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Abstract: This study aims to develop deep learning (DL) models to predict the retinal
nerve fiber layer (RNFL) thickness changes in glaucoma, facilitating the early diagnosis and
monitoring of disease progression. Using the longitudinal data from two glaucoma studies
(Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma
Evaluation Study (ADAGES)), we constructed models using optical coherence tomography
(OCT) scans from 251 participants (437 eyes). The models were trained to predict the
RNFL thickness at a future visit based on previous scans. We evaluated four models: linear
regression (LR), support vector regression (SVR), gradient boosting regression (GBR), and
a custom 1D convolutional neural network (CNN). The GBR model achieved the best
performance in predicting pointwise RNFL thickness changes (MAE = 5.2 µm, R2 = 0.91),
while the custom 1D CNN excelled in predicting changes to average global and sectoral
RNFL thickness, providing greater resolution and outperforming the traditional models
(MAEs from 2.0–4.2 µm, R2 from 0.94–0.98). Our custom models used a novel approach
that incorporated longitudinal OCT imaging to achieve consistent performance across
different demographics and disease severities, offering potential clinical decision support
for glaucoma diagnosis. Patient-level data splitting enhances the evaluation robustness,
while predicting detailed RNFL thickness provides a comprehensive understanding of the
structural changes over time.

Keywords: glaucoma; deep learning; RNFL thickness prediction; optical coherence tomography;
one-dimensional convolutional neural network; longitudinal OCT

1. Introduction
Glaucoma is a progressive disease characterized by longitudinal structural changes to

the eye and loss of function [1,2]. It is one of the leading causes of irreversible blindness
worldwide, affecting an estimated 76 million people in 2020, with this number expected to
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rise to 111.8 million by 2040 due to population aging and growth [3]. The prevalence of
glaucoma varies by region, with higher rates observed in populations of African and Asian
descent [4,5]. Because progression is gradual, patients are often unaware of their disease
until they have already suffered substantial, irreversible damage [6–8]. In fact, previous
work suggests that more than 50% of individuals with glaucoma are unaware of their
disease, which can lead to substantial vision loss before patients become symptomatic of
irreversible visual impairment [7,9]. The improved detection and forecasting of structural
changes is a critical need to help improve glaucoma management and preserve vision.

The current standard for glaucoma diagnosis and management includes monitoring
structural changes using optical coherence tomography (OCT), primarily of the optic nerve
head (ONH) region [10,11]. This imaging modality provides digital histologic reconstruc-
tion of the retina and can be used to collect reliable quantitative tissue measurements
related to glaucoma including ONH parameters and retinal nerve fiber layer (RNFL) thick-
ness [12,13]. A limitation of this approach, however, is that follow-up visits over a long
period of time might be required to identify glaucoma onset and progression [14,15]. An
approach that can accurately predict a patient’s future structure would help clinicians
more quickly identify progressing disease and adjust the treatment appropriately. The
application of artificial intelligence (AI) is one such approach.

Artificial intelligence (AI) advances are having a transformative effect on medicine [16,17].
In particular, deep learning (DL) approaches, such as convolutional neural networks
(CNNs), focused on making predictions from images, have had an especially large impact
on the image-intensive specialty of ophthalmology. DL models have been trained to detect
eye disease (diabetic retinopathy [18], macular degeneration [19], glaucoma [20]), segment-
ing anatomical and disease features from images [21], and predicting visual function from
imaging [2], among other applications. Across these tasks, DL models have achieved high
performance, often matching or exceeding the performance of human experts [22–24].

Several previous studies have utilized AI and deep learning (DL) models for glaucoma
diagnosis and progression detection [2,12]. Despite these advancements, a significant
gap remains in the application of DL techniques for predicting longitudinal structural
changes, such as RNFL thinning. Predicting these changes is crucial for the early detection
of disease progression, as RNFL thinning is one of the earliest indicators of glaucomatous
damage [25–28]. However, most of these studies have focused on cross-sectional data, using
OCT images from a single time point to classify disease status, predict visual function,
or estimate RNFL thickness [29,30]. As a result, these models are generally limited to
diagnosing current disease rather than forecasting future structural changes. For instance,
while some studies have attempted to predict the RNFL thickness from OCT images, these
models are restricted to predicting the thickness values for the same visit rather than for
future visits [29–31].

Only one study has attempted to predict the future RNFL thickness using longitudinal
data [32]. While this work represents an important step forward, certain limitations remain.
The study included different visits from the same patients in both training and testing
sets, which may have led to data leakage, potentially inflating the model performance and
limiting the generalizability to unseen patient data. Furthermore, the prediction was limited
to five regional RNFL values, restricting the analysis’s granularity. Predicting the entire
768-point RNFL thickness vector is crucial for capturing localized retinal changes, offering
greater precision for monitoring disease progression and informing clinical decision making.
Therefore, there remains a need for models capable of predicting the full RNFL thickness
vector for future visits, with robust evaluation using patient-level data splitting to ensure
reliable generalization.



