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Abstract: Surgical wound infections are a major cause of postoperative complications, con-
tributing to surgical morbidity and mortality. With the rise of antibiotic-resistant pathogens,
it is crucial to develop new innovative wound materials to manage surgical wound in-
fections using methods that facilitate drug delivery agents and rely on materials other
than antimicrobials. Nanoparticles, in particular, have captured researchers’ interest in
recent years due to their effectiveness in wound care. They can be classified into three
main types: inorganic nanoparticles, lipid-based nanoparticles, and polymeric nanopar-
ticles. Several studies have demonstrated the effectiveness of these new technologies in
enhancing wound-healing times and reducing bacterial burden. However, further research
is essential to thoroughly evaluate the safety and toxicity of these materials before they can
be integrated into routine surgical practice.

Keywords: nanoparticles; wound healing; wound infection; lipid nanoparticles; metal
nanoparticles; polymer nanoparticles

1. Introduction
Surgical wound infections are some of the most reported forms of nosocomial in-

fections with significant effects on morbidity and mortality [1]. Most recent data state
that surgical wound infections account for over 2 million nosocomial infections in the
United States and are associated with 11% of ICU deaths [1]. Surgical site infections are
associated with increased hospital stays and a financial burden estimated at more than USD
20,000 per admission [2]. The primary sources of microbes causing surgical wound infec-
tions are the skin and adjacent tissue at the surgical site, as well as more internal structures
associated with the procedure [3]. Some of the most commonly isolated microorganisms are
Staphylococcus aureus, coagulase-negative Staphylococci, Escherichia coli, Enterococcus faecalis,
and Pseudomonas aeruginosa [4]. In the presence of rising antimicrobial resistance rates
across the world [5], there is a serious need to develop novel ways to tackle this ongoing
global health crisis. Nanotechnology has limitless capacities to advance and aid a plethora
of different medical applications, including, but not limited to, cancer, tissue repair, imaging
techniques, gene therapy, and more [6–8]. The US Food and Drug Administration (FDA)
and World Health Organization (WHO) have already approved several nanodrugs and
nanoparticle polymers that may potentially be used as antimicrobials [9,10].

Nanotechnology refers to the manipulation and use of matter on the nanoscale, typ-
ically ranging from 1–100 nm. Nanoparticles exhibit unique properties due to the scale
at which they operate, such as biological mobility and chemical reactivity, making them
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different even from that of their bulky counterparts [11,12]. One of the main properties
that allows for nanoparticles’ unique chemical behaviors is their large surface area [13].
At this scale, these nanoparticles obey the laws of quantum mechanics as opposed to the
traditional laws of physics and chemistry that govern larger-scale systems [14]. In essence,
this combination of properties allows for nanoparticles to be manipulated and used in
unique ways that take advantage of their size and surface area to enhance a variety of
applications in medicine.

Within the context of infection, metal-based nanoparticles hold great promise in
the treatment of bacterial infections due to their antibacterial activity [15]. A few of the
most crucial factors for the efficacy of metal-based nanoparticles are their high surface
area-to-volume ratio, size, and bioavailability [16,17]. Nanoparticles are smaller than
bacterial cells and can therefore diffuse into the cell and exhibit their antibacterial properties
via a variety of mechanisms, including membrane potential disruption and generation
of reactive oxygen species [18,19]. These basic principles lay the foundation for how
nanoparticles are used in the context of surgical wound infections. The main objective
of this review is to provide clinicians and surgeons a better understanding of the real-
world application and use of nanoparticles in the treatment of surgical wound infections.
Therefore, particular interest will be given to the practical use of nanomedicine as an
adjunct or replacement to typical antimicrobials, in both future and current surgical practice.
Scrutiny of nanomedicine’s practicality, drug delivery mechanisms, success rates, future
implications, cost, complications, indications, and contraindications is crucial for the viable
adoption of nanomedicine into routine clinical practice.

