Streptomyces as Potential Synthetic Polymer Degraders: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
- Scopus: TITLE-ABS-KEY (streptomyces AND (plastic OR polymer OR polyethylene OR polystyrene OR polypropylene OR polyurethane OR “polyethylene terephthalate” OR “polyvinyl chloride”) AND (degradation OR biodegradation));
- Google Scholar: streptomyces plastic polymer polyethylene polystyrene polypropylene polyurethane “polyethylene terephthalate” “polyvinyl chloride” degradation biodegradation;
- Web of Science/PubMed: (streptomyces AND (plastic OR polymer OR polyethylene OR polystyrene OR polypropylene OR polyurethane OR “polyethylene terephthalate” OR “polyvinyl chloride”) AND (degradation OR biodegradation)).
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection and Tabulation
3. Results
3.1. Selection and Characteristics of Studies
3.2. General Findings
3.3. Exploration of Plastic Biodegradation by Streptomyces
Isolation Sources
3.4. Enzyme Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tripathi, S.; Yadav, A.; Tripathi, D.M. Plastic Waste: Environmental Pollution, Health Hazards and Biodegradation Strategies. In Bioremediation of Industrial Waste for Environmental Safety; Springer Nature: Singapore, 2016; pp. 99–133. [Google Scholar]
- Andrady, A.L.; Neal, M.A. Applications and societal benefits of plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Association of Plastics Manifacturors. Plastics—The Facts 2018; Plastics Europe: Brussels, Belgium, 2018. [Google Scholar]
- Greenpeace España. Datos Sobre la Producción de Plásticos. Available online: https://es.greenpeace.org/es/trabajamos-en/consumismo/plasticos/datos-sobre-la-produccion-de-plasticos/ (accessed on 9 September 2019).
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environ. Sci. Technol. 2013, 47, 1646–1654. [Google Scholar] [CrossRef] [PubMed]
- Bejgarn, S.; MacLeod, M.; Bogdal, C.; Breitholtz, M. Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere 2015, 132, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Vinoda, K.S.; Papireddy, M.; Gowda, A.N.S. Toxic Pollutants from Plastic Waste- A Review. Procedia Environ. Sci. 2016, 35, 701–708. [Google Scholar] [CrossRef]
- Hites, R.A. Dioxins: An overview and history. Environ. Sci. Technol. 2011, 45, 16–20. [Google Scholar] [CrossRef]
- Chae, Y.; An, Y.-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef]
- Groh, K.J.; Backhaus, T.; Carney-Almroth, B.; Geueke, B.; Inostroza, P.A.; Lennquist, A.; Leslie, H.A.; Maffini, M.; Slunge, D.; Trasande, L.; et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 2019, 651, 3253–3268. [Google Scholar] [CrossRef]
- Avio, C.G.; Gorbi, S.; Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 2017, 128, 2–11. [Google Scholar] [CrossRef]
- UNEP Consideration of the Implementation of the Basel Convention Technical Matters: Preparation of Technical Guidelines. Available online: http://www.basel.int/Implementation/Publications/GuidanceManuals/tabid/2364/Default.aspx (accessed on 11 September 2019).
- Yu, J.; Sun, L.; Ma, C.; Qiao, Y.; Yao, H. Thermal degradation of PVC: A review. Waste Manag. 2016, 48, 300–314. [Google Scholar] [CrossRef]
- Ahmed, T.; Shahid, M.; Azeem, F.; Rasul, I.; Shah, A.A.; Noman, M.; Hameed, A.; Manzoor, N.; Manzoor, I.; Muhammad, S. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environ. Sci. Pollut. Res. 2018, 25, 7287–7298. [Google Scholar] [CrossRef]
- Jenkins, S.; Quer, A.M.; Fonseca, C.; Varrone, C. Microbial Degradation of Plastics: New Plastic Degraders, Mixed Cultures and Engineering Strategies. Soil Microenviron. Bioremediat. Polym. Prod. 2019, 213–238. [Google Scholar]
- Pathak, V.M.; Bisht, T.S.; Navneet; Pandey, A. Biodegradation of Natural and Synthetic Polymer: A Microbial Approach for a Sustainable Environment. In Microbial Biotechnology in Environmental Monitoring and Cleanup; IGI Global: Hershey, PA, USA, 2018; pp. 106–124. [Google Scholar]
- Bidlan, R.; Manonmani, H.K. Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process. Biochem. 2002, 38, 49–56. [Google Scholar] [CrossRef]
