor is crucial in diagnosing odontogenic sinusitis, as this
knowledge enables more precise differentiation from other forms of sinusitis and
facilitates timely intervention. Research indicates that approximately 70.4% of patients
resolve their symptoms within six months, while only 11.1% experience symptoms for
over a year [12]. However, if left untreated, odontogenic sinusitis can spread to other
areas, posing more significant risks to the patient’s health. A key characteristic of this
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disease is the proximity of the affected tooth roots to the maxillary sinus floor. When
diagnosing sinusitis, it is essential to consider the presence of diseased teeth with roots
near the sinus floor, as this can lead to a quicker and more accurate diagnosis of
odontogenic sinusitis. The clinical challenge in diagnosing odontogenic sinusitis lies in
the fact that patients often focus on nasal symptoms, which can lead to misdiagnosis,
especially in medically underdeveloped areas, resulting in delayed treatment.

In the current literature, most studies use computed tomography (CT) to detect
odontogenic sinusitis [15]. However, traditional CT scans typically involve higher
radiation doses. Nonetheless, modern dental CT equipment, such as cone-beam CT
(CBCT), has significantly reduced radiation exposure and has become a routine tool in
dental imaging, especially for handling cases related to odontogenic sinusitis [16]. On the
other hand, dental panoramic radiographs (DPR) offer an effective alternative. They can
extract diagnostic information that would typically require CT, thereby avoiding the need
for CT scans, reducing radiation exposure, and retaining sufficient diagnostic information.
Rather than solely diagnosing odontogenic sinusitis using DPR, this study focuses on
utilizing DPR to preliminarily assess whether the apical part of the teeth is close to the
sinus floor. This early evaluation helps prevent potential odontogenic sinusitis or sinus
membrane perforation during dental treatments. Furthermore, it allows for appropriate
preventive measures, such as applying collagen after tooth extraction, to minimize the
risk of sinus membrane perforation. To address challenges related to radiation exposure
and diagnostic costs, this study employs image enhancement and deep learning
techniques to process odontogenic sinusitis-related features from DPR. These approaches
aim to enhance diagnostic performance, minimize radiation risks for patients, and assist
dentists in preliminary diagnosis and treatment [17].

This study aims to develop an automated diagnostic system using image processing
and deep learning techniques. The system is designed to determine whether dental root
apices are close to the sinus floor. Additionally, it highlights sinus locations through image
enhancement. This technology instantly identifies the proximity between tooth roots and
the sinus floor when capturing a DPR image. It alerts patients to potential risks and
facilitates case information sharing with otolaryngologists, providing additional reference
data for clinical diagnosis. Moreover, the technology is applicable in resource-limited
areas, aiding in screening high-risk populations and enhancing early diagnostic
capabilities. In recent years, research combining artificial intelligence and medical
imaging for automated diagnosis has gained significant attention [18]. Many studies have
utilized image segmentation techniques on DPR images to enhance lesion recognition
accuracy and optimize diagnostic results. To further strengthen model performance, this
study applied a series of image preprocessing techniques to single-tooth images,
including Gaussian blur [19], grayscale conversion [20], Contrast Limited Adaptive
Histogram Equalization (CLAHE) [21], min—-max normalization, and RGB mapping [22].
By advancing Al applications in medical imaging, this study seeks to address the
limitations of current diagnostic methods in resource-constrained environments.

2. Materials and Methods

To enable lesion identification, this study adopted the workflow illustrated in Figure
1. First, DPR images were used as input and processed through a two-stage image
segmentation technique to generate a dataset for training single-tooth detection.
Subsequently, various image processing techniques were applied, and five different
classification models were used for cross-comparison. Finally, the results were evaluated
for the diagnosis of odontogenic sinusitis.
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Figure 1. Assisted evaluation of odontogenic sinusitis research flowchart.

2.1. Single Tooth Object Detection

In this study, the maxillary region of each DPR image was annotated at the far-left
and far-right sides, with the marked positions defined as the Region of Interest (ROI) for
sinus invasion lesions, referred to as ROI-I. This region includes teeth #16, #17, #18, #26,
#27, and #28, based on the Fédération Dentaire Internationale (FDI) numbering system
[23], as shown in Figure 2. Single-tooth regions were further segmented from ROI-I to
train the final classification model, defining them as ROI-II. This step aims to generate the
dataset required for model training, enabling the model to be trained in more refined re-
gions to enhance classification performance and accuracy.
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Figure 2. Fédération Dentaire Internationale tooth position representation.