Bioengineering 2025, 12, 139 3 of 16

The success of DL approaches across various problems suggests their potential suit-
ability for longitudinal RNFL predictions. However, to date, there has been relatively little
research focused on the DL methods for this task. The objective of this study is to leverage
a large longitudinal dataset to develop AI models capable of predicting the structural
changes in a cohort of healthy and glaucoma eyes. Specifically, we aim to predict future
circumpapillary RNFL thickness based on previous ONH OCT imaging. Our approach
predicts the entire 768-point RNFL thickness vector, providing a more detailed and gran-
ular assessment of retinal changes compared to prior studies that were limited to only
five regions.

The rest of the paper is organized as follows. Section 2 describes our datasets, prepro-
cessing, and predictive models. Section 3 presents the results of evaluating our predictive
models, Section 4 discusses these results and places them in context with other recent work,
and Section 5 concludes the work.

2. Materials and Methods
2.1. Datasets

The datasets used for this analysis were collected as part of two longitudinal glaucoma
studies: the Diagnostic Innovations in Glaucoma Study (DIGS, clinicaltrials.gov identi-
fier: NCT00221897) and the African Descent and Glaucoma Evaluation Study (ADAGES,
clinicaltrials.gov identifier: NCT00221923) [33]. These studies have been detailed previ-
ously [34]. The inclusion criteria required the participants to have a best-corrected Snellen
visual acuity of 20/40 or better and at least two consecutive reliable standard automated
perimetry visual field (VF) tests at the study entry. Glaucoma was defined as eyes with
repeated abnormal VF results. Healthy eyes were identified as those with no abnormal VF
results and normal-appearing optic discs based on a fundus image review. Suspect eyes
were defined as those with glaucomatous optic neuropathy observed on fundus imaging
but without detectable VF damage.

The participants underwent semi-annual OCT imaging using a Spectralis device
(Heidelberg Engineering GmbH, Heidelberg, Germany). For this work, OCT imaging was
captured using the optic nerve head radial—circle (ONHRC) scan pattern that captured
24 radial scans and 3 circle scans at diameters of 3.5 mm, 4.1 mm, and 4.5 mm, centered
on the ONH. The retinal nerve fiber layer (RNFL) segmentation was performed using
built-in software provided by the manufacturer, which generated 768 equally spaced
RNFL thickness measurements around the circle scans, along with global and sectoral
RNFL thickness averages. Sectoral thickness measurements included temporal, temporal—
superior, temporal—inferior, nasal, nasal—superior, and nasal—inferior. Figure 1 provides
an example OCT circle scan along with the segmented RNFL thickness and corresponding
sectors. OCT images and segmentations were evaluated for quality by using the UC San
Diego Imaging Data Evaluation and Analysis (IDEA) Reading Center according to standard
protocols [35]. OCT images with poor signal quality, imaging artifacts, and/or segmentation
errors that could not be manually corrected were excluded from further analysis.

VF testing was performed using the 24-2 Swedish interactive thresholding algo-
rithm (SITA standard, Humphrey Field Analyzer II; Carl Zeiss Meditec, Inc., Dublin, CA,
USA) [33]. VFs with more than 33% fixation losses, false-negative errors, or false-positive er-
rors were excluded following the UC San Diego Visual Field Assessment Center (VisFACT)
established protocols. Key metrics such as mean deviation (MD), pattern standard deviation
(PSD), visual field index (VFI), and individual test point deviations were extracted.

clinicaltrials.gov
clinicaltrials.gov
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Figure 1. (A) Original Spectralis circle scan of a glaucoma patient. (B) Circle scan with inner limiting 
membrane (ILM, red), retinal nerve fiber layer (RNFL, blue), and Bruch’s membrane (BM, green) 
segmentations shown. (C) Visualization of 768-element RNFL thickness vector. 

2.2. Input–Target Preprocessing 

The objective of this study was to predict the future RNFL thicknesses based on prior 
OCT imaging. For this analysis, OCT imaging triplets were constructed. Each triplet con-
sisted of three OCT ONHRC scans obtained during different visits, with the time between 
the visits ranging from 6 to 18 months. The first two visits served as inputs, while the third 
visit provided the RNFL thickness values used as the target for prediction. Our study em-
ployed a strict patient-level data split, ensuring no overlap among the training, validation, 
and test sets. Our OCT imaging dataset included semi-annual visits for most patients, with 
some instances where multiple ONHRC scans were captured during a single visit. As a 
result, multiple valid permutations of OCT imaging triplets could be constructed for a 
single eye over a given time period. For model training, all the possible triplet permuta-
tions were included to maximize the training dataset size. In contrast, for model testing, a 
single OCT ONHRC scan was randomly selected from each visit to construct unique tri-
plets. This approach ensured that no conflicting triplets (i.e., identical input scans with 
different target scans) would impact the results. Figure 1 illustrates a representative Spec-
tralis circle scan of a glaucoma patient, segmented with ILM, RNFL, and BM layers, and 
a visualization of the corresponding 768-element RNFL thickness vector. Figure 2 and 
Supplemental Figure S1 provide detailed schematics of the methodology used to construct 
the input–target data series and apply the deep learning model. 