- Ahuactzin-Pérez, M.; Tlecuitl-Beristain, S.; García-Dávila, J.; González-Pérez, M.; Gutiérrez-Ruíz, M.C.; Sánchez, C. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling. Sci. Total Environ. 2016, 566–567, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Farzi, A.; Dehnad, A.; Fotouhi, A.F. Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatal. Agric. Biotechnol. 2019, 17, 25–31. [Google Scholar] [CrossRef]
- Trivedi, P.; Hasan, A.; Akhtar, S.; Haris Siddiqui, M.; Sayeed, U.; Kalim, M.; Khan, A. Role of microbes in degradation of synthetic plastics and manufacture of bioplastics. J. Chem. Pharm. Res. 2016, 8, 211–216. [Google Scholar]
- Pathak, V.; Navneet. Review on the current status of polymer degradation: A microbial approach. Bioresour. Bioprocess. 2017, 4, 15. [Google Scholar] [CrossRef]
- Usha, R.; Sangeetha, T.; Palaniswamy, M. Screening of Polyethylene Degrading Microorganisms from Garbage Soil. Libyan Agric. Res. Cent. J. Int. 2011, 2, 200–204. [Google Scholar]
- Wilkes, R.A.; Aristilde, L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. J. Appl. Microbiol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Mueller, R.-J. Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling. Process. Biochem. 2006, 41, 2124–2128. [Google Scholar] [CrossRef]
- Almeida, E.L.; Rincón, A.F.C.; Jackson, S.A.; Dobson, A.D.W. In silico Screening and Heterologous Expression of a Polyethylene Terephthalate Hydrolase (PETase)-Like Enzyme (SM14est) With Polycaprolactone (PCL)-Degrading Activity, From the Marine Sponge-Derived Strain Streptomyces sp. SM14. Front. Microbiol. 2019, 10, 2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanthini, J.; Ong, S.Y.; Sudesh, K. Identification of three homologous latex-clearing protein (lcp) genes from the genome of Streptomyces sp. strain CFMR 7. Gene 2017, 628, 146–155. [Google Scholar] [CrossRef]
- Sharma, S.R. Bioremediation of Polythenes and Plastics: A Microbial Approach. In Approaches in Bioremediation; Springer: Cham, Switzerland, 2018; pp. 97–114. [Google Scholar]
- Giacomucci, L.; Raddadi, N.; Soccio, M.; Lotti, N.; Fava, F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol. 2019, 52, 35–41. [Google Scholar] [CrossRef]
- Poonam, K.; Rajababu, V.; Yogeshwari, J.; Patel, H. Diversity of plastic degrading microorganisms and their appraisal on biodegradable plastic. Appl. Ecol. Environ. Res. 2013, 11, 441–449. [Google Scholar] [CrossRef]
- Bode, H.B.; Kerkhoff, K.; Jendrossek, D. Bacterial degradation of natural and synthetic rubber. Biomacromolecules 2001, 2, 295–303. [Google Scholar] [CrossRef]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Chater, K.F. Recent advances in understanding Streptomyces. F1000Research 2016, 5, 2795. [Google Scholar] [CrossRef] [Green Version]
- Chater, K.F.; Biró, S.; Lee, K.J.; Palmer, T.; Schrempf, H. The complex extracellular biology of Streptomyces: Review Article. FEMS Microbiol. Rev. 2010, 34, 171–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farzi, A.; Dehnad, A.; Shirzad, N.; Norouzifard, F. Biodegradation of high density polyethylene using Streptomyces species. J. Coast. Life Med. 2017, 5, 474–479. [Google Scholar] [CrossRef]
- Lacombe-Harvey, M.-È.; Brzezinski, R.; Beaulieu, C. Chitinolytic functions in Actinobacteria: Ecology, enzymes, and evolution. Appl. Microbiol. Biotechnol. 2018, 102, 7219–7230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Větrovský, T.; Steffen, K.T.; Baldrian, P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS ONE 2014, 9, e89108. [Google Scholar] [CrossRef]
- Meng, X.; Shao, Z.; Hong, Y.; Lin, L.; Li, C.; Liu, Z. A novel pH-stable, bifunctional xylanase isolated from a deep-sea microorganism, Demequina sp. JK4. J. Microbiol. Biotechnol. 2009, 19, 1077–1084. [Google Scholar]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.S.; Elsamahy, T.; Koutra, E.; Kornaros, M.; El-Sheekh, M.; Abdelkarim, E.A.; Zhu, D.; Sun, J. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Sci. Total Environ. 2021, 771, 144719. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Thapa, B.; Yang, X.; Gertsen, H.; Salánki, T.; Geissen, V.; Garbeva, P. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Sci. Total Environ. 2018, 624, 753–757. [Google Scholar] [CrossRef]