2.1.1. ROI-I and ROI-II Annotation

Since the lesion areas near the sinus floor are located at the posterior left and right
maxillary regions, it is essential to segment the Region of Interest (ROI) from DPR images
before conducting lesion analysis. First, ROI-I includes teeth #16, #17, #18, #26, #27, and
#28 based on the Fédération Dentaire Internationale (FDI) numbering system. This region
is selected using quadrilateral bounding boxes, as illustrated in Figure 3a. This process
ensures that ROI-I effectively encompasses potential sinus invasion lesion sites while ex-
cluding irrelevant areas, thereby improving the accuracy of subsequent model segmenta-
tion. After obtaining ROI-I, individual tooth regions (ROI-II) are further segmented. The
precise quadrilateral tool is used for marking, ensuring the inclusion of the sinus line and
the single tooth, as shown in Figure 3b. This method accurately captures the alignment
and position of lesions, providing high-quality input data for CNN model segmentation
and analysis. This two-stage segmentation approach significantly improves the accuracy
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of detecting whether tooth roots are close to the sinus floor in cases of odontogenic sinus-
itis, offering more reliable technical support for lesion analysis and assisted diagnosis.

(a) ROI-I: Molar Teeth Position. (b) ROI-II: Single Tooth Position.

Figure 3. DPR image annotation.

2.1.2. Object Detection Model

This study conducted image detection and analysis for the segmented regions ROI-I
and ROI-II, processing them for different targets. ROI-I was used to detect potential lesion
areas in DPR images, while ROI-II focused on precisely detecting individual teeth and
surrounding details. A CNN model was chosen as the foundational framework for initial
training. To ensure optimal recognition performance in the segmented regions, various
YOLO-based object detection architectures, including YOLOv8n, YOLOv9n, YOLOv10n,
and YOLO11n, were comprehensively compared. Each model has unique features, and
YOLO11n was selected as the primary framework for this study, and the block diagram
and architecture are shown in Figure 4 and Table 1. YOLO11n integrates advanced tech-
nologies, including an upgraded feature extraction module, an improved multi-scale de-
tection mechanism, and an optimized lightweight architecture, achieving a remarkable
balance between speed and accuracy. Compared to YOLOv8n, YOLO11n reduces the
number of parameters by 22% and is 2% faster in inference speed than YOLOv10n. More-
over, YOLO11n is optimized explicitly for Oriented Object Detection, enhancing the
model’s ability to identify rotated or non-axis-aligned objects. In the YOLOv8n architec-
ture, the C2f module optimizes the training process by introducing residual connections.
YOLO11n replaces the C2f module with the C3k2 module, which uses two smaller convo-
lutional layers combined with multi-path feature fusion techniques. This replacement ac-
celerates data processing, reduces computational load, and improves feature extraction
efficiency. Independent image datasets were prepared for image detection in ROI-I and
ROI-I, with their distribution detailed in Table 2. ROI-I consisted of 163 panoramic PA
images, while ROI-II was derived from ROI-I, comprising 129 images. These datasets were
divided into training, validation, and test sets in a 7:2:1 ratio to ensure the reliability and
stability of model training and evaluation.
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Figure 4. YOLO11n block diagram.

Table 1. YOLO11n architecture.

Block Number Type Kernel Size Stride Filters Future Map Size
0 Conv 3 2 64 320 x 320 x 16
1 Conv 3 2 128 160 x 160 = 32
2 C3k2 - - 256 160 x 160 x 64
3 Conv 3 2 256 80 x 80 x 64
4 C3k2 - - 512 80 x 80 x 128
5 Conv 3 2 512 40 x 40 x 128
6 C3k2 - - 512 40 x 40 x 128
7 Conv 3 2 1024 20 x 20 x 256
8 C3k2 - - 1024 20 x 20 x 256
9 SPPF 5 - 1024 20 x 20 x 256
10 C2PSA - - 1024 20 x 20 x 256
11 Upsample - - 1024 40 x 40 x 256
12 Concat - - - -

13 C3k2 - - 512 40 x 40 x 128
14 Upsample - - 512 80 x 80 x 128
15 Concat - - - -

16 C3k2 - - 256 80 x 80 x 64
17 Conv 3 2 256 40 x 40 x 128
18 Concat - - - -

19 C3k2 - - 512 40 x 40 x 128
20 Conv 3 2 512 20 x 20 x 128
21 Concat -

22 C3k2 20 x 20 x 256
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Table 2. Number of training and validation sets for object detection.

Dataset Training Set  Validation Set  Test Set Total
ROI-I 126 30 7 163
ROI-II 88 30 11 129

2.2. Single Tooth Image Preprocessing

In the early stages of model training, image preprocessing plays a crucial role in en-
hancing image features, directly affecting the stability and final performance of the model.
This study adopted three preprocessing methods, Gaussian blur, grayscale processing,
and CLAHE, to improve overall image quality and optimize feature extraction. Gaussian
blur effectively reduces high-frequency noise in images by smoothing out texture details,
thereby highlighting the overall contours of the target region. CLAHE enhances local con-
trast and addresses uneven brightness distribution in images, ensuring that detailed fea-
tures in DPR images are visible under varying brightness conditions. The combination of
these preprocessing methods not only provides the model with a stable and high-quality
input dataset, but also improves model accuracy, laying a solid foundation for subsequent
training and evaluation.