Figure 1. (A) Original Spectralis circle scan of a glaucoma patient. (B) Circle scan with inner limiting
membrane (ILM, red), retinal nerve fiber layer (RNFL, blue), and Bruch’s membrane (BM, green)
segmentations shown. (C) Visualization of 768-element RNFL thickness vector.

2.2. Input–Target Preprocessing

The objective of this study was to predict the future RNFL thicknesses based on prior
OCT imaging. For this analysis, OCT imaging triplets were constructed. Each triplet
consisted of three OCT ONHRC scans obtained during different visits, with the time
between the visits ranging from 6 to 18 months. The first two visits served as inputs, while
the third visit provided the RNFL thickness values used as the target for prediction. Our
study employed a strict patient-level data split, ensuring no overlap among the training,
validation, and test sets. Our OCT imaging dataset included semi-annual visits for most
patients, with some instances where multiple ONHRC scans were captured during a single
visit. As a result, multiple valid permutations of OCT imaging triplets could be constructed
for a single eye over a given time period. For model training, all the possible triplet
permutations were included to maximize the training dataset size. In contrast, for model
testing, a single OCT ONHRC scan was randomly selected from each visit to construct
unique triplets. This approach ensured that no conflicting triplets (i.e., identical input scans
with different target scans) would impact the results. Figure 1 illustrates a representative
Spectralis circle scan of a glaucoma patient, segmented with ILM, RNFL, and BM layers,
and a visualization of the corresponding 768-element RNFL thickness vector. Figure 2 and
Supplemental Figure S1 provide detailed schematics of the methodology used to construct
the input–target data series and apply the deep learning model.

The two specific outputs of our models were a 768-element vector estimating the
RNFL thickness in a circle around the ONH and a 7-element vector estimating the global
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and sectoral RNFL thickness averages. Small errors in the segmentation or missing values
were addressed by filling values with neighboring measurements and truncating the RNFL
thickness to 300 µm [36,37]. Following preprocessing, our training dataset (train and
validation) encompassed 691 input–target series from 205 participants (357 eyes), while the
testing set included 126 instances from 46 participants (80 eyes).
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Figure 2. Schematic representation of our method for predicting either the future 768-element RNFL
thickness vector or the 7-element vector summarizing global and sectoral averages, based on two
previous 768-element RNFL thickness vectors segmented from OCT imaging.

2.3. Predictive Methods

We evaluated several different model types for predicting the RNFL thickness in-
cluding linear regression (LR), support vector regression (SVR) [38], gradient boosting
regression (GBR) [39], and a custom 1D convolutional neural network (CNN) [40]. For all
the models, the input consisted of the RNFL thickness vectors derived from OCT imaging.
Specifically, two 768-element RNFL thickness vectors from the first and second visits, repre-
senting the baseline and follow-up measurements, were used as inputs to predict either
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a 768-element RNFL thickness vector or a 7-element vector summarizing the global and
sectoral averages.

For the linear regression, SVR, and GBR models, the two 768-element RNFL thickness
vectors were concatenated into a single 1536-element feature vector, representing the
complete RNFL profile from both visits. For the 1D-CNN, the same two RNFL thickness
vectors were stacked to create a two-channel input of size (2 × 768). This format preserved
the spatial arrangement of the RNFL thickness measurements along the circular scan,
allowing the CNN to leverage the structural information inherent in the data.

Our custom 1D CNN consisted of four convolutional layers interspersed with ReLU
and max pooling layers. These were followed by fully connected layers and a final output
layer that predicted either 768 RNFL thickness values or a 7-element vector predicting the
global and sectoral RNFL thickness averages. Supplemental Figure S1 provides a schematic
of our custom 1D CNN. The CNN was trained using an Adam optimizer with a learning
rate of 0.001 and a mean squared error loss function for 100 epochs.

For all the cases, we partitioned the data by participant, using 80% for train-
ing/validation and 20% for testing. This guaranteed no overlap between the sets—no
data from a training participant were present in the testing set and vice versa. For the CNN
training, data augmentation was applied by randomly shifting thickness vectors (±5 pixels)
during training.

2.4. Model Evaluation

We evaluated the models for their accuracy in predicting both the full 768-element
RNFL thickness vector and the 7 global and sectoral averages (G, T, TS, TI, N, NS, NI)
in the next visit. The model’s performance was quantitatively evaluated using the mean
absolute error (MAE), mean relative error (MRE), and R2. We also computed these metrics
comparing the RNFL thicknesses from the second input OCT to the target RNFL thicknesses.
The models were also evaluated as a function of the participant demographics (age, race)
and disease status and severity as measured by using 24-2 VF MD.