- Gajendiran, A.; Krishnamoorthy, S.; Abraham, J. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 2016, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Deepika, S.; Madhuri, J.R. Biodegradation of Low Density Polyethylene By Micro-Organisms From Garbage Soil. J. Exp. Biol. Agric. Sci. 2015, 3, 15–21. [Google Scholar]
- Weiland, M.; Daro, A.; David, C. Biodegradation of thermally oxidized polyethylene. Polym. Degrad. Stab. 1995, 48, 275–289. [Google Scholar] [CrossRef]
- Abraham, J.; Ghosh, E.; Mukherjee, P.; Gajendiran, A. Microbial degradation of low density polyethylene. Environ. Prog. Sustain. Energy 2017, 36, 147–154. [Google Scholar] [CrossRef]
- Imai, S.; Ichikawa, K.; Muramatsu, Y.; Kasai, D.; Masai, E.; Fukuda, M. Isolation and characterization of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4-isoprene). Enzyme Microb. Technol. 2011, 49, 526–531. [Google Scholar] [CrossRef]
- Sriyapai, P.; Chansiri, K.; Sriyapai, T. Isolation and Characterization of Polyester-Based Plastics-Degrading Bacteria from Compost Soils. Microbiology 2018, 87, 290–300. [Google Scholar] [CrossRef]
- Hoang, K.-C.; Lee, C.-Y.; Tseng, M.; Chu, W.S. Polyester-degrading actinomycetes isolated from the Touchien River of Taiwan. WORLD J. Microbiol. Biotechnol. 2007, 23, 201–205. [Google Scholar] [CrossRef]
- El-Shafei, H.A.; El-Nasser, N.H.A.; Kansoh, A.L.; Ali, A.M. Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polym. Degrad. Stab. 1998, 62, 361–365. [Google Scholar] [CrossRef]
- Shahnawaz, M.; Sangale, M.K.; Ade, A.B. Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria. Environ. Sci. Pollut. Res. 2016, 23, 14621–14635. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Chen, M.; Fei, X.; Zhang, R.; Zhong, Y.; Ni, W.; Tao, X.; He, X.; Zhang, E.; Yong, B.; et al. Complete genome sequence and characterization of a polyethylene biodegradation strain, Streptomyces albogriseolus LBX-2. Microorganisms 2019, 7, 379. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Pometto, A.L., III; Fratzke, A.; Bailey, T.B., Jr. Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl. Environ. Microbiol. 1991, 57, 678–685. [Google Scholar] [CrossRef] [Green Version]
- Kannahi, M.; Sudha, P. Screening of polythene and plastic degrading microbes from Muthupet mangrove soil. J. Chem. Pharm. Res. 2013, 5, 122–127. [Google Scholar]
- Pometto, A.L., III; Lee, B.T.; Johnson, K.E. Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Appl. Environ. Microbiol. 1992, 58, 731–733. [Google Scholar] [CrossRef] [Green Version]
- Giacomucci, L.; Raddadi, N.; Soccio, M.; Lotti, N.; Fava, F. Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia. Mar. Environ. Res. 2020, 158, 104949. [Google Scholar] [CrossRef]
- Sasson, A.; Malpica, C. Bioeconomy in Latin America. New Biotechnol. 2018, 40, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Tseng, M.; Hoang, K.-C.; Yang, M.-K.; Yang, S.-F.; Chu, W.S. Polyester-degrading thermophilic actinomycetes isolated from different environment in Taiwan. Biodegradation 2007, 18, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Knott, B.C.; Erickson, E.; Allen, M.D.; Gado, J.E.; Graham, R.; Kearns, F.L.; Pardo, I.; Topuzlu, E.; Anderson, J.J.; Austin, H.P.; et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl. Acad. Sci. USA 2020, 117, 25476–25485. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 2837. [Google Scholar] [CrossRef]
- Pometto, A.L., III; Lee, B. Process of Biodegradation of High Molecular Weight Polyethylene by Aerobic Lignolytic Microorganisms. U.S. Patent 5145779A, 8 September 1992. [Google Scholar]
- Vivi, V.K.; Martins-Franchetti, S.M.; Attili-Angelis, D. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiol. 2019, 64, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, J.S.; Nixon, M.; Eastwood, I.M.; Greenhalgh, M.; Robson, G.D.; Handley, P.S. Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl. Environ. Microbiol. 2000, 66, 3194–3200. [Google Scholar] [CrossRef] [Green Version]