2.2.1. Gaussian Blur

Tooth images often contain significant noise, which can reduce the effectiveness of
deep learning training. To address this issue, this study applies Gaussian blur to grayscale
images for noise reduction, thereby smoothing the image by reducing details. Each pixel
is calculated as a weighted average of its surrounding pixels, achieving overall image
smoothing, and the formula is shown in (1):

_x2+y?
e 202 1)
2mo?

Gxy) =

The degree of blurring is controlled by adjusting the standard deviation o. A larger
o value results in a more pronounced blurring effect. The symbols x and y represent the
horizontal and vertical distances from the center of the kernel to the pixel being processed,
respectively. The before and after Gaussian Blur results are shown in Figure 5a,b.

LLL

(a) Original image (b) Gaussian blur (c) Grayscale (d) CLAHE

Figure 5. Single tooth image preprocessing.

2.2.2. Grayscale Processing

This study employed the weighted averaging method to transform the red, green,
and blue (R, G, B) channel values of color images into a single grayscale value, as the
formula in (2) describes. The weights in this formula are derived from the equation spec-
ified by the National Television System Committee (NTSC) for wide-band luminance sig-
nals, as referenced in [24].
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Gray = 0.299R + 0.587G + 0.114B )

The primary purpose of grayscale processing is to simplify the data structure of im-
ages by removing color information and compressing three-channel data into a single
channel. This significantly reduces computational complexity and resource consumption
in subsequent processing. This method preserves the image’s main structural features and
brightness information, as illustrated in Figure 5c. Grayscale processing enhances the con-
trast of lesion areas in dental medical imaging, making critical structures more prominent
and further improving the model’s recognition capabilities. Compared to the simple av-
eraging method, the weighted averaging method used in this study more accurately re-
stores the brightness characteristics of the image, thereby improving the precision of im-
age processing.

2.2.3. Contrast Limited Adaptive Histogram Equalization Process

This study also applied Contrast Limited Adaptive Histogram Equalization
(CLAHE), with the processing results shown in Figure 5d. CLAHE performs histogram
equalization within local regions while limiting contrast enhancement by clipping the his-
togram. It prevents the over-enhancement issues often associated with traditional adap-
tive histogram equalization. Before calculating the cumulative distribution function
(CDF), the histogram is clipped to ensure that pixel values exceeding the predefined
threshold do not affect contrast adjustment. This clipping effectively suppresses noise in
the image, preventing it from being excessively amplified during the equalization process
while preserving its overall structure and detailed features. In dental medical imaging and
other low-contrast imaging applications, CLAHE significantly improves the visibility of
details. Due to its localized processing characteristics, this technique enhances the contrast
in critical regions while avoiding over-enhancement of the entire image. It provides
higher-quality data for image analysis, contributing to improved diagnostic accuracy of
the model.

2.3. Single Tooth Image Postprocessing

Image post-processing is a critical step in sinus floor lesion identification. This study
found that in ROI-II, the min—max normalization result of grayscale areas is essential for
diagnosing lesions. Therefore, the pixel values of ROI-II were first analyzed to calculate
min-max normalization, capturing the distribution characteristics of grayscale levels.
Subsequently, using RGB mapping techniques, the grayscale X-ray images were con-
verted into colored images, with different grayscale regions colorized to highlight the rel-
ative relationship between the sinus and teeth.

2.3.1. Min-Max Normalization

The original single teeth image contains pixel values ranging from 0 to 255, as shown
in Figure 6a. During deep learning training, the wide range of pixel values may lead to
instability in the training process and even cause gradient explosion. To mitigate these
issues, this study employs the Min-Max normalization method to scale each feature line-
arly to the range of [0,1], as described by Equation (3), where p represents the pixel value
of the image. Normalized data not only prevent certain pixel values from disproportion-
ately influencing the model but also effectively reduce the magnitude differences in the
training data, thereby improving training efficiency. The pixel values after normalization
are illustrated in Figure 6b.

, _ p—min(p)
~ max(p) — min (p)

p 3)
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112 0.44 0.46

(a) Pixel value before normalization (b) Pixel value after normalization

Figure 6. Min—-max normalization analysis of single tooth images.

2.3.2. RGB Mapping

RGB mapping is a visualization technique that assigns colors to intensity values in
2D images, thereby highlighting regions of interest. In this study, after normalizing the
data, the RGB mapping technique was applied to map the values onto the z-axis dimen-
sion, with the visualization results shown in Figure 7a. This approach effectively en-
hanced the contrast between the dental apices and the sinus, with the results before and
after processing presented in Figure 7b,c. This process provided the model with more dis-
tinguishable image inputs, thereby improving its ability to identify pathological features.
Furthermore, this study utilized RGB mapping to represent continuous color transitions
for data features while ensuring clear differentiation between distinct color regions, fur-
ther enhancing the visualization of image characteristics. The normalized value v was
converted into the RGB color space using Equation (4), where R, G, and B represent the
mapping functions for the red, green, and blue channels. The R, G, and B functions were
calculated based on the value v using formulas (5)—(7).