3. Results
This study included 1744 images from 251 subjects and 437 eyes (Table 1). Of the

initial 502 eyes, 65 were excluded due to the poor image quality, segmentation errors, or
insufficient consecutive OCT visits. These images were assembled into 691 input–target
series used for training/validation and 126 input–target series for testing. The average age
of the participants at the bassline visit in this study was 68.8 years, and female participants
(n = 136, 54.2%) outnumbered male participants (n = 115, 45.8%). The majority of the partic-
ipants self-identified as either Black/African American (n = 82, 32.7%) or White (n = 139,
55.4%), with a smaller proportion identifying as Asian (n = 25, 10.0%) or other/unknown
(n = 5, 2.0%). The dataset included 196 healthy eyes (24.0%), 263 suspect eyes (32.2%), and
358 glaucoma eyes (43.8%). The average global RNFL thickness was 86.4 µm for healthy
eyes, 72.8 µm for suspect eyes, and 74.5 µm for glaucoma eyes. No significant differences
in patient demographics, glaucoma status, or RNFL thickness were observed between
the training/validation and test sets. Table 1 summarizes the demographic and clinical
characteristics of the dataset, including the patient age, gender, race, glaucoma status, and
RNFL thickness at the baseline visit.



Bioengineering 2025, 12, 139 7 of 16

Table 1. Summary of the dataset used for training, validation, and testing the predictive models.
p-values compare the train and validation vs. test sets. Ranges indicate 95% confidence intervals.

Overall Train and
Validation Test p-Value

Patients, n 251 205 46

Eye, n 437 357 80

Images, n 1744 1444 300

Input–Target Series 817 691 126

Age at the First Visit, years 68.8 (67.4, 70.2) 69.2 (67.6, 70.8) 67.2 (64.0, 70.5) 0.30

Gender, n (%)

Female 136 (54.2%) 113 (55.1%) 23 (50.0%) 0.62

Male 115 (45.8%) 92 (44.9%) 23 (50.0%)

Race, n (%)

Asian 25 (10.0%) 23 (11.2%) 2 (4.3%) 0.65

Black/African
American 82 (32.7%) 65 (31.7%) 17 (37.0%)

White 139 (55.4%) 112 (54.6%) 27 (58.7%)

Other/Unknown or
Not Reported 5 (2.0%) 5 (2.5%) 0 (0.0%)

Diagnosis at the First Visit,
n (%)

Glaucoma 358 (43.8%) 306 (44.3%) 52 (41.3%) >0.99

Normal 196 (24.0%) 160 (23.2%) 36 (28.6%)

Suspect 263 (32.2%) 225 (32.6%) 38 (30.2%)

Glaucoma Severity, n (%)

24-2 VF MD > −6.0 dB 235 (65.6%) 208 (68.0%) 27 (51.9%) 0.613

24-2 VF MD ≤ −6.0 dB 123 (34.4%) 98 (32.0%) 25 (48.1%)

RNFL Thickness at the First
Visit, µm

Global 76.8 (74.7, 79.0) 77.2 (74.8, 79.6) 75.2 (70.1, 80.3) 0.48

Temporal 59.6 (57.6, 61.5) 59.8 (57.7, 62.0) 58.3 (53.8, 62.8) 0.55

Temporal Superior 93.6 (90.0, 97.2) 94.1 (90.1, 98.1) 91.3 (82.8, 99.8) 0.57

Temporal Inferior 100.4 (95.6, 105.2) 101.5 (96.2, 106.8) 95.5 (84.2, 106.8) 0.35

Nasal 67.5 (65.5, 69.5) 67.7 (65.5, 69.9) 66.6 (61.9, 71.2) 0.68

Nasal Superior 91.6 (88.3, 94.9) 91.9 (88.2, 95.5) 90.7 (82.9, 98.5) 0.79

Nasal Inferior 86.7 (83.4, 90.0) 87.0 (83.4, 90.7) 85.2 (77.4, 93.0) 0.68

In predicting the full 768-element RNFL thickness vector, the GBR model achieved
the best performance (MAE [95% CI] = 5.2 µm [4.8–5.6], MRE = 9.4% [6.7–12.1], R2 = 0.91),
followed by the 1D-CNN (MAE = 6.7 µm [6.3–7.1], MRE = 11.5% [9.7–13.4], R2 = 0.89).
Both GBR and 1D-CNN performed significantly better (p < 0.05) than either the SVR or LR
models (Table 2 and Figure 3).

Table 2. Summary of the full 768-element RNFL thickness vector predictions for all models.

Model MAE (µm) MRE (%) R2

LR 14.3 (13.5, 15.2) 24.3 (20.7, 27.9) 0.31

SVR 11.3 (10.3, 12.3) 19.2 (14.9, 23.3) 0.70

GBR 5.2 (4.8, 5.6) 9.4 (6.7, 12.1) 0.91

1D-CNN 6.7 (6.3, 7.1) 11.5 (9.7, 13.4) 0.89
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Figure 3. True and predicted RNFL thickness values across 768 ONH circle positions for healthy
(top), suspect (center), and glaucoma (bottom) eyes, illustrating that both models closely follow the
true RNFL values and effectively capture variations in future RNFL thickness.