2. Role of Nanotechnology in Surgical Wound Infection
Surgical wound infections are a major cause of postoperative complications, con-

tributing to surgical morbidity and mortality. Recent data shows that surgical wound
infection represents a significant number of hospital infections [1]. The prevalence of
resistant nosocomial microorganisms, including methicillin-resistant S. aureus (MRSA)
and extended-spectrum beta-lactamase bacteria, has been increasing recently [1]. The rise
of antibiotic-resistant pathogens has become an emerging medical problem [20]. There-
fore, it is crucial to develop new innovative wound materials to manage surgical wound
infections using methods that facilitate drug delivery agents and rely on materials other
than antimicrobials.

Nanotechnology has emerged as an effective approach to enhance wound healing.
Nanoparticles, in particular, have captured researchers’ interest in recent years due to
their effectiveness in wound care. They can be classified into three main types: inorganic
nanoparticles, lipid-based nanoparticles, and polymeric nanoparticles [21]. We will explore
the use of each one of these new technologies in wound healing and antimicrobial activity.
Table 1 represents the mechanisms, advantages, and disadvantages of the different types of
nanoparticles discussed within this paper.
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Table 1. Summary of Nanoparticle use in Surgical Wound Infection.

Nanoparticles in Surgical Wound Infection

Nanoparticle
Type Metal Based Carbon Based Bioactive glass

Based Lipid Based Polymer Based

Mechanism

- Inhibition of
bacterial en-
zymes

- Alteration
of cell mem-
brane

-
Interruption
of the respi-
ratory chain

- Impairing
energy
metabolism

- Improving
wound
healing via
macrophage
switching
and ad-
vancing
angiogene-
sis

- Inhibiting
bacterial
growth
through cell
membrane
disruption

- Enhanced
delivery of
therapeutic
substances
to site of
action

- Regulation of
pharmacoki-
netics

- Improve
bioavailability
and drug
delivery

Advantages

- Excellent
antimi-
crobial
properties

- Improved
wound
healing

- Established
Random-
ized Control
Trials con-
veying
clinical ef-
fectiveness

- Improved
wound
closure

- Improved
angiogene-
sis

- Effective
wound
healing

-
Antimicrobial
activity
against
drug resis-
tant strains

- Ability to
transport a
variety of
biological
compounds

- Synergistic
poten-
tial with
multiple an-
timicrobials

- Successful
application
in other
fields

- Effective carri-
ers of drugs

-
Biocompatibility

- Decrease
in bacterial
burden with
resistant
strains.

Disadvantages

- Potential
immuno-
toxicity and
genotoxic-
ity

- Reported
increase in
fibrosis and
inflamma-
tion

- Lack of stan-
dardized
studies

- Lack of stan-
dardized
measures
to assess
outcomes
of different
bioactive
glass mate-
rials

- Lack of
standard-
ized studies
showing
lipid based
nanopar-
ticles in
clinical use
in surgical
wound
infections.

- Lack of large
scale manu-
facturing for
polymeric
nanoparticles

3. Inorganic Nanoparticles
3.1. Metal Based Inorganic Nanoparticles

Several studies have investigated the efficacy of nanoparticles with regards to antimi-
crobial properties and infection, both in vivo and in vitro. Nanoparticle-based drugs use
a variety of compositions, including metal, lipid, carbon, and polymeric-based nanopar-
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ticles [22]. Silver (Ag) and gold (Au)-based metal nanoparticles are some of the most
commonly investigated and used [22].

Inorganic nanoparticles derived from metals, including silver, copper, zinc, gold, and
others, are being extensively investigated due to their antimicrobial properties that are
different from antibiotics [23]. Their antibacterial mechanism of action is still not yet fully
understood, but some of the mechanisms described in the literature include the release of
ions that can bind to thiol DNA bases and inhibit DNA replication [24], the inhibition of
essential enzymes such as DNA polymerase [25] and beta-galactosidase [26], the disruption
of the cellular membrane by causing photocatalytic reactions and increasing the membrane
permeability [27–29], and the reduction of biofilm formation [23,30,31].