Color(v) = (R(v), G(v),B(v)) 4)

R(v) = Int(71 — 34 - v+ 541 - v? — 3684 - v3 + 6300 - v* — 2943 - v°) (5)
G(v) = Int(408 — 479 - v+ 677 - v3 — 432 - v* + 44 - v°) (6)

B(v) = Int(77 + 652 - v — 2998 - v2 + 7226 - v3 — 8373 - v* + 3441 - v5) (7)

These formulas transformed v into RGB color space, where the operation Int was
applied to convert formula outputs into integers. The R, G, and B functions primarily rep-
resent the data with continuous color transitions ranging from blue to green to yellow.
This transition effectively visualizes variations, making it easier to distinguish subtle dif-
ferences.
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Figure 7. RGB mapping processing.

2.4. Disease Classification Model and Classification Dataset

Convolutional Neural Networks (CNN) have demonstrated outstanding perfor-
mance in the field of image classification. Their core architecture consists of convolution
layers, pooling layers, and fully connected layers. By leveraging a multi-layer structure,
CNNss can effectively capture key features in images and are widely applied in fields such
as audio and image classification. With their robust feature extraction capabilities, CNNs
have become a mainstream method for training image-based models.

2.4.1. Odontogenic Sinusitis Classification Model

In this study’s automated root invasion sinus recognition system, this study focused
on CNN models and Transformer-based architectures, both of which have shown excep-
tional performance in image classification tasks. CNNs have long been used in medical
imaging analysis for their superior ability to extract local features. Their core mechanism
involves convolutional operations to capture fine-grained image features while signifi-
cantly reducing computational costs and model complexity through parameter sharing.

This study compared five classification models: ResNet18 [25], ConvNeXtV2 [26],
YOLOvS8n-cls [27],YOLO11n-cls [28], and Swin-Transformer [29]. The characteristics and
advantages of each model are outlined below. Moreover, YOLOvS8n-cls and ResNet-18 are
more commonly used in clinical practice, and the combined performance of these two
models is significantly better than other models. Therefore, this study focuses on the ap-
plication of these two models in symptom analysis.

1. ResNetl8

ResNet18 introduced residual connections to address the vanishing gradient prob-
lem in deep networks. It has demonstrated stable performance across various classifica-
tion tasks; the block diagram and architecture are shown in Figure 8a and Table 3.

2. ConvNeXtV2

ConvNeXtV2 represents a modernized convolutional neural network (ConvNet) ar-
chitecture, combining the strengths of self-supervised learning and ConvNet design. This
model incorporates the Fully Convolutional Masked Autoencoder (FCMAE) framework
and Global Response Normalization (GRN) techniques to enhance performance in tasks
such as image classification, object detection, and semantic segmentation.

3. YOLOv8n-cls and YOLO11n-cls

The YOLO series is renowned for object detection; its lightweight design and opti-
mized classification head also enable strong performance in classification tasks.
YOLO11n-cls further introduces an improved multi-scale feature detection mechanism
and a lightweight architecture, achieving a notable balance between speed and accuracy;
the YOLOv8n-cls block diagram and architecture are shown in Figure 8b and Table 4.
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4.

Swin-Transformer

The Swin-Transformer is a representative Transformer-based model, which uses a
hierarchical structure and shifted window attention mechanism to reduce computational
complexity effectively while capturing multi-scale features. This makes it particularly

suitable for analyzing high-resolution medical images.

erful computational capabilities and large memory capacity, enabling support for large-
scale datasets and deploying complex models. The hardware and software platform con-
figurations used in this study are detailed in Table 5.
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Figure 8. Fine-tuning classification model used in this study.

Table 3. ResNet18 architecture.

Block Number Type Kernel Size Stride Filters Future Map Size
0 Conv 7x7 2 64 112 x 112 x 64
1 Max pool 3x3 2 - 56 x 56 x 64
2 Conv 3x3 1 64 56 x 56 x 64
3 Conv 3x3 1 64 56 x 56 x 64
4 Conv 3x3 1 64 56 x 56 x 64
5 Conv 3x3 1 64 56 x 56 x 64
6 Conv 3x3 2 128 28 x 28 x 128
7 Conv 3x3 1 128 28 x 28 x 128
8 Conv 3x3 1 128 28 x 28 x 128
9 Conv 3x3 1 128 28 x 28 x 128
10 Conv 3x3 2 256 14 x 14 x 256
11 Conv 3x3 1 256 14 x 14 x 256
12 Conv 3x3 1 256 14 x 14 x 256
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13 Conv 3x3 1 256 14 x 14 x 256
14 Conv 3x3 2 512 7 x7x512
15 Conv 3x3 1 512 7 x7x512
16 Conv 3x3 1 512 7 x7x512
17 Conv 3x3 1 512 7 x7x512
18 Average pool - - - 1x1x512
19 FC - - 64 1000

20 Softmax - - 128 1000

Table 4. YOLOvS8n-cls architecture.