- Bialecka-Florjańczyk, E.; Florjańczyk, Z. Solubility of Plasticizers, Polymers and Environmental Pollution. In Thermodynamics, Solubility and Environmental Issues; Elsevier: Amsterdam, The Netherlands, 2007; pp. 397–408. ISBN 978-0444527073. [Google Scholar]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 2017, 111, 458–467. [Google Scholar] [CrossRef]
Polymer | Species | Sample Used | Polymer Structure | Time for Degradation | Key Findings | References |
---|---|---|---|---|---|---|
Low-Density Polyethylene | S. fulvissimus | Compost | Branched a | 21 days | Volatile compounds measured 1 | [42] |
Streptomyces sp. | Film | Unspecified a | 90 days | 5.2% as weight loss percentage 2 | [43] | |
Streptomyces sps. | Powder | Branched + | 30 to 168 days | 46.7% as weight loss percentage | [44] | |
S. badius (ATCC 39117) | Film | Branched + | 15 days | Up to 82% reduction in molecular weight | [45] | |
S. setonii (ATCC 39116) | ||||||
S. viridosporus (ATCC 39115) | ||||||
Streptomyces sp. | Film | Linear + | 90 days | 0.08% as weight loss percentage | [46] | |
Poly(cis-1,4-isoprene) | S. griseoplanus (AS 4.1868T) | Liquid | Unspecified a | 70 days | Decay on representative peak 3 | [47] |
S. coelicolor 1A | Film | Branched + | Unspecified | 18% as weight loss percentage | [31] | |
S. exfoliatus (K10) | <3% as weight loss percentage | |||||
S. griseus 1D | 18% as weight loss percentage | |||||
S. lividans (1326) | <3% as weight loss percentage | |||||
Polyester-based | S. antibioticus | Unspecified | Linear + | 5 to 7 days | Clear zone formation and depolymerase production 4 | [48] |
Streptomyces sp. | Powder + Solvent | Linear + | 7 days | Clear zone formation | [49] | |
Polyethylene | S. aburaviensis | Film | Unspecified a | 7 to 30 days | An average of 28.5% reduction in percent elongation | [50] |
S. aveblanens | ||||||
S. iakyrus | ||||||
S. misioensis | ||||||
S. warraensis | ||||||
S. humidus | ||||||
S. nigellus | ||||||
S. parvullus | ||||||
S. longisporoflavus | Film | Linear + | 60 days | 84.02% reduction in tensile strength | [51] | |
S. albogriseolus (LBX-2) | Film | Unspecified a | 15 days | 63% reduction in tensile strength | [52] | |
S. badius (ATCC 39117) | Film | Linear + | 30 days | An average of 31% reduction in molecular weight | [53] | |
S. setonii (ATCC 39116) | An average of 36% reduction in molecular weight | |||||
S. viridosporus (ATCC 39115) | An average of 21% reduction in molecular weight | |||||
Streptomyces sp. | Film | Linear + | Up to 55 days | Up to 12.04% as weight loss percentage | [54] | |
Polyethylene terephthalate | Streptomyces sp. | Powder | Linear + | 18 days | Up to 68% as weight loss percentage | [20] |
Starch-Polyethylene | S. badius (252) | Film | Linear + | 20 days | 13.6% reduction in tensile strength | [55] |
S. setonii (75Vi2) | 17.2% reduction in tensile strength | |||||
S. viridosporus (T7A) | 12.5% reduction in tensile strength | |||||
High-Density Polyethylene | Streptomyces | Powder | Linear + | 18 days | Up to 18.26% as weight loss percentage | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Fonseca, M.F.; Sánchez-Suárez, J.; Valero, M.F.; Ruiz-Balaguera, S.; Díaz, L.E. Streptomyces as Potential Synthetic Polymer Degraders: A Systematic Review. Bioengineering 2021, 8, 154. https://doi.org/10.3390/bioengineering8110154
Rodríguez-Fonseca MF, Sánchez-Suárez J, Valero MF, Ruiz-Balaguera S, Díaz LE. Streptomyces as Potential Synthetic Polymer Degraders: A Systematic Review. Bioengineering. 2021; 8(11):154. https://doi.org/10.3390/bioengineering8110154
Chicago/Turabian StyleRodríguez-Fonseca, Maria Fernanda, Jeysson Sánchez-Suárez, Manuel Fernando Valero, Sonia Ruiz-Balaguera, and Luis Eduardo Díaz. 2021. "Streptomyces as Potential Synthetic Polymer Degraders: A Systematic Review" Bioengineering 8, no. 11: 154. https://doi.org/10.3390/bioengineering8110154
APA StyleRodríguez-Fonseca, M. F., Sánchez-Suárez, J., Valero, M. F., Ruiz-Balaguera, S., & Díaz, L. E. (2021). Streptomyces as Potential Synthetic Polymer Degraders: A Systematic Review. Bioengineering, 8(11), 154. https://doi.org/10.3390/bioengineering8110154