In predicting the global and sectoral RNFL thickness averages, the 1D-CNN model
surpassed the others in predicting the thickness averages, achieving the following MAEs:
global = 2.4 µm [1.9–2.8], temporal = 2.0 µm [1.7–2.4], temporal superior = 3.6 µm [2.9–4.4],
temporal inferior = 4.2 µm [3.0–5.0], nasal = 3.0 µm [2.4–3.5], nasal superior = 3.6 µm [3.1–4.2],
and nasal inferior = 3.8 µm [3.1–4.5] (Table 3). The 1D-CNN also achieved R2 ranging from
0.94 to 0.98 in predicting these thickness averages. Figure 4 provides scatterplots comparing
the 1D-CNN global and sectoral predictions to the ground truth.
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Table 3. Summary of global and sectoral RNFL thickness predictions for all models.

Model

Global Temporal Temporal Superior Temporal Inferior

MAE
(µm) MRE (%) R2 MAE

(µm) MRE (%) R2 MAE
(µm) MRE (%) R2 MAE

(µm) MRE (%) R2

LR 5.0
(4.1, 5.8)

7.5
(5.8, 9.2) 0.85 5.1

(4.3, 5.9)
9.6

(7.7, 11.4) 0.85 9.3
(7.6, 11.0)

13.4
(9.5, 17.3) 0.84 10.7

(9.1, 12.4)
14.1

(11., 17.2) 0.88

SVR 2.8
(2.2, 3.4)

3.9
(3.2, 4.6) 0.96 3.4

(2.3, 4.4)
6.2

(4.4, 8.0) 0.96 7.4
(5.4, 9.3)

9.7
(6.8, 12.5) 0.92 6.5

(5.0, 8.1)
9.5

(6.6, 12.4) 0.96

GBR 4.1
(3.5, 4.7)

5.9
(5.0, 6.8) 0.93 2.7

(2.1, 3.2)
4.6

(3.9, 5.3) 0.95 4.9
(4.1, 5.6)

6.5
(5.2, 7.8) 0.97 4.9

(4.0, 5.7)
6.2

(4.5, 7.8) 0.97

1D-CNN 2.4
(1.9, 2.8)

3.3
(2.7, 3.8) 0.97 2.0

(1.7, 2.4)
3.8

(3.1, 4.5) 0.97 3.6
(2.9, 4.4)

4.6
(3.4, 5.9) 0.97 4.2

(3.0, 5.0)
5.4

(3.6, 7.3) 0.98

Model

Nasal Nasal Superior Nasal Inferior

MAE
(µm) MRE (%) R2 MAE

(µm) MRE (%) R2 MAE
(µm) MRE (%) R2

LR 6.7
(5.8, 7.7)

11.3
(9.2, 13.5) 0.72 9.5

(8.2, 10.8)

13.1
(10.6,
15.7)

0.82 9.2
(7.4, 11.0)

13.5
(8.7, 18.4) 0.84

SVR 3.8
(2.6, 5.0)

5.9
(4.4, 7.3) 0.91 6.7

(5.0, 8.3)
8.4

(6.4, 10.4) 0.92 7.4
(5.4, 9.5)

10.2
(7.8, 12.6) 0.90

GBR
3.7

(2.90,
4.47)

6.0
(4.8, 7.1) 0.90 4.5

(3.8, 5.2)
5.5

(4.6, 6.5) 0.96 4.2
(3.4, 5.0)

5.8
(4.4, 7.3) 0.97

1D-CNN 3.0
(2.4, 3.5)

4.9
(3.9, 5.8) 0.94 3.6

(3.1, 4.2)
4.4

(3.5, 5.1) 0.97 3.8
(3.1, 4.5)

5.4
(3.8, 7.0) 0.97

The performance of the 1D-CNN was also evaluated as a function of patient demo-
graphics and disease status. Across the sexes, the model achieved comparable or slightly
lower MAEs in the male compared to female participants (global MAEs of 2.2 µm vs.
2.5 µm, p = 0.56), but the differences were not statistically significant for any global or
sectoral predictions (p-values ≥ 0.304). To evaluate the model across self-reported races,
we considered only two groups of participants (Black/African American and White) be-
cause they represented the majority of our cohort. The model had consistent performance
across Black/African American and White participants (global MAEs of 2.1 µm vs. 2.5 µm,
p = 0.40). The largest difference was for the nasal superior sector (MAE 4.4 µm vs. 3.3 µm,
p = 0.08); however, no difference reached statistical significance.

The performance of the 1D-CNN model was analyzed across different disease statuses
and glaucoma severity levels. Comparing the glaucoma to non-glaucomatous participants,
the model showed similar global MAEs (2.4 µm vs. 2.3 µm, p = 0.848) and for the suspect
participants (2.4 µm vs. 2.4 µm, p = 0.985) with no statistically significant differences. How-
ever, some slightly larger differences emerged in specific sectors. In the temporal inferior
(TI) sector, the glaucoma participants had a higher MAE (5.4 µm vs. 3.2 µm, p = 0.108)
compared to the non-glaucomatous participants. Similarly, in the nasal inferior (NI) sector,
the MAE for the glaucoma participants was higher (4.3 µm vs. 3.1 µm, p = 0.166) compared
to the suspect participants, though none of these differences reached statistical significance.