Block Number Type Kernel Size Stride Filters Future Map Size
0 Conv 3 2 64 320 x 320 x 16
1 Conv 3 2 128 160 x 160 x 32
2 C2f - - 128 160 x 160 x 64
3 Conv 3 2 256 80 x 80 x 64
4 C2f - - 256 80 x 80 x 128
5 Conv 3 2 512 40 x 40 x 128
6 C2f - - 512 40 x 40 x 128
7 Conv 3 2 1024 20 x 20 x 256
8 C2f - - 1024 20 x 20 x 256
9 SPPF 5 - 1024 20 x 20 x 256
10 Upsample - - 1024 20 x 20 x 256
11 Concat - - - 40 x 40 x 256
12 C2f - - 512 40 x 40 x 128
13 Upsample - - 512 80 x 80 x 128
14 Concat - - - 80 x 80 x 128
15 C2f - - 256 80 x 80 x 64
16 Conv 3 2 256 40 x 40 x 64
17 Concat - - - 40 x 40 x 64
18 C2f - - 512 40 x 40 x 128
19 Conv 3 2 512 20 x 20 x 128
20 Concat - - - 20 x 20 x 128
21 C2f - - 1024 20 x 20 x 256

Table 5. Hardware and software platform versions.
Hardware Platform Version
Gru NVIDIA A100

DRAM 40 GB

Software Platform Version
Python 3.8.13
PyTorch 1.12.1+cull6
CUDA 11.6

2.4.2. Classification Model Training and Validation and Dataset

Data processing and allocation are critical steps in the training and evaluation of ma-
chine learning models. This study adopted the following two strategies for the single-
tooth image dataset. First, the original dataset was divided into two parts, as shown in
Table 6, with 90% used for model training and 10% for validation. This allocation ensures
the independence of the training process while providing sufficient validation data to
evaluate model performance. However, due to the limited size of the original dataset, the
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model’s generalization capability may need to be revised. Data augmentation techniques
were applied to address the issue of insufficient data. Specific methods included random
rotation of the original images (within a range of +5 degrees), adding random noise, and
adjusting brightness. These techniques expanded the dataset to approximately three times
its original size, significantly enhancing the model’s generalization capability. The distri-
bution of the augmented dataset is shown in Table 7.

Table 6. Number of classification model training sets and validation sets.

Training Set Validation Set Total
Normal 133 13 146
Odontogenic sinusitis 134 13 147
Total 267 26 293

Table 7. Data volume of disease symptom classification database after data augmentation.

Original Augmentation
Training Set 267 801
Validation Set 26 77
Total 293 878

3. Results

This section is divided into two subsections, beginning with the detection results of
single-tooth regions in DPR images, followed by an analysis of lesion classification models
and their comparative evaluation across various metrics. This study used five metrics to
evaluate the results, as shown in (8)—(12), and selected for analysis to comprehensively
assess model performance: accuracy, precision, recall, F1 Score, and mAP50. These metrics
were used to quantify the models’ classification capabilities and detection efficiency. Each
formula is explained below:

1.  Accuracy: Measures the proportion of correct predictions among all samples.
Recall: Assesses the model’s ability to identify all actual positives.

Precision: Indicates the proportion of true positives among predicted positives.
F1-Score: Balances Precision and Recall, suitable for imbalanced datasets.

ISARE N

mAP: Averages the precision across all classes, commonly used in detection tasks.

Accuracy = Tpt+ Ty 8)
Y T, + Ty + Fp + Fy

Tp

Recall =
A T T T Py

)

Tp
Tp + Fp

Precision =

(10)

F1S§ —2x Precision X Recall 1)
core = Precision + Recall

1 n
mAP = —Z AP, (12)
n i=1

In the context of evaluation metrics, these notations are fundamental components
used to assess model performance. True Positive (Tr) represents instances correctly iden-
tified as belonging to the positive class, while True Negative (Tn) indicates instances cor-
rectly classified as belonging to the negative class. False Positive (Fn) refers to cases incor-
rectly predicted as positive when they belong to the negative class. False Negative (Fx)
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denotes instances wrongly classified as unfavorable when they genuinely belong to the
positive class. In calculating mean Average Precision (mAP), n represents the total num-
ber of classes or queries being evaluated, and AP; specifically denotes the Average Preci-
sion calculated for the i class or query in the evaluation set.