Metal nanoparticles have been shown to have synergetic effects when used with
antibiotics and other biomaterials by increasing the delivery and effectiveness of the drug
complex as well as reducing side effects [20,23]. They also allow for a slow, gradual, and
sustained release of the antibiotic [32]. Metal nanoparticle drug complexes have various
formulations and can be delivered through systemic, oral, or transdermal routes [23]. Many
studies have investigated metal and polymeric nanoparticles and their use in potential
wound dressings against different bacterial strains [33–35]. Metal nanoparticles can also
potentially be used in the coating of medical implant materials to decrease post-surgical
implantation infection risk [36,37]. More research is still needed to fully understand the
efficacy of these promising systems.

Silver nanoparticles are the most commonly used and were among the first to be
introduced clinically [38]. This is due to their strong antibacterial capabilities and their
ability to address antibiotic resistance, which has been attributed to the reaction of silver
ions with thiol groups of important enzymes [39]. Additionally, silver is known to have
low toxicity to human cells [40].

A recent randomized clinical trial compared the use of kadermin, a silver nanoparticle-
based cream, against mupirocin and showed significant differences in wound healing
and bacteria clearance of culture-positive infected wounds [41]. Another randomized
comparative trial used acticoat, a silver nanocrystalline wound dressing, for use in burn
wounds, and the results showed significantly faster healing times and higher bacterial
clearance when compared to the control [42]. In vitro biofilm production by Pseudomonas
aeruginosa and Staphylococcus epidermidis was able to be significantly inhibited when treated
with silver-based nanoparticles [30]. In another randomized control study comparing
the efficacy of silver-based nanoparticle gel against traditional wound dressing in the
management of nonischemic diabetic foot ulcer, results showed significantly faster wound-
healing rates for the silver nanoparticle group [43].

While these findings are promising, notable differences in the employed methodolo-
gies and outcome measures indicate the need for large-scale standardized trials before
integrating metal-based nanoparticles in clinical practice. For example, some studies focus
on specific wound types such as ulcers and burns, while other studies report more general-
ized wound types, which makes direct comparison of the findings difficult. Additionally,
the nanoparticle formulations and application techniques differ between studies, with
some using topical formations and others wound dressings, which may influence the re-
ported outcomes. Studies documenting outcomes for each wound context and nanoparticle
application technique are needed to make direct comparisons.

Among metal nanoparticles, gold nanoparticles are also favored ones because of
their biocompatibility as well as their low toxicity [44]. Gold nanoparticles have effective
antibacterial properties through various mechanisms involving blocking DNA transcription
and ATP synthesis, as well as increasing free radical activity [23,45]. Studies have shown
that chitosan–gold nanoparticles significantly increased wound hemostasis and repair [46].
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Hence, gold nanoparticles also present an encouraging approach in managing surgical
wound infections.

While metal nanoparticles offer a new potential way of managing site infections, it is
important to consider their potential risks. Due to their very small size, metal nanoparticles
can readily penetrate cell membranes and build up in organelles, causing detrimental
toxicity, genotoxicity, neurotoxicity, immunotoxicity, and carcinogenicity through various
signaling cascades [47,48]. The safety of these nanoparticles still needs further research
before they can be used in clinical practice.

Despite these promising results, there is still a lack of general consensus for when
nanoparticle-based solutions should be implemented clinically. Additionally, many of
the current clinical trials have been tested in small, specific populations, which limits the
studies’ reproducibility in the real world. Nevertheless, the current documented efficacy
of nanotechnology-based medicine in the real world is present and ever growing, with
more and more interest being paid to the field of nanomedicine. With more rigorous
studies validating their clinical efficacy, metal-based nanoparticle wound dressings could
potentially replace traditional wound dressings, and topical creams and gels containing
metal-based nanoparticles may be introduced as potential primary or adjunct treatments in
post-surgical care.