When evaluating the glaucoma severity, the participants with moderate to advanced
glaucoma showed higher MAEs in certain sectors, though the differences were not sta-
tistically significant (p-values ≥ 0.125). For example, in the temporal inferior (TI) sector,
the moderate to advanced glaucoma participants had a higher MAE (6.8 µm vs. 4.4 µm,
p = 0.125). In the global sector, the MAE for mild glaucoma was lower (2.2 µm vs. 3.0 µm,
p = 0.215), but this difference did not reach statistical significance (Tables 3 and 4).



Bioengineering 2025, 12, 139 10 of 16

Bioengineering 2025, 12, x FOR PEER REVIEW 9 of 16 
 

from 0.94 to 0.98 in predicting these thickness averages. Figure 4 provides scatterplots 
comparing the 1D-CNN global and sectoral predictions to the ground truth. 

 

Figure 4. Scatterplots comparing true and predicted RNFL thickness for global and sectoral aver-
ages, showing a strong correlation across all regions. 

Figure 4. Scatterplots comparing true and predicted RNFL thickness for global and sectoral averages,
showing a strong correlation across all regions.



Bioengineering 2025, 12, 139 11 of 16

Table 4. Summary of global and sectoral RNFL thickness predictions of 1D-CNN model across
different gender, race, disease status, and glaucoma severity.

Gender

Sector
Male Female

MAE MRE R2 MAE MRE R2

G 2.2 (1.7, 2.8) 3.0 (2.3, 3.8) 0.98 2.5 (1.9, 3.2) 3.6 (2.8, 4.4) 0.97

T 1.9 (1.4, 2.4) 3.5 (2.6, 4.4) 0.97 2.2 (1.6, 2.7) 4.2 (3.1, 5.2) 0.96

TS 3.6 (2.6, 4.6) 4.4 (2.7, 6.1) 0.97 3.6 (2.5, 4.7) 4.9 (3.1, 6.7) 0.98

TI 3.6 (2.1, 5.2) 5.1 (2.6, 7.5) 0.99 4.8 (3.1, 6.6) 5.9 (3.3, 8.5) 0.95

N 3.0 (2.3, 3.7) 4.9 (3.6, 6.2) 0.94 2.9 (2.2, 3.7) 4.9 (3.5, 6.3) 0.93

NS 3.6 (2.9, 4.3) 4.1 (3.0, 5.2) 0.97 3.6 (2.7, 4.5) 4.7 (3.5, 5.9) 0.99

NI 3.4 (2.5, 4.4) 5.0 (2.8, 7.1) 0.98 4.2 (3.1, 5.3) 5.8 (3.6, 8.1) 0.97

Race

Sector
White Black/African American

MAE MRE R2 MAE MRE R2

G 2.5 (2.0, 3.1) 3.5 (2.8, 4.2) 0.97 2.1 (1.4, 2.9) 3.0 (2.1, 4.0) 0.99

T 2.1 (1.6, 2.6) 3.6 (2.8, 4.4) 0.95 2.1 (1.4, 2.8) 4.5 (3.4, 5.7) 0.97

TS 3.8 (2.9, 4.8) 4.7 (3.1, 6.3) 0.98 3.5 (2.2, 4.8) 4.9 (2.8, 7.0) 0.99

TI 4.8 (3.3, 5.9) 6.7 (4.4, 9.0) 0.98 3.4 (1.6, 5.3) 3.7 (0.7, 6.8) 0.99

N 3.0 (2.3, 3.6) 4.8 (3.7, 6.0) 0.94 2.6 (1.8, 3.5) 4.3 (2.8, 5.9) 0.95

NS 3.3 (2.6, 4.0) 4.1 (3.0, 5.1) 0.98 4.4 (3.4, 5.4) 5.2 (3.8, 6.7) 0.95

NI 4.0 (3.0, 5.0) 6.2 (4.2, 8.3) 0.97 3.5 (2.3, 4.8) 4.2 (1.6, 6.8) 0.98

Disease Status

Sector
Normal Suspect Glaucoma

MAE MRE R2 MAE MRE R2 MAE MRE R2

G 2.3 (1.2, 3.3) 2.6 (1.2, 4.0) 0.95 2.4 (1.4, 3.4) 3.8 (2.5, 5.1) 0.96 2.4 (1.7, 3.1) 3.3 (2.4, 4.2) 0.95

T 2.0 (1.1, 2.9) 3.0 (1.4, 4.5) 0.97 2.4 (1.5, 3.3) 5.1 (3.6, 6.5) 0.96 1.8 (1.2, 2.4) 3.3 (2.3, 4.3) 0.95

TS 3.55 (1.85,
5.25)