3.1. DPR Image Object Detection Result

Table 8 demonstrates a comparison of different YOLO model performances. First,
YOLOL11n has outstanding performance across all metrics in the ROI-I phase, achieving
an accuracy of 90.0%. This represents a significant improvement compared to YOLOv8n
(70.6%) and YOLOv10n (80.0%) while being slightly higher than YOLOv9n (89.5%). Its
precision reached 94.4%, the highest among all models, indicating that YOLO11n effec-
tively minimizes false positive results. The recall was also 94.4%, matching YOLOv9n's
performance. In molar teeth position detection, the image shows two highlighted regions
with prediction accuracies of 92% and 91%, indicating consistent performance in molar
teeth detection. In the ROI-II phase, YOLO11n achieved the best performance, with an
accuracy of 93.2%, precision of 94.8%, and a remarkably high recall of 98.2%. For the single
tooth position detection, the highlighted regions show prediction accuracies of 89% and
99%, demonstrating the model’s capability to precisely identify individual teeth. These
metrics indicate that YOLO11n excels in classifying target regions and detecting all target
instances. Additionally, its F1 score reached 98.2%, demonstrating exceptional capability
in balancing precision and recall, further solidifying its advantage in detection and classi-
fication tasks.

In Figure 9a, the precision—confidence curve shows that YOLO11n outperforms other
models in most confidence intervals, particularly in high-confidence regions where its
curve displays a stable and precise trend. This reflects the model’s reliability in high-con-
fidence intervals. Additionally, in Figure 9b, the Fl-confidence curve illustrates that
YOLO11n maintained a high F1 score across different confidence values, primarily excel-
ling in the mid-to-high confidence range. This indicates that YOLO11n has significant ad-
vantages in balancing precision and recall, enabling more accurate identification of target
regions while enhancing the overall reliability of detection.

Table 8. Results of two-stage single tooth detection using DPR images.

Molar Teeth Position Detection YOLOv8n YOLOv9n YOLOviOn YOLO1ln
' ~ e Accuracy 70.6% 89.5% 80.0% 90.0%
LT O Precision 92.8% 93.5% 89.9% 94.4%
&A Recall 88.9% 94.4% 83.3% 94.4%
“\)::“‘; ‘ \ F1 Score 90.3% 93.9% 86.4% 94.4%
mAP50 89.7% 90.8% 83.5% 90.6%

Single Tooth Position Detection YOLOv8Bn YOLOv9n YOLOvIOn YOLOIlln
Accuracy 93.1% 88.3% 93.2% 93.2%
Precision 96.3% 93.2% 94.8% 98.2%
ZUEE 0 Single tooh 99% Recall 96.4% 97.6% 98.1% 98.2%
F1 Score 96.3% 95.3% 96.3% 98.2%
mAP50 98.5% 97.6% 98.1% 97.8%

-

-
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Figure 9. ROI-II detection using YOLO models.

3.2. Single Tooth Classification Model

This study compared five classification models: ResNet18, ConvNeXtV2, Swin-
Transformer, YOLOv8n-cls, and YOLO11n-cls. During the evaluation of each model’s per-
formance in the training and validation phases, particular attention was paid to the trend
of the loss function curves to explore the models’ applicability and learning efficiency. The
loss function, which measures the difference between the model’s predictions and the
proper labels, is a core indicator. Its behavior during training and validation directly re-
flects the model’s learning effectiveness and stability. In the training phase, changes in the
loss curve provide insights into the model’s convergence speed and stability on the da-
taset. Meanwhile, the validation phase loss reflects the model’s generalization perfor-
mance on unseen data. If the loss curve stabilizes too early or if there is a significant devi-
ation between the training and validation curves, it may indicate overfitting or underfit-
ting issues. The loss function curves for YOLOv8n-cls and ResNet18 during both the train-
ing and validation phases are shown in this study. For classification tasks, the study em-
ploys the binary cross-entropy loss function, which is defined by Equation (13). This func-
tion calculates the difference between the predicted probability, p(x;), that an instance x;
belongs to the default class, and the true binary label y;, which can be either 0 or 1. This
loss function computes the logarithmic error between the predicted probability and the
true label for each instance. When the predicted probability p(x;) is close to the true label
yi, the loss is small, indicating a correct prediction.

L = —(yilog(p(x)) + (1 — y) log(1 — p(x1)) (13)

From Figure 10, it is evident that YOLOv8n-cls demonstrates faster convergence in
the training phase compared to ResNet18. The training loss for YOLOv8n-cls decreases
more rapidly and stabilizes at a lower value, indicating higher learning efficiency and
potentially better optimization during training. Additionally, the final validation loss for
YOLOvV8n-cls is lower than that of ResNet18, reinforcing its superior performance in han-
dling unseen data. Overall, YOLOv8n-cls demonstrates better convergence speed, learn-
ing stability, and generalization compared to ResNet18 in this analysis.
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Figure 10. Loss function diagram during the training and verification process of YOLOv8n-cls and
ResNet18.