3.2. Non-Metal Inorganic Nanoparticles

Non-metal inorganic nanoparticles that have been investigated in wound healing
include carbon nanotubes and bioactive glass nanoparticles [49,50].

There are two types of carbon nanotubes: single-walled and multi-walled carbon
nanotubes [51]. Several studies have shown the capacity of carbon nanoparticles in improv-
ing wound healing. Their mechanism of action is determined by their physical, chemical,
and size properties [52,53]. While many studies have investigated the antibacterial and
anti-fungal effects of carbon nanotubes, the exact mechanisms for their antimicrobial prop-
erties are still not well understood [52]. This may be attributed to the unavailability of
standardized tests to evaluate antimicrobial properties [52]. They can inhibit bacterial
proliferation by hindering the energy metabolism and disrupting the respiratory chain,
which induces bacterial cell death [49]. Carbon nanotubes can generate reactive oxygen
species through chemical interactions with the surface of microbes [53]. Additionally, some
carbon nanomaterials can isolate cells from their environment, resulting in their possible
death as well [53].

A study designed a non-antibiotic adhesive nanocomposite made of N-carboxyethyl chi-
tosan (CEC) and benzaldehyde-terminated Pluronic F127/carbon nanotubes (PF127/CNT) [54].
They showed remarkable treatment results in full-thickness infected wounds in vivo with
enhanced wound closure and angiogenesis [54]. A recent study investigated the effects of
single-wall and multi-wall carbon nanotubes complexed with chitosan on full-thickness wound
healing in a mouse model [55]. They both significantly improved tissue epithelization; how-
ever, increased fibrosis and inflammation were noted, especially in the multi-walled carbon
nanotubes [55]. Therefore, further investigation is needed to explore the possible side effects of
these technologies in tissue scarring and repair.

Both studies investigated the effects of carbon nanotube-based hydrogels on wound
healing in full-thickness-induced wounds using mouse models. Both studies have similar
methodologies and report positive outcomes, making carbon nanotube-based hydrogels
potential candidates for wound healing in the future. If future clinical trials confirm their
efficacy and validity, these hydrogels could be used to engineer new adhesives that can
potentially serve as novel adhesives or adjuncts to the surgical adhesives used currently
in practice. However, more research is needed to investigate the effect of these carbon
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nanotube-based hydrogels on bacterial clearance and potential tissue changes, such as
fibrosis and tissue changes, to ensure their safety and efficacy.

Bioactive glass nanoparticles also present a promising way of managing surgical
wounds. They improve wound healing by releasing ions that advance angiogenesis, M1-to-
M2 macrophage switching, and antibacterial action [50]. Some studies showed that some
bioactive glass compounds, such as S53P4, can suppress the growth of various bacteria,
including MRSA, by creating holes in the cell membrane and changing its conformation [56].
A study comparing the antimicrobial activity of different bioactive glass compounds re-
vealed that particles with smaller sizes exhibited a stronger antimicrobial activity [56].
In a recent study, bioactive glass nanoparticles functionalized with polydopamine were
tested for infected wounds and skin tumor therapy [57]. It demonstrated exceptional
wound healing and antibacterial effectiveness, including against the multidrug-resistant
bacteria [57].

Several other studies explored the therapeutic effects of different bioactive glass-based
biomaterials. However, comparing different materials is difficult due to the differences
of models and the lack of standardized outcome measurements [50]. It becomes difficult
to make direct comparisons without consistent criteria for assessing wound healing and
bacterial clearance across different materials. Hence, further research is needed to identify
the ideal model properties for clinical use.

4. Lipid Nanoparticles
Lipid nanoparticles are targeted drug delivery systems made of a biodegradable and

biocompatible lipid matrix encased in a surfactant film [58]. They have the ability to contain
various hydrophobic and hydrophilic agents, such as growth factors and gene therapy, and
they allow for controlled, site-specific release of the therapeutic agent in damaged tissues
with poor permeability [58,59]. Due to the fatty nature of solid lipid nanoparticles, they
can allow for a slow release of the loaded antimicrobial, resulting in increased bacterial
inhibitory effects and enhanced wound healing [60].