3.59 (0.69,
6.49) 0.97 4.09 (2.45,

5.74)
5.52 (2.82,

8.20) 0.97 3.3 (2.1, 4.4) 4.5 (2.7, 6.4) 0.99

TI 3.2 (0.5, 6.0) 2.9 (−1.7, 7.4) 0.97 3.7 (1.3, 6.1) 6.6 (2.5, 10.8) 0.97 5.4 (3.6, 7.2) 6.1 (3.2, 9.0) 0.99

N 3.4 (2.1, 4.7) 5.0 (2.6, 7.4) 0.93 2.9 (1.6, 4.1) 4.8 (2.5, 7.0) 0.91 2.7 (1.9, 3.6) 4.9 (3.3, 6.4) 0.88

NS 4.0 (2.6, 5.3) 3.5 (1.6, 5.4) 0.98 3.6 (2.3, 4.9) 4.9 (3.0, 6.8) 0.94 3.4 (2.5, 4.2) 4.5 (3.2, 5.7) 0.98

NI 4.0 (2.1, 5.8) 3.9 (0.6, 7.2) 0.96 3.1 (1.4, 4.8) 5.1 (2.1, 8.1) 0.98 4.3 (3.1, 5.6) 6.6 (4.4, 8.8) 0.94

Disease Severity

Sector
Mild Glaucoma Moderate to Advanced Glaucoma

MAE MRE R2 MAE MRE R2

G 2.2 (1.0, 3.3) 3.0 (1.7, 4.3) 0.88 3.0 (1.9, 4.1) 3.7 (2.5, 4.9) 0.96

T 1.7 (1.1, 2.3) 3.1 (2.0, 4.2) 0.96 1.9 (1.4, 2.4) 3.5 (2.5, 4.5) 0.94

TS 3.9 (2.7, 5.1) 5.4 (2.9, 7.8) 0.98 3.0 (1.9, 4.3) 4.2 (1.9, 6.6) 0.99

TI 4.4 (1.1, 7.7) 6.9 (2.7, 11.0) 0.99 6.8 (3.7, 10.0) 6.7 (2.8, 10.7) 0.99

N 2.7 (1.3, 4.1) 4.4 (1.8, 7.0) 0.88 3.1 (1.9, 4.3) 5.6 (3.2, 7.9) 0.95

NS 3.4 (2.0, 4.7) 5.1 (3.2, 7.0) 0.99 3.5 (2.3, 4.7) 4.1 (2.4, 5.9) 0.96

NI 4.8 (2.1, 7.4) 6.8 (2.4, 11.1) 0.97 5.3 (2.9, 7.83) 7.0 (3.0, 11.2) 0.93

4. Discussion
In this study, we developed and evaluated deep learning models, specifically a custom

1D-CNN, for predicting the longitudinal RNFL thickness changes based on OCT imaging.
To our knowledge, this is one of the first studies to leverage DL models to predict the
future RNFL thickness, using previous RNFL measurements to predict the structural
changes over time. These results highlight the potential for AI to play a pivotal role in early
glaucoma detection and disease management. Our results demonstrate that the custom
1D-CNN outperforms the traditional machine learning approaches employing LR and
SVR approaches in predicting both full 768-element RNFL thickness vectors and sectoral
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averages. Specifically, the 1D-CNN achieved the best overall performance in predicting
the global and sectoral RNFL thicknesses, with MAEs ranging from 2.03 µm to 4.16 µm.
Additionally, the model demonstrated strong R2 values, ranging from 0.94 to 0.98 across all
the sectors, underscoring its robustness and high predictive accuracy.

In evaluating the performance of the 1D-CNN across various demographic and ocular
characteristics, such as sex, race, disease status, and glaucoma severity, the model consis-
tently demonstrated strong predictive capabilities. However, slight deviations were noted
in certain sectors, particularly in the temporal inferior (TI) and nasal inferior (NI) regions,
which were more pronounced in the participants with moderate to advanced glaucoma.
These regions are known for having more variability in RNFL thickness measurements,
especially in the advanced disease stages where the thinning is more pronounced. This
finding suggests that while the 1D-CNN can handle most RNFL thickness predictions effec-
tively, improvements in handling these specific sectors, especially in the more advanced
disease, could enhance the model’s robustness. For future iterations, incorporating a more
tailored architecture that specifically addresses these challenging sectors could improve
the accuracy. Additionally, the results across race and sex groups indicate that the model
generalizes well across different demographic groups, though further validation on more
diverse populations is warranted to ensure broader applicability.

The comparison of the RNFL thickness predictions from the GBR and 1D-CNN models
against the true RNFL thickness vector across the normal, suspect, and glaucoma partici-
pants in Figure 3 shows that both models closely follow the true RNFL values, demonstrat-
ing their ability to capture the variations in the future RNFL thickness vectors. Although
the 1D-CNN shows slightly better alignment in certain regions, particularly in the suspect
and glaucoma cases, it struggles to accurately capture rapid changes (high-frequency com-
ponents) within the thickness variations. This suggests that a denser 1D-CNN architecture
may be needed to improve its ability to predict these rapid fluctuations more effectively,
especially when forecasting the full 768-element RNFL thickness vector.