Table 9 presents the impact of the image processing techniques developed in this
study on model accuracy, including image preprocessing techniques (Gaussian Blur +
Grayscale Processing + CLAHE) and postprocessing techniques (Min-Max normalization
+ RGB Mapping). The original dataset’s classification accuracies of ResNetl8 and
YOLO11n-cls were 85.7% and 90.9%, respectively. After applying preprocessing, the per-
formance of nearly all models improved significantly, with the classification accuracy of
Swin-Transformer increasing to 96.1%, indicating its higher sensitivity to images opti-
mized for brightness distribution. The model performance was further enhanced when
combining preprocessing and postprocessing techniques. YOLOv8n-cls achieved a classi-
fication accuracy of 96.1%, surpassing YOLO11n-cls and demonstrating the effectiveness
of this combined processing approach in enhancing classification capabilities. Further-
more, after integrating all processing techniques, YOLOv8n-cls ultimately achieved a clas-
sification accuracy of 96.1% and a recall rate of 97.1%, representing a 16.9% improvement
in accuracy compared to the original dataset.

Table 9. Classification model validation results with different image enhancement methods.

Method Index ConvNeXtv2 Swin-Transformer ResNetl8 YOLOv8n-cls YOLO11n-cls
Accuracy 54.5% 83.1% 85.7% 79.2% 90.9%
Original Precision 50.0% 76.3% 81.6% 94.3% 91.4%
Recall 74.3% 91.4% 96.5% 93.5% 88.9%

F1 Score 59.8% 83.2% 88.4% 93.9% 90.1

Accuracy 77.9% 96.1% 89.6% 91.7% 89.6%
Preprocessing Precision 76.5% 93.3% 96.6% 94.3% 97.1%
Recall 74.3% 91.4% 96.5% 93.5% 82.9%
F1 Score 75.4% 92.3% 96.5% 93.9% 89.4%
Accuracy 77.9% 90.9% 94.8% 96.1% 89.6%
Preprocessing +  Precision 69.6% 85.7% 91.4% 97.1% 97.1%
Postprocessing Recall 74.3% 91.4% 96.5% 97.1% 82.9%
F1 Score 71.9% 88.5% 93.9% 97.1% 89.4%

Additionally, this study conducted a detailed evaluation of the YOLOv8n-cls model’s
performance in image classification tasks. From the ROC curve in Figure 11, it can be ob-
served that YOLOv8n-cls achieved an AUC value of 0.861, significantly higher than Res-
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Net18 (AUC = 0.794) and Swin-Transformer (AUC = 0.783). This highlights the outstand-
ing classification accuracy of YOLOv8n-cls and its ability to maintain a good balance be-
tween the True Positive Rate and False Positive Rate.

ROC Curves of RGB Mapping

True Positive Rate

~ConvNeXt V2(AUC=0.612)

7 ~—ResNet18(AUC=0.794)

2 =YOLOVSn-cls(AUC=0.861)

0.1 -
“=YOLO11n-cls(AUC=0.858)

~Swin-Transformer(AUC=0.783)
0 0.2 0.4 0.6 0.8 1

False Positive Rate

Figure 11. Comparison of the ROC curves of each model under RGB Mapping.

From the confusion matrix data in Table 10, it is evident that the YOLOv8n-cls exhib-
ited a high recognition capability and stability level when distinguishing whether a tooth
root apex was near the sinus floor. For the category where the tooth root apex was not
near the sinus floor, the model successfully identified 41 samples, with only one misclas-
sification. In the category where the tooth root apex was near the sinus floor, the model
correctly identified 33 samples, with just two misclassifications. These results demonstrate
that the model achieves exceptionally high accuracy across different conditions.

Table 10. Confusion matrix of YOLOv8n-cls validation set.

Actual
No Sinus Invasion Sinus Invasion
. No sinus invasion 41 2
Predict " B B
Sinus invasion 1 33

Table 11 provides clinical assessment results. For cases without sinus invasion,
YOLOv8n-cls achieved an average precision of 97.6%, outperforming ResNet18, which
achieved 91.7%. Similarly, for cases involving sinus invasion, YOLOv8n-cls achieved a
higher average precision of 95.8% compared to 90.5% for ResNet18. This indicates that
YOLOvS8n-cls possesses superior recognition capabilities for handling more complex
pathological features.
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No Sinus Invasion

Precision

Table 11. Clinical assessment comparison of Validation Results with Ground Truth.