Lipid nanoparticles are perhaps most famously known for their use in the COVID-19
vaccines, for which they were crucial in the effective delivery of the mRNA vaccine con-
tent [61]. Unlike metal nanoparticles, which are used for their natural antimicrobial proper-
ties [62], lipid nanoparticles are mostly investigated for their effectiveness in drug deliv-
ery [63]. Drug delivery advancements are crucial in the control of microbes, as they can
potentially be used to overcome mechanisms of antimicrobial resistance such as biofilm
production [64].

There are different types of lipid nanoparticles, including liposomes, solid lipid
nanoparticles, nanostructured lipid carriers, and more [58]. Lipid-based nanoparticles
have been approved for use in various fields, including cancer therapy, infectious diseases,
and anesthesia [65,66]. In the context of surgical wound infections, they hold significant
potential. A recent study explored the efficacy of lipid–polymer hybrid nanoparticles
combined with fusidic acid in combating resistant bacterial infections in burn wounds [67].
Murine burn wound models dispensed with MRSA were used to assess the potential of the
lipid–polymer-based nano-engineered system in reducing the infection in vivo [67]. The
results showed a significant decrease in MRSA bacterial burden as well as an enhanced
wound size reduction in the treated group [67]. Hence, lipid-based nanoparticles offer an
encouraging option in managing antimicrobial-resistant bacterial infections. Zhou et al.
evaluated the in vivo antibacterial effect of ferric-loaded lipid nanoparticles on S. aureus-
infected wound models [68]. The wounds treated with the ferric-loaded lipid nanoparticles
showed remarkably reduced skin infections and enhanced wound healing [68]. Another
study investigated the use of a solid lipid nanoparticle with the antibacterial lacticin
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3147 hydrogel as a topical treatment for S. aureus wound infections [69]. Compared to free
lacticin, the use of the solid lipid nanoparticle gel showed activity for a longer period of
time (11 days vs. 9 days) [69]. While lipid nanoparticles investigated in these studies pro-
mote wound healing and bacterial eradication, it is important to note that they have been
used as carriers for different materials. In one study, lipid nanoparticles served as a carrier
platform for an antibiotic (fusidic acid) [67], while in another, they were used to deliver
iron [68], and yet in another, they were used to deliver a bacteriocin [69]. This difference is
important to highlight as the therapeutic effects observed in each study may be influenced
not only by the lipid nanoparticles themselves but also by the specific substances they
are transporting. Lipid-based nanotechnology holds significant potential for synergetic
action with other antimicrobial agents in combating wound infections. Additionally, they
may offer the possibility of reduced drug administration and treatment costs [58]. In the
future of post-surgical care, topical creams and gels containing antimicrobial-loaded lipid
nanoparticles may be introduced as primary or adjunct therapies.

While lipid nanoparticles have been used to great success in other medical applications
(e.g., vaccine creation), they have yet to be fully utilized in the effort against antimicrobial
resistance. More research needs to be done to establish support for eventual clinical trials
to demonstrate the potential that lipid nanoparticles have in delivering antimicrobials and
resolving antibiotic resistance infections.