The scatterplots for the 1D-CNN model predictions of global and sectoral RNFL
thickness (Figure 4) demonstrate a strong correlation between the predicted and true RNFL
values across all the regions, indicating that the model performs well in capturing the RNFL
thickness in most sectors. However, slight deviations from the true thickness values are
observed in the superior and inferior regions, particularly in the temporal inferior and nasal
inferior sectors, where the model shows less precise predictions. These regions tend to
display a wider range of RNFL thickness values, making them more challenging to predict
accurately compared to the nasal, temporal, and global sectors.

The ability to predict the longitudinal RNFL thickness changes is particularly impactful
for early glaucoma diagnosis and monitoring the disease progression. Glaucoma is often
asymptomatic in its early stages, and patients are typically unaware of vision loss until
significant and irreversible damage has occurred. By using DL models to forecast the
RNFL thinning, clinicians could potentially identify patients at higher risk of progression
before significant functional damage occurs. OCT imaging is already a key component of
glaucoma management and integrating predictive models like those described here into
standard clinical workflows could provide ophthalmologists with valuable insights into a
patient’s future risk of disease progression.

While several previous studies have used AI and DL models for glaucoma diagnosis
and progression detection, the majority have focused on cross-sectional data, i.e., using
OCT images from a single time point to classify disease status and predict visual function or
RNFL thickness [2,12,29,30]. Thus, these models have generally been limited to diagnosing
the current disease rather than forecasting the future structural changes. In contrast, our
study focuses on predicting the longitudinal changes in the RNFL thickness, offering a more



Bioengineering 2025, 12, 139 13 of 16

forward-looking approach to disease management. Only one other study has attempted
to forecast the future RNFL thickness using longitudinal data. Sedai et al. [32] developed
a model to predict the global and sectoral cpRNFL thickness based on three prior visits,
incorporating 3D-OCT data, previous RNFL values, clinical test results, and demographic
information, achieving MAEs between 1.8 ± 1.8 µm and 3.1 ± 2.5 µm for healthy and
glaucoma patients, respectively. In contrast to our approach, their approach involved
training on the first “N” visits and testing on later visits from the same patients, raising
concerns about the potential data leakage, as data from a given patient could appear in
both the training and test data. Our study used a strict patient-level data split, ensuring no
overlap between the training and test sets. Additionally, while Sedai et al. predicted only
five regional values, our 1D-CNN model forecasts the entire 768-element RNFL thickness
vector, offering a more granular resolution to predict the regional changes, and potentially
reveal the clinically relevant patterns that global or sectoral averages might overlook.
Incorporating additional features, such as OCT volume data, could further enhance our
model’s predictive capabilities, particularly in challenging regions like the temporal inferior
and nasal inferior sectors.

Despite the strong performance of the 1D-CNN model, there are several limitations.
First, while our model performed well overall, larger prediction errors were observed in
specific sectors such as the temporal inferior (TI) and nasal inferior (NI) regions. These
regions are known to be more variable and prone to measurement errors in OCT imaging,
particularly in advanced glaucoma cases where the RNFL thinning is more pronounced
and a RNFL floor, where further thinning is not detectable, is reached. Future work could
focus on enhancing the model’s performance in these challenging sectors by incorporating
additional imaging data or refining the CNN architecture. Another limitation is that our
study was conducted using data drawn from two longitudinal studies, DIGS and ADAGES.
While these datasets provide high-quality, standardized imaging and clinical data, the
generalizability of the model to other populations or imaging devices remains unclear. The
data on DIGS and ADAGES patients were collected across three regional distinct sites,
but the cohort was largely limited to Black/African American and White patients in the
United States. Future studies should aim to validate these findings in diverse populations
and across different OCT platforms to ensure broader clinical applicability. Encouragingly,
our approach performed similarly across the tested racial groups. Lastly, while this study
focuses on structural predictions, future work could explore integrating functional measures
such as VF data. Predicting both structural and functional outcomes simultaneously would
provide a more comprehensive tool for managing glaucoma progression and could lead to
more personalized and effective treatment strategies.

5. Conclusions
In summary, this study demonstrates the utility of deep learning models, particularly

our custom 1D-CNN approach, in predicting the longitudinal RNFL thickness changes
in glaucoma patients. Our models were able to accurately predict the RNFL changes
across patient demographics (race and age) as well as disease severity. They were also
able to provide high-resolution (i.e., 768-point) predictions surrounding the ONH. The
ability to forecast the future RNFL thinning has significant clinical implications for earlier
detection and intervention in glaucoma management. While additional work is needed to
optimize the model’s performance in specific retinal sectors and validate its applicability in
broader clinical settings, our results represent a promising step toward more proactive and
personalized glaucoma care.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering12020139/s1. Figure S1: Schematic of the one-
dimensional convolutional neural network (1D-CNN) used to predict future RNFL thickness.
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