Ground Truth Average
Precision
YOLOv8n-cls  95%  96% 95% 99% 99% 96% 97.6%
ResNet18 89% 94% 93% 92% 94% 88% 91.7%
Ground truth Average
Sinus invasion Precision
e 4
YOLOv8n-cls 99% 98% 95% 96% 93% 96.7% 95.8%
ResNet18 95% 90% 87% 92% 88% 91% 9.5%

Precision

4. Discussion

This study proposed a deep learning-based solution for the automated diagnosis of
whether tooth root apices are near the sinus floor, successfully integrating image pro-
cessing techniques with CNN to identify such lesions in DPR images. The results demon-
strated that through two-stage ROI detection (ROI-I and ROI-II), the model achieved ver-
ification levels of over 90% in both accuracy and recall. The first stage, ROI-I detection,
focused on annotating maxillary tooth positions (e.g., FDI numbering) while emphasizing
potential lesion areas and minimizing background noise in full-image processing. This
stage laid the groundwork for more detailed subsequent analysis. The second stage, ROI-
IT detection, further refined the focus within the ROI-I regions, concentrating on individ-
ual tooth feature areas. This phase identified critical regions around the tooth roots and
sinus cavity, achieving higher accuracy in lesion recognition. This two-stage processing
workflow improved the model’s diagnostic performance and effectively reduced interfer-
ence in image analysis, providing reliable technical support for clinical diagnostics.

This study utilized the YOLOv11n model and compared its performance with other
traditional algorithmic models, demonstrating significant advantages in single-tooth de-
tection tasks on DPR images. The YOLOv11n model achieved a precision and recall of
98.2% and a mAP50 of 97.8%, substantially outperforming other methods. In contrast,
study [30] used Faster R-CNN and achieved a precision of only 83.8% and a recall of
79.1%, while traditional algorithmic models yielded a mAP50 of just 96.7% [31]. These
results highlight YOLOv11n's exceptional performance in detection stability and accu-
racy, further validating the effectiveness of the two-stage DPR detection method adopted
in this study. The detection results underscore the strong potential of YOLO series models
in medical imaging, particularly for small-scale, high-precision object detection tasks. Alt-
hough the two-stage detection process is slightly more complex than single-stage detec-
tion, its improvements in accuracy and stability are critical. Traditional single-stage de-
tection strategies often need help with uneven feature distribution or substantial back-
ground interference in medical images. In contrast, the two-stage detection design pro-
gressively focuses on finer feature regions, effectively filtering out unnecessary infor-
mation and enabling the model to capture lesion-related features more accurately. On the
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other hand, the CLAHE technique used in this study proved highly effective in improving
image brightness uniformity and detail visibility, significantly enhancing the model’s clas-
sification performance. In the postprocessing phase, the RGB mapping technique, which
converted grayscale information into intuitive color representations, notably improved
the model’s ability to identify whether tooth root apices were near the sinus floor. As
shown in Table 12, the YOLOv8n-cls model achieved a classification accuracy of 96.1%
after applying RGB mapping, a 4.1% improvement over DetectNet [32], and an 8% in-
crease in recall. Furthermore, compared to traditional CNN models [33], this study
achieved 20% improvement across all performance metrics, emphasizing the critical role
of RGB mapping in enhancing image features. In summary, the main contributions of this
study are as follows.

1. YOLO11n achieved a maximum precision of 98.2% and a recall of 98.2%. Accuracy
increased by 14% compared to other models and studies, which improved by 19%.

2. The study utilized innovative odontogenic sinusitis image preprocessing and post-
processing methods to improve 16.9% accuracy in YOLOv8n-cls disease classification,
which is higher than other classification models.

3. Inclinical applications, YOLOv8n-cls classification accuracy for non-odontogenic si-
nusitis achieves 95.8%, and odontogenic sinusitis achieves 97.6%.

Table 12. Comparison with other research in sinus floor level detection.

Method Model Accuracy Precision Recall F1-Score
This Study YOLOv8n-cls 96.1% 97.1% 96.1% 96.6%
[32] DetectNet 92% 96% 88% X-
[33] CNN Model 75.7% 75.7% 75.7% 75.7%

This study achieved several technical breakthroughs but also has certain limitations.
First, the limited size of the dataset may impact the model’s generalization capability. Alt-
hough data augmentation techniques partially address the issue of insufficient samples,
further validation on larger-scale datasets is necessary. Additionally, during the segmen-
tation of the ROI-II region, different models may introduce excessive irrelevant features
in their processing of the tooth region, potentially affecting the stability of classification
results. Future research should focus on designing more precise segmentation algorithms
to minimize the introduction of noise while retaining key features relevant to the lesions.
Additionally, further efforts are required to explore integrating the proposed deep learn-
ing system into existing imaging platforms used in clinical practice. This would include
evaluating compatibility with current hardware and software, assessing workflow effi-
ciency, and ensuring regulatory compliance to facilitate its adoption in real-world clinical
settings.

5. Conclusions

This study developed an Al-assisted diagnostic system that significantly improves
the accuracy of detecting and classifying odontogenic sinusitis using dental panoramic
radiographs. The proposed system demonstrates strong potential for clinical applications,
offering reliable support for early diagnosis and paving the way for broader intelligent
dental diagnostic platforms.
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