5. Polymer Nanoparticles
Polymeric nanoparticles are also amongst the commonly studied nanoparticles. Poly-

meric nanoparticles function as robust drug carriers that can shield the drug from the
environment and enhance their bioavailability [70]. Polymeric nanoparticles may also
regulate the pharmacokinetics of many active substances [71]. They may be invaluable in
the fight against surgical wound infections, as polymeric nanoparticles possess the capacity
to increase drug bioavailability and enhance drug delivery at specific sites of action [72].
Polymeric materials have been shown to have potent antimicrobial properties [73], notably,
polyhexamethylene biguanide (PHMB), which has been used in several settings, including
wound dressing [74]. Polymeric nanoparticles are the most common type of nanoparticle
within the FDA-approved nanoparticle drugs [75]. Many studies have demonstrated the
efficacy of polymeric nanoparticles in combatting wound infections in vitro and in vivo.
Hasan et al. created a clindamycin-loaded polymeric nanoparticle and tested its efficacy
against MRSA wound infections [76]. The treated group showed a decrease in bacterial
burden as well as accelerated wound healing [76]. These reported results show the potential
of polymeric nanoparticles as another avenue to combat bacterial infection, creating new
opportunities to combat antibiotic resistance.

Currently in the market, due to their biocompatibility and their accelerated wound
healing, many polymeric materials such as chitosan are used and branded as wound
dressings in the form of sponges, sprays, gauze, bandages, and patches [77]. One example
of marketed polymer nanostructured materials is FibDex®, which is a nanofibrillar cellulose
wound dressing that is effective in managing wounds [78]. Another example is Epiprotect®,
which is a dressing made of biosynthetic cellulose in a nanostructure comparable to collagen,
and it has been shown to be effective in treating wound burns in a pilot study for a pediatric
population [79].

Additionally, many studies use polymer nanomaterials with metals and other conju-
gated nanomaterials for synergistic antimicrobial effects [80]. For example, an antimicrobial
chitosan–hyaluronic acid and nano silver composite sponge was investigated as a poten-
tial future management of infected diabetic foot ulcers with drug-resistant bacteria [81].
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The sponge demonstrated significant antibacterial activity against major wound bacteria,
including MRSA [81].

Polymer nanoparticles are good candidates for applications in surgical wound healing;
however, several challenges need to be addressed before being able to introduce them
into clinical practice. These challenges include ensuring safety, enhancing the stability of
polymeric nanoparticles, and creating reliable large-scale manufacturing techniques [20].

6. Limitations
There exist obstacles that need further scrutiny for nanoparticles to become more

common in surgical practice. Namely, unintended immunological reactions place a key limit
on the use of nanoparticles [82]. Nanoparticles may interact with the immune system and
cause such effects as inadvertently activating the complement system and direct interaction
with toll-like receptors, which may potentially contribute to immunotoxicity [82].

Additionally, it has been shown that certain nanoparticles possess significant cytotoxic
effects despite their therapeutic properties. The cytotoxicity of different nanoparticles has
been documented in several different environments which may limit their adoption in the
clinical practice [83,84].

One study revealed that zinc oxide nanoparticles induced neurotoxicity and increased
levels of inflammatory cytokines in the brain and the serum of treated mice as well as
hippocampal pathological changes [85]. The same study revealed that the older the mouse,
the more serious was the systemic inflammation [85]. Metal nanoparticles can also damage
genetic material by entering the nucleus and engaging with DNA material [20].

Non-metal nanoparticle toxicity also poses a serious problem. Studies have shown
that carbon nanotubes can have toxic effects on many organ systems as well as DNA [86].
Studies have shown that carbon nanotubes possess the capacity to cause DNA and chromo-
somal damage [87]. Other studies show that carbon nanosystems may enhance cytokine
production and alter the immune system responses [88], as well as possibly increasing
fibrosis [55]. Some studies demonstrate that certain carbon nanotube toxicities are dose
dependent, with larger concentrations causing more severe side effects [86]. This high-
lights the need for careful study designs ensuring safe doses and concentrations before
implementing these technologies into clinical use.

Liposomes can also have toxic side effects. Through interactions with biological
components such as serum proteins, cationic liposomes can cause the release of loaded
agents leading to systemic toxicity; these liposomes may also cause membrane poration
and lysis [89]. Conjugating cationic liposomes with a targeting moiety can help mitigate
certain risks such as liver damage caused by topical solutions [89]. Certain polymers may
be used as surface protection to help reduce the toxic side effects of other nanoparticles [89